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1 Introduction1 Introduction

This wxMaxima workbook is an electronic supplement to to the book Principles of NMR Spectroscopy: An Illustrated Guide, David P. Goldenberg, University
Science Books, (c) 2016. 
This and related files are available for download through links at: http://uscibooks.com/goldenberg.htm 
wxMaxima is a graphical user interface to the computer algebra system (CAS) Maxima.  General information about Maxima and wxMaxima, along with free
versions of the programs, can be found at: http://maxima.sourceforge.net/ and http://andrejv.github.io/wxmaxima/ 
Before attempting to use this workbook, users are strongly encouraged to read and experiment with the introductory workbook, gettingStarted.wxmx, and the
workbooks for the earlier chapters. 
This software is distributed under the conditions of the BSD license and without any guarantees or warranties. (c) 2016 by David P. Goldenberg 
Please send comments, including bug reports, to this address: 
   David P. Goldenberg 
   Department of Biology 
   University of Utah 
   257 South 1400 East 
   Salt Lake City, UT 84112-0840 
   goldenberg@biology.utah.edu

This chapter describes NMR experiments based on dipolar coupling between different nuclei types, such as 1H and 13C, or 1H and 15N. 
The worksheet uses the definitions found in 2spinLib.mac.  These definitions, where appropriate, assume the weak- coupling limit.

(%i1) load("2spinLib.mac")$

Removing the $ symbol at the end of the command below and executing the command will output a list of all of the functions defined by the 2spinLib.mac
library, and the packages it loads.

(%i2) functions$

2 16.1 Heteronuclear coupling and decoupling2 16.1 Heteronuclear coupling and decoupling
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Decoupling after a selective pi/2 y,S pulse. 
Consider a |alpha alpha> and |beta alpha> starting states for a coupled spin pair, I-S.

(%i3) k_aa;

(%i4) k_ba;

After an initial pi/2 y,S pulse:

(%i5) k_aa1:psiPi2YS(k_aa);
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(%i6) allMagPsi(k_aa1);

(%i7) k_ba1:psiPi2YS(k_ba);

(%i8) allMagPsi(k_ba1);

Precession for a period tau1

(%i9) k_aa2:psiTime(k_aa1,tau1)$
(%i10) allMagPsi(k_aa2);

(%i11) k_ba2:psiTime(k_ba1,tau1)$
(%i12) allMagPsi(k_ba2);
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< Ix >= 0
< Iy >= 0

< Iz >=
1
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< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟷𝟶)

< Ix >= 0



Fig. 16.4

pi x,I refocussing pulse:

(%i13) k_aa3:psiPiXI(k_aa2)$
(%i14) allMagPsi(k_aa3);

(%i15) k_ba3:psiPiXI(k_ba2)$
(%i16) allMagPsi(k_ba3);

Evolution for period tau2

(%i17) k_aa4:psiTime(k_aa3,tau2)$
(%i18) allMagPsi(k_aa4);

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟷𝟸)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟷𝟺)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟷𝟼)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau1 − π ⋅ tau2) ⋅ J)

2

< Sy >=
sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau1 − π ⋅ tau2) ⋅ J)

2
< Sz >= 0
(%𝚘𝟷𝟾)



(%i19) k_ba4:psiTime(k_ba3,tau2)$
(%i20) allMagPsi(k_ba4);

Now, calculate magnetization components, with the condition tau2=tau1

(%i21) allMagPsi(subst(tau2=tau1,k_aa4));

(%i22) allMagPsi(subst(tau2=tau1,k_ba4));

Fig. 16.5

The two populations give rise to the same average frequency.

Decoupling applied to a single population. with a superposition state giving rise to two frequencies. 
A non-selective pi/2 y pulse applied to k_aa

(%i23) k_aa5:psiPi2Y(k_aa);

(%i24) allMagPsi(k_aa5);

< Ix >= 0
< Iy >= 0

< Iz >=
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< Sx >=
cos ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

2

< Sy >=
sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

2
< Sz >= 0
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< Sy >=
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2
< Sz >= 0
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cos (4 ⋅ π ⋅ tau1 ⋅ nuS)

2

< Sy >=
sin (4 ⋅ π ⋅ tau1 ⋅ nuS)

2
< Sz >= 0
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First time-evolution period, tau1

(%i25) k_aa6:psiTime(k_aa5,tau1)$
(%i26) allMagPsi(k_aa6);

Fig. 16.6

pi x,I refocussing pulse:

(%i27) k_aa7:psiPiXI(k_aa6)$
(%i28) allMagPsi(k_aa7);

Fig. 16.7

Second evolution period, tau2

(%i29) k_aa8:psiTime(k_aa7,tau2)$
(%i30) allMagPsi(k_aa8);

< Ix >=
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< Iy >= 0
< Iz >= 0

< Sx >=
1
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< Sy >= 0
< Sz >= 0
(%𝚘𝟸𝟺)

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟸𝟼)

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟸𝟾)

< Ix >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)



Simplifying the results for Iy and Sy

(%i31) meanPsi(Iy,k_aa8);

(%i32) expand(%);

(%i33) meanPsi(Sy,k_aa8);

(%i34) expand(%);

If tau2 is set to equal tau1

(%i35) allMagPsi(subst(tau2=tau1, k_aa8));

The I-signal is refocussed to the x'I axis, and the S-signal reflects the average precession frequency of its two components.

