Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023 Lecture 13

Determination of K_m and V_{max}

21 February 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

From Quiz 1, Problem 3a

Should we fit a different function to the data?

- Is there a systematic deviation of the data from the linear relationship?
- Does the linear relationship (or a different function) represent a good model to account for the data?

The Method of Least Squares: χ^2

- Adjust m' and b' to minimize the value of χ² for the particular values of x_i and y_i in the experimental data set.
- The method can be applied to other functions to fit paramaters.

The Coefficient of Determination, R^2

- R² represents the fraction of the variation that is accounted for by the fit function.
- **\square** R^2 usually lies between 0 and 1.
- R² can be negative for certain functions and data sets!

Warning!

Direction Change

Determining $K_{\rm m}$ and $V_{\rm max}$

Experiment 3, Part D: Velocity as a Function of Substrate Concentration

- To reliably estimate both K_m and V_{max}, substrate concentrations must cover range both below and above K_m.
- We will use eleven substrate concentrations, plus a control without substrate.
- Two groups of six reactions.
- How should the reactions be grouped?

Two Ways to Group the Reactions

Is one way better than the other?

What if something changes between the reactions?

Two Ways to Group the Reactions

- 1–6, 7–12 grouping: changes between reaction groups may be hard to detect.
- Odd-even grouping: changes between reaction groups are easier to detect.

Fitting data together averages effects more evenly.

Dilutions of Trypsin Solutions for Experiment 3

Analysis of Data from the V versus [S] Experiment

■ We want to fit the experimental data to the Michaelis-Menten Equation:

$$V = rac{[S]V_{max}}{[S] + K_m}$$

From the fit, we obtain estimates of K_m and V_{max} .

Clicker Question #1

Estimate V_{max} from the graph:

Clicker Question #2

Estimate K_m from the graph:

A Classic Method for Analyzing Enzyme Kinetics Data

Rearrangement of the Michaelis-Menten Equation:

$$V = \frac{[S]V_{max}}{[S] + K_m}$$
$$\frac{1}{V} = \frac{[S] + K_m}{[S]V_{max}} = \frac{[S]}{[S]V_{max}} + \frac{K_m}{[S]V_{max}}$$
$$