Following the correlations during the refocusing of magnetization beginning as Sx.

After the initial non-selective pi/2 y-pulse

(%i36) k_aa5;

< Ix >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4

< Iy >=
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4
< Iz >= 0

< Sx >=
cos ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + cos ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4

< Sy >=
sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4
< Sz >= 0
(%𝚘𝟹𝟶)

(%𝚘𝟹𝟷)
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4

(%𝚘𝟹𝟸) +
sin (2 ⋅ π ⋅ tau2 ⋅ nuI − 2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau2 ⋅ J − π ⋅ tau1 ⋅ J)

4
sin (2 ⋅ π ⋅ tau2 ⋅ nuI − 2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau2 ⋅ J + π ⋅

4

(%𝚘𝟹𝟹)
sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau1 + 2 ⋅ π ⋅ tau2) ⋅ nuS + (π ⋅ tau2 − π ⋅ tau1) ⋅ J)

4

(%𝚘𝟹𝟺) +
sin (2 ⋅ π ⋅ tau2 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau2 ⋅ J − π ⋅ tau1 ⋅ J)

4
sin (2 ⋅ π ⋅ tau2 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau2 ⋅ J + π

4
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< Sx >=
cos (4 ⋅ π ⋅ tau1 ⋅ nuS)

2

< Sy >=
sin (4 ⋅ π ⋅ tau1 ⋅ nuS)

2
< Sz >= 0
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(%i37) allMagPsi(k_aa5);

(%i38) allCorrPsi(k_aa5);

Time evolution during tau1 period

(%i39) k_aa6;

(%i40) allMagPsi(k_aa6);

(%i41) allCorrPsi(k_aa6);

< Ix >=
1
2

< Iy >= 0
< Iz >= 0

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟹𝟽)

< IxSx >=
1
4

< IxSy >= 0
< IxSz >= 0
< IySx >= 0
< IySy >= 0
< IySz >= 0
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(%𝚘𝟹𝟾)
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< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟺𝟶)

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)



Fig. 16.8 The initial Sx-magnetization evolves into a mixture of Sy-magnetization and SxIz and SyIz correlations.

The pi-xI pulse

(%i42) k_aa7;

(%i43) allMagPsi(k_aa7);

(%i44) allCorrPsi(k_aa7);

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSz >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IySx >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySy >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySz >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IzSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8

< IzSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8
< IzSz >= 0
(%𝚘𝟺𝟷)

(%𝚘𝟺𝟸)
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− i⋅e−i⋅π⋅tau1⋅(− −nuI+nuS)J
2

2

− i⋅e−i⋅π⋅tau1⋅( −nuI−nuS)J
2

2

− i⋅e−i⋅π⋅tau1⋅( +nuI+nuS)J
2

2

− i⋅e−i⋅π⋅tau1⋅(− +nuI−nuS)J
2

2

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟺𝟹)

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)



Fig. 16.9 The signs of the IzSx and IzSy correlations are reversed by the pulse. This also interchanges the precession frequencies associated with these
terms.

The second evolution period, tau2

(%i45) k_aa8;

With tau2=tau1

(%i46) allMagPsi(subst(tau2=tau1,k_aa8));

(%i47) allCorrPsi(subst(tau2=tau1,k_aa8));

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSz >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IySx >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySy >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySz >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IzSx >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8

< IzSy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8
< IzSz >= 0
(%𝚘𝟺𝟺)

(%𝚘𝟺𝟻)
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− i⋅e−i⋅π⋅tau1⋅(− −nuI+nuS)−i⋅π⋅tau2⋅( +nuI+nuS)J
2

J
2

2

− i⋅e−i⋅π⋅tau1⋅( −nuI−nuS)−i⋅π⋅tau2⋅(− +nuI−nuS)J
2

J
2

2

− i⋅e−i⋅π⋅tau2⋅(− −nuI+nuS)−i⋅π⋅tau1⋅( +nuI+nuS)J
2

J
2

2

− i⋅e−i⋅π⋅tau2⋅( −nuI−nuS)−i⋅π⋅tau1⋅(− +nuI−nuS)J
2

J
2

2

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

< Ix >=
1
2

< Iy >= 0
< Iz >= 0

< Sx >=
cos (4 ⋅ π ⋅ tau1 ⋅ nuS)

2

< Sy >=
sin (4 ⋅ π ⋅ tau1 ⋅ nuS)

2
< Sz >= 0
(%𝚘𝟺𝟼)

< IxSx >=
cos (4 ⋅ π ⋅ tau1 ⋅ nuS)



Figs. 16.10, 16.11, 16.12, 16.13

3 16.2 Suppressing chemical-shift differences while detecting3 16.2 Suppressing chemical-shift differences while detecting
scalar couplingscalar coupling

Starting again with k_aa and k_ba and applying a selective pi/2 YS pulse

(%i48) k_aa10:psiPi2YS(k_aa)$
(%i49) allMagPsi(k_aa10);

(%i50) k_ba10:psiPi2YS(k_ba)$
(%i51) allMagPsi(k_ba10);

The first evolution period, tau1

(%i52) k_aa11:psiTime(k_aa10,tau1)$
(%i53) allMagPsi(k_aa11);

< IxSx >=
cos (4 ⋅ π ⋅ tau1 ⋅ nuS)

4

< IxSy >=
sin (4 ⋅ π ⋅ tau1 ⋅ nuS)

4
< IxSz >= 0
< IySx >= 0
< IySy >= 0
< IySz >= 0
< IzSx >= 0
< IzSy >= 0
< IzSz >= 0
(%𝚘𝟺𝟽)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟺𝟿)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟻𝟷)

< Ix >= 0



(%i54) k_ba11:psiTime(k_ba10,tau1)$
(%i55) allMagPsi(k_ba11);

Fig. 16.14

Non-selective pi x pulse

(%i56) k_aa12:psiPiX(k_aa11)$
(%i57) allMagPsi(k_aa12);

(%i58) k_ba12:psiPiX(k_ba11)$
(%i59) allMagPsi(k_ba12);

Fig. 16.15

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟻𝟹)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟻𝟻)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2

< Sy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟻𝟽)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2

< Sy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟻𝟿)



Second evolution period, tau2

(%i60) k_aa13:psiTime(k_aa12,tau2)$
(%i61) allMagPsi(k_aa13);

(%i62) k_ba13:psiTime(k_ba12,tau2)$
(%i63) allMagPsi(k_ba13);

If tau2 is made equal to tau1

(%i64) allMagPsi(subst(tau2=tau1,k_aa13));

(%i65) allMagPsi(subst(tau2=tau1,k_ba13));

Fig. 16.15

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J)

2

< Sy >=
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J)

2
< Sz >= 0
(%𝚘𝟼𝟷)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (π ⋅ tau1 + π ⋅ tau2) ⋅ J)

2

< Sy >=
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (π ⋅ tau1 + π ⋅ tau2) ⋅ J)

2
< Sz >= 0
(%𝚘𝟼𝟹)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ J)

2

< Sy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟼𝟺)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ J)

2

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ J)

2
< Sz >= 0
(%𝚘𝟼𝟻)



The final positions depend only on the coupling constant, J.

The same pulse-sequence applied to a single population in a superposition state giving rise to two frequencies. 
A non-selective pi/2 y pulse applied to k_aa

(%i66) k_aa15:psiPi2Y(k_aa);

(%i67) allMagPsi(k_aa15);

First evolution period, tau1

(%i68) k_aa16:psiTime(k_aa15,tau1)$
(%i69) allMagPsi(k_aa16);

Fig. 16.16

(%i70) allCorrPsi(k_aa16);

(%𝚘𝟼𝟼)

⎛

⎝

⎜⎜⎜⎜⎜

1
2
1
2
1
2
1
2

⎞

⎠

⎟⎟⎟⎟⎟

< Ix >=
1
2

< Iy >= 0
< Iz >= 0

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟼𝟽)

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟼𝟿)

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)



Fig. 16.17

Non-selective pi x pulse

(%i71) k_aa17:psiPiX(k_aa16)$
(%i72) allMagPsi(k_aa17);

Fig. 16.16

(%i73) allCorrPsi(k_aa17);

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSz >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IySx >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySy >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySz >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IzSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8

< IzSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8
< IzSz >= 0
(%𝚘𝟽𝟶)

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4

< Iy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J)

4
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4

< Sy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J)

4
< Sz >= 0
(%𝚘𝟽𝟸)

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)



Fig. 16.18

second evolution period, tau2

(%i74) k_aa18:psiTime(k_aa17, tau2)$
(%i75) allMagPsi(k_aa18);

If tau2=tau1

(%i76) allMagPsi(subst(tau2=tau1,k_aa18));

The correlations present in this case are

(%i77) allCorrPsi(subst(tau2=tau1,k_aa18));

< IxSx >=
cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSy >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI) + sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IxSz >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IySx >= −
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySy >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + 2 ⋅ π ⋅ tau1 ⋅ nuI) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − 2 ⋅ π ⋅ tau1 ⋅ nuI)

8

< IySz >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuI + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuI − π ⋅ tau1 ⋅ J)

8

< IzSx >= −
cos (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − cos (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8

< IzSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ nuS + π ⋅ tau1 ⋅ J) − sin (2 ⋅ π ⋅ tau1 ⋅ nuS − π ⋅ tau1 ⋅ J)

8
< IzSz >= 0
(%𝚘𝟽𝟹)

< Ix >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J) + cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 + π ⋅ tau2) ⋅ J)

4

< Iy >=
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuI + (π ⋅ tau1 + π ⋅ tau2) ⋅ J)

4
< Iz >= 0

< Sx >=
cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J) + cos ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (π ⋅ tau1 + π ⋅ tau2) ⋅ J

4

< Sy >=
sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (−π ⋅ tau1 − π ⋅ tau2) ⋅ J) + sin ((2 ⋅ π ⋅ tau2 − 2 ⋅ π ⋅ tau1) ⋅ nuS + (π ⋅ tau1 + π ⋅ tau2) ⋅ J)

4
< Sz >= 0
(%𝚘𝟽𝟻)

< Ix >=
cos (2 ⋅ π ⋅ tau1 ⋅ J)

2
< Iy >= 0
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ tau1 ⋅ J)

2
< Sy >= 0
< Sz >= 0
(%𝚘𝟽𝟼)

< IxSx >=
1



Fig. 16.19

if tau1 and tau2 are both set to 1/(4J)

(%i78) allMagPsi(subst([tau1=1/(4*J),tau2=1/(4*J)],k_aa18));

(%i79) allCorrPsi(subst([tau1=1/(4*J),tau2=1/(4*J)],k_aa18));

Fig. 16.20

4 16.3 Polarization transfer and the INEPT experiment4 16.3 Polarization transfer and the INEPT experiment

The experiments described in this section don't really require a quantum mechanical treatment, because they can be described using just the magnetization
components from the four starting states, as detailed in the text.

5 16.4 Reverse INEPT5 16.4 Reverse INEPT

Page 476

This pulse sequence does require a quantum mechanical description. Starting states A and B: A: S-magnetization along x'-axis, I-magnetization along Iz. B: S-
magnetization along y'-axis, I-magnetization along Iz. 

< IxSx >=
1
4

< IxSy >= 0
< IxSz >= 0
< IySx >= 0
< IySy >= 0

< IySz >=
sin (2 ⋅ π ⋅ tau1 ⋅ J)

4
< IzSx >= 0

< IzSy >=
sin (2 ⋅ π ⋅ tau1 ⋅ J)

4
< IzSz >= 0
(%𝚘𝟽𝟽)

< Ix >= 0
< Iy >= 0
< Iz >= 0
< Sx >= 0
< Sy >= 0
< Sz >= 0
(%𝚘𝟽𝟾)

< IxSx >=
1
4

< IxSy >= 0
< IxSz >= 0
< IySx >= 0
< IySy >= 0

< IySz >=
1
4

< IzSx >= 0

< IzSy >=
1
4

< IzSz >= 0
(%𝚘𝟽𝟿)



Both can be generated from k_aa

(%i80) k_riA:psiPi2YS(k_aa)$
(%i81) allMagPsi(k_riA)$

(%i82) k_riB:psiPulseXS(k_aa,-%pi/2)$
(%i83) allMagPsi(k_riB);

After initial non-selective pi/2 y pulse

(%i84) k_riA1:psiPi2Y(k_riA)$
(%i85) allMagPsi(k_riA1);

(%i86) k_riB1:psiPi2Y(k_riB)$
(%i87) allMagPsi(k_riB1);

Fig. 16.31

first half of evolution period

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
1
2

< Sy >= 0
< Sz >= 0

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >= 0

< Sy >=
1
2

< Sz >= 0
(%𝚘𝟾𝟹)

< Ix >=
1
2

< Iy >= 0
< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >= −
1
2

(%𝚘𝟾𝟻)

< Ix >=
1
2

< Iy >= 0
< Iz >= 0
< Sx >= 0

< Sy >=
1
2

< Sz >= 0
(%𝚘𝟾𝟽)



(%i88) k_riA2:psiTime(k_riA1, 1/(4*J))$
(%i89) allMagPsi(k_riA2);

(%i90) k_riB2:psiTime(k_riB1, 1/(4*J))$
(%i91) allMagPsi(k_riB2);

Fig. 16.32

The I-spin of the state that began with the S-magnetization along the x'-axis (A) precess with a single frequency, whereas the I-spin of the state that began
with the S-magnetization along the y'-axis precesses with two frequencies.

The refocusing pulse

(%i92) k_riA3:psiPiX(k_riA2)$
(%i93) allMagPsi(k_riA3);

(%i94) k_riB3:psiPiX(k_riB2)$
(%i95) allMagPsi(k_riB3);

< Ix >=
cos ( )2⋅π⋅nuI−π⋅J

4⋅J
2

< Iy >=
sin ( )2⋅π⋅nuI−π⋅J

4⋅J
2

< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >= −
1
2

(%𝚘𝟾𝟿)

< Ix >=
cos ( ) + cos ( )2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
4

< Iy >=
sin ( ) + sin ( )2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
4

< Iz >= 0

< Sx >= −
sin ( ) + sin ( )2⋅π⋅nuS−π⋅J

4⋅J
π⋅J+2⋅π⋅nuS

4⋅J
4

< Sy >=
cos ( ) + cos ( )2⋅π⋅nuS−π⋅J

4⋅J
π⋅J+2⋅π⋅nuS

4⋅J
4

< Sz >= 0
(%𝚘𝟿𝟷)

< Ix >=
cos ( )2⋅π⋅nuI−π⋅J

4⋅J
2

< Iy >= −
sin ( )2⋅π⋅nuI−π⋅J

4⋅J
2

< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >=
1
2

(%𝚘𝟿𝟹)

< Ix >=
cos ( ) + cos ( )2⋅π⋅nuI−π⋅J π⋅J+2⋅π⋅nuI



Fig. 16.32

2nd half of the evolution period

(%i96) k_riA4:psiTime(k_riA3,1/(4*J))$
(%i97) allMagPsi(k_riA4);

(%i98) k_riB4:psiTime(k_riB3,1/(4*J))$
(%i99) allMagPsi(k_riB4);

Fig. 16.32

Time evolution during the data-acquisition period

(%i100) allMagPsi(psiTime(k_riA4,t));

(%i101) allMagPsi(psiTime(k_riB4,t));

< Ix >=
cos ( ) + cos ( )2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
4

< Iy >= −
sin ( ) + sin ( )2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
4

< Iz >= 0

< Sx >= −
sin ( ) + sin ( )2⋅π⋅nuS−π⋅J

4⋅J
π⋅J+2⋅π⋅nuS

4⋅J
4

< Sy >= −
cos ( ) + cos ( )2⋅π⋅nuS−π⋅J

4⋅J
π⋅J+2⋅π⋅nuS

4⋅J
4

< Sz >= 0
(%𝚘𝟿𝟻)

< Ix >= 0

< Iy >=
1
2

< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >=
1
2

(%𝚘𝟿𝟽)

< Ix >= 0
< Iy >= 0
< Iz >= 0
< Sx >= 0
< Sy >= 0
< Sz >= 0
(%𝚘𝟿𝟿)

< Ix >= −
sin (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J)

2

< Iy >= cos (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J)
2

< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >= 1
2

(%𝚘𝟷𝟶𝟶)



For the state that began with the S-magnetization along the x'-axis (A): a single frequency component 
For  the state that began with the S-magnetization along the y'-axis (B): two anti-phase components

General example

Create starting state with Iz and S-magnetization in the x-y plane at angle a from the x-axis Do this by starting with |aa> and applying an x,S pulse of angle -a,
followed by a pi/2 Sy pulse.

(%i102) k_riC0:psiPi2YS(psiPulseXS(k_aa,-a))$
(%i103) allMagPsi(k_riC0);

First pulse of reverse inept: non-selective pi/2 Y

(%i104) k_riC1:psiPi2Y(k_riC0)$
(%i105) allMagPsi(k_riC1);

First delay period

(%i106) k_riC2:psiTime(k_riC1,1/(4*J))$
(%i107) allMagPsi(k_riC2);

< Ix >= − sin (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J) − sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J)
4

< Iy >= cos (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J) − cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J)
4

< Iz >= 0

< Sx >= cos (2 ⋅ π ⋅ t ⋅ nuS + π ⋅ t ⋅ J) − cos (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J)
4

< Sy >= sin (2 ⋅ π ⋅ t ⋅ nuS + π ⋅ t ⋅ J) − sin (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J)
4

< Sz >= 0
(%𝚘𝟷𝟶𝟷)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos (a)

2

< Sy >=
sin (a)

2
< Sz >= 0
(%𝚘𝟷𝟶𝟹)

< Ix >=
1
2

< Iy >= 0
< Iz >= 0
< Sx >= 0

< Sy >=
sin (a)

2

< Sz >= −
cos (a)

2
(%𝚘𝟷𝟶𝟻)

< Ix >= −
−2 ⋅ cos ( ) − 2 ⋅ cos ( ) − cos ( ) + cos ( ) − cos ( ) + cos ((−4⋅a−π)⋅J+2⋅π⋅nuI (π−4⋅a)⋅J+2⋅π⋅nuI (4⋅a−π)⋅J+2⋅π⋅nuI (4⋅a+π)⋅J+



That's all pretty complicated, but we go ahead with the refocusing pulse

(%i108) k_riC3:psiPiX(k_riC2)$
(%i109) allMagPsi(k_riC3);

second delay

(%i110) k_riC4:psiTime(k_riC3,1/(4*J))$
(%i111) allMagPsi(k_riC4);

This corresponds to the state illustrated with vector diagrams in the rightmost drawing of Fig. 13.4, where both the I- and S-magnetization components are
represented by two vectors.  The net I-magnetization is represents the difference between two vectors pointing in opposite directions along the y' axis and is
determined by the initial angle a between the S-magnetization and the x'-axis.

time evolution following reverse inept

(%i112) allMagPsi(psiTime(k_riC4,t));

< Ix >= −
−2 ⋅ cos ( ) − 2 ⋅ cos ( ) − cos ( ) + cos ( ) − cos ( ) + cos (2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
(−4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a+π)⋅J+

4⋅J

8

< Iy >= −
−2 ⋅ sin ( ) − 2 ⋅ sin ( ) − sin ( ) + sin ( ) − sin ( ) + sin (2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
(−4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a+π)⋅J+2⋅π

4⋅J

8
< Iz >= 0

< Sx >=
−cos ( ) − cos ( ) + cos ( ) + cos ( )(−4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a+π)⋅J+2⋅π⋅nuS

4⋅J

8

< Sy >=
−sin ( ) − sin ( ) + sin ( ) + sin ( )(−4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a+π)⋅J+2⋅π⋅nuS

4⋅J

8

< Sz >= −
cos (a)

2
(%𝚘𝟷𝟶𝟽)

< Ix >= −
−2 ⋅ cos ( ) − 2 ⋅ cos ( ) − cos ( ) + cos ( ) − cos ( ) + cos (2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
(−4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a+π)⋅J+

4⋅J

8

< Iy >=
−2 ⋅ sin ( ) − 2 ⋅ sin ( ) − sin ( ) + sin ( ) − sin ( ) + sin (2⋅π⋅nuI−π⋅J

4⋅J
π⋅J+2⋅π⋅nuI

4⋅J
(−4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuI

4⋅J
(4⋅a+π)⋅J+2⋅π⋅n

4⋅J

8
< Iz >= 0

< Sx >=
−cos ( ) − cos ( ) + cos ( ) + cos ( )(−4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a+π)⋅J+2⋅π⋅nuS

4⋅J

8

< Sy >= −
−sin ( ) − sin ( ) + sin ( ) + sin ( )(−4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(π−4⋅a)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a−π)⋅J+2⋅π⋅nuS

4⋅J
(4⋅a+π)⋅J+2⋅π⋅nuS

4⋅J

8

< Sz >=
cos (a)

2
(%𝚘𝟷𝟶𝟿)

< Ix >= 0

< Iy >=
cos (a)

2
< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >=
cos (a)

2
(%𝚘𝟷𝟷𝟷)

< Ix >= −
−2 ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J − a) + sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J + a) + 2 ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI + π



Look specifically at the Iy component

(%i113) Iy_t:meanPsi(Iy,psiTime(k_riC4,t));

The trick to making this look like the version in the text is to separate out the initial angle a from the terms arising from precession. trig expand converts all of
the sums in the arguments of the trig functions into products of trig functions.

(%i114) trigexpand(Iy_t);

(%i115) ratsimp(%);

Now, substitute an arbitrary symbol for the cos(a) term, so that it is not affected by the next manipulations.

(%i116) subst(zz,cos(a),%);

Use trigreduce to convert products back into sums of arguments

(%i117) trigreduce(%);

substitute back cos(a)

(%i118) subst(cos(a),zz,%);

This is the form presented in the text, with nuI1=nuI+J/2 and nuI2=nuI-J/2
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Following the population that begins in the k_aa state, as in the text, the INEPT sequence is equivalent to a pi/2 y,S pulse

< Ix >= −
−2 ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J − a) + sin (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J + a) + 2 ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI + π

8

< Iy >=
−2 ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J − a) + cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J + a) + 2 ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI + π

8
< Iz >= 0

< Sx >=
sin (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J − a) − sin (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J + a) − sin (2 ⋅ π ⋅ t ⋅ nuS + π ⋅ t ⋅ J − a) + sin (2 ⋅ π ⋅ t ⋅ nuS + π ⋅ t ⋅

8

< Sy >= −
cos (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J − a) − cos (2 ⋅ π ⋅ t ⋅ nuS − π ⋅ t ⋅ J + a) − cos (2 ⋅ π ⋅ t ⋅ nuS + π ⋅ t ⋅ J − a) + cos (2 ⋅ π ⋅ t ⋅ nuS + π ⋅

8

< Sz >=
cos (a)

2
(%𝚘𝟷𝟷𝟸)

(%𝚘𝟷𝟷𝟹)
−2 ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J − a) + cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J + a) + 2 ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI + π

8

(%𝚘𝟷𝟷𝟺)
4 ⋅ cos (a) ⋅ cos (π ⋅ t ⋅ J) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI) + 2 ⋅ (cos (π ⋅ t ⋅ J) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI) − sin (π ⋅ t ⋅ J) ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI)) − 2 ⋅ (cos

8

(%𝚘𝟷𝟷𝟻) −
sin (π ⋅ t ⋅ J) ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI) − cos (a) ⋅ cos (π ⋅ t ⋅ J) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI)

2

(%𝚘𝟷𝟷𝟼) −
sin (π ⋅ t ⋅ J) ⋅ sin (2 ⋅ π ⋅ t ⋅ nuI) − zz ⋅ cos (π ⋅ t ⋅ J) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI)

2

(%𝚘𝟷𝟷𝟽)
(zz − 1) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + (zz + 1) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J)

4

(%𝚘𝟷𝟷𝟾)
(cos (a) − 1) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI − π ⋅ t ⋅ J) + (cos (a) + 1) ⋅ cos (2 ⋅ π ⋅ t ⋅ nuI + π ⋅ t ⋅ J)

4



(%i119) k_hsqc1:psiPi2YS(k_aa)$
(%i120) allMagPsi(k_hsqc1);

First half of the S-evolution period

(%i121) k_hsqc2:psiTime(k_hsqc1,t1/2)$
(%i122) allMagPsi(k_hsqc2);

I refocussing pulse

(%i123) k_hsqc3:psiPiXI(k_hsqc2)$
(%i124) allMagPsi(k_hsqc3);

2nd half of the S-evolution period

(%i125) k_hsqc4:psiTime(k_hsqc3,t1/2)$
(%i126) allMagPsi(k_hsqc4);

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟷𝟸𝟶)

< Ix >= 0
< Iy >= 0

< Iz >=
1
2

< Sx >=
cos ( )π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
2

< Sy >=
sin ( )π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
2

< Sz >= 0
(%𝚘𝟷𝟸𝟸)

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos ( )π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
2

< Sy >=
sin ( )π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
2

< Sz >= 0
(%𝚘𝟷𝟸𝟺)

< Ix >= 0



Fig. 16.36

This corresponds to the starting point for the reverse INEPT sequence described in the previous section, with the initial displacement angle from the x'-axis, a,
equal to 2*pi*t1*nuS 
The reverse INEPT sequence then converts the Sx component into an Iy component, and the Sy sine term into an Sz cosine term.
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Starting with k_aa, apply pi/2 y,I pulse

(%i127) k_hmqc1:psiPi2YI(k_aa)$
(%i128) allMagPsi(k_hmqc1);

I-evolution period for1/(2J)

(%i129) k_hmqc2:psiTime(k_hmqc1,1/(2*J))$
(%i130) allMagPsi(k_hmqc2);

pi/2 y,S pulse

(%i131) k_hmqc3:psiPi2YS(k_hmqc2)$
(%i132) allMagPsi(k_hmqc3);

< Ix >= 0
< Iy >= 0

< Iz >= −
1
2

< Sx >=
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2

< Sy >=
sin (2 ⋅ π ⋅ t1 ⋅ nuS)

2
< Sz >= 0
(%𝚘𝟷𝟸𝟼)

< Ix >=
1
2

< Iy >= 0
< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >=
1
2

(%𝚘𝟷𝟸𝟾)

< Ix >= −
sin ( )π⋅nuI

J

2

< Iy >=
cos ( )π⋅nuI

J

2
< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >=
1
2

(%𝚘𝟷𝟹𝟶)

< Ix >= −
sin ( )π⋅nuI



Fig. 16.39

First half of S-evolution period

(%i133) k_hmqc4:psiTime(k_hmqc3,t1/2)$
(%i134) allMagPsi(k_hmqc4);

pi I-pulse

(%i135) k_hmqc5:psiPiXI(k_hmqc4)$
(%i136) allMagPsi(k_hmqc5);

Second half of S-evolution period

(%i137) k_hmqc6:psiTime(k_hmqc5,t1/2)$
(%i138) allMagPsi(k_hmqc6);

< Ix >= −
sin ( )π⋅nuI

J

2

< Iy >=
cos ( )π⋅nuI

J

2
< Iz >= 0

< Sx >=
1
2

< Sy >= 0
< Sz >= 0
(%𝚘𝟷𝟹𝟸)

< Ix >= −
sin ( ) + sin ( )(2⋅π⋅t1⋅J+2⋅π)⋅nuI−π⋅t1⋅J 2

2⋅J
π⋅t1⋅ +(2⋅π⋅t1⋅J+2⋅π)⋅nuIJ 2

2⋅J

4

< Iy >=
cos ( ) + cos ( )(2⋅π⋅t1⋅J+2⋅π)⋅nuI−π⋅t1⋅J 2

2⋅J
π⋅t1⋅ +(2⋅π⋅t1⋅J+2⋅π)⋅nuIJ 2

2⋅J

4
< Iz >= 0

< Sx >=
cos ( ) + cos ( )2⋅π⋅t1⋅nuS−π⋅t1⋅J

2
π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
4

< Sy >=
sin ( ) + sin ( )2⋅π⋅t1⋅nuS−π⋅t1⋅J

2
π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
4

< Sz >= 0
(%𝚘𝟷𝟹𝟺)

< Ix >= −
sin ( ) + sin ( )(2⋅π⋅t1⋅J+2⋅π)⋅nuI−π⋅t1⋅J 2

2⋅J
π⋅t1⋅ +(2⋅π⋅t1⋅J+2⋅π)⋅nuIJ 2

2⋅J

4

< Iy >= −
cos ( ) + cos ( )(2⋅π⋅t1⋅J+2⋅π)⋅nuI−π⋅t1⋅J 2

2⋅J
π⋅t1⋅ +(2⋅π⋅t1⋅J+2⋅π)⋅nuIJ 2

2⋅J

4
< Iz >= 0

< Sx >=
cos ( ) + cos ( )2⋅π⋅t1⋅nuS−π⋅t1⋅J

2
π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
4

< Sy >=
sin ( ) + sin ( )2⋅π⋅t1⋅nuS−π⋅t1⋅J

2
π⋅t1⋅J+2⋅π⋅t1⋅nuS

2
4

< Sz >= 0
(%𝚘𝟷𝟹𝟼)

< Ix >= −
sin ( )π⋅nuI



Fig. 16.40

pi/2 y,S pulse

(%i139) k_hmqc7:psiPi2YS(k_hmqc6)$
(%i140) allMagPsi(k_hmqc7);

Final evolution period, t=1/(2J)

(%i141) k_hmqc8:psiTime(k_hmqc7,1/(2*J))$
(%i142) allMagPsi(k_hmqc8);

Fig. 16.41 The net Ix magnetization is modulated by t1 and nuS.

Data acquisition period

(%i143) allMagPsi(psiTime(k_hmqc8,t2));

< Ix >= −
sin ( )π⋅nuI

J

2

< Iy >= −
cos ( )π⋅nuI

J

2
< Iz >= 0

< Sx >=
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2

< Sy >=
sin (2 ⋅ π ⋅ t1 ⋅ nuS)

2
< Sz >= 0
(%𝚘𝟷𝟹𝟾)

< Ix >= −
sin ( )π⋅nuI

J

2

< Iy >= −
cos ( )π⋅nuI

J

2
< Iz >= 0
< Sx >= 0

< Sy >=
sin (2 ⋅ π ⋅ t1 ⋅ nuS)

2

< Sz >= −
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2
(%𝚘𝟷𝟺𝟶)

< Ix >= −
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2
< Iy >= 0
< Iz >= 0
< Sx >= 0
< Sy >= 0

< Sz >= −
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2
(%𝚘𝟷𝟺𝟸)

< Ix >= −
2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) − 2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J) + cos (2 ⋅ π ⋅ t1 ⋅ nuS − 2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) + cos (2



Using the same approach as before for the reverse INEPT result to simplify the result.

(%i144) Iy_hmqct2:-(cos(2*%pi*t1*nuS+2*%pi*t2*nuI+%pi*t2*J)+cos(2*%pi*t1*nuS+2*%pi*t2*nuI-%pi*t2*J)+cos(2*%pi*t1*nuS-2*
cos(2*%pi*t1*nuS-2*%pi*t2*nuI-%pi*t2*J)-2*cos(2*%pi*t2*nuI+%pi*t2*J)+2*cos(2*%pi*t2*nuI-%pi*t2*J))/(8);

(%i145) trigexpand(Iy_hmqct2);

(%i146) ratsimp(%);

(%i147) subst(zz,cos(2*%pi*t1*nuS),%);

(%i148) trigreduce(%);

(%i149) subst(cos(2*%pi*t1*nuS),zz,%);

We have two I-frequency components with amplitudes of opposite signs and modulated by t1*nuS. With decoupling, these are combined into one frequency
component with an amplitude determined by t1*nuS

Created with wxMaxima.

< Ix >= −
2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) − 2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J) + cos (2 ⋅ π ⋅ t1 ⋅ nuS − 2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) + cos (2

< Iy >= −
2 ⋅ sin (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) − 2 ⋅ sin (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J) − sin (2 ⋅ π ⋅ t1 ⋅ nuS − 2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) − sin (2 ⋅

< Iz >= 0

< Sx >= −
sin ( ) − sin ( ) − sin ( ) + sin (((2⋅π⋅t2−2⋅π⋅t1)⋅J+π)⋅nuS−π⋅t2⋅J 2

J
π⋅t2⋅ +((2⋅π⋅t2−2⋅π⋅t1)⋅J+π)⋅nuSJ 2

J
((2⋅π⋅t1+2⋅π⋅t2)⋅J+π)⋅nuS−π⋅t2⋅J 2

J
π⋅t2⋅ +((2⋅π⋅t1+2⋅π⋅t2)⋅J+J 2

J

8

< Sy >=
cos ( ) − cos ( ) − cos ( ) + cos (((2⋅π⋅t2−2⋅π⋅t1)⋅J+π)⋅nuS−π⋅t2⋅J 2

J
π⋅t2⋅ +((2⋅π⋅t2−2⋅π⋅t1)⋅J+π)⋅nuSJ 2

J
((2⋅π⋅t1+2⋅π⋅t2)⋅J+π)⋅nuS−π⋅t2⋅J 2

J
π⋅t2⋅ +((2⋅π⋅t1+2⋅π⋅t2)⋅J+J 2

J

8

< Sz >= −
cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2
(%𝚘𝟷𝟺𝟹)

(%𝚘𝟷𝟺𝟺)
−2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) + 2 ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J) − cos (2 ⋅ π ⋅ t1 ⋅ nuS − 2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) − cos (

(%𝚘𝟷𝟺𝟻)
2 ⋅ (cos (π ⋅ t2 ⋅ J) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI) − sin (π ⋅ t2 ⋅ J) ⋅ sin (2 ⋅ π ⋅ t2 ⋅ nuI)) − 2 ⋅ (cos (π ⋅ t2 ⋅ J) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI) + sin (π ⋅ t

8

(%𝚘𝟷𝟺𝟼) −
sin (π ⋅ t2 ⋅ J) ⋅ sin (2 ⋅ π ⋅ t2 ⋅ nuI) + cos (π ⋅ t2 ⋅ J) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI) ⋅ cos (2 ⋅ π ⋅ t1 ⋅ nuS)

2

(%𝚘𝟷𝟺𝟽) −
zz ⋅ cos (π ⋅ t2 ⋅ J) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI) + sin (π ⋅ t2 ⋅ J) ⋅ sin (2 ⋅ π ⋅ t2 ⋅ nuI)

2

(%𝚘𝟷𝟺𝟾)
(−zz − 1) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) + (1 − zz) ⋅ cos (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J)

4

(%𝚘𝟷𝟺𝟿)
cos (2 ⋅ π ⋅ t2 ⋅ nuI − π ⋅ t2 ⋅ J) ⋅ (−cos (2 ⋅ π ⋅ t1 ⋅ nuS) − 1) + cos (2 ⋅ π ⋅ t2 ⋅ nuI + π ⋅ t2 ⋅ J) ⋅ (1 − cos (2 ⋅ π ⋅ t1 ⋅ nuS))

4
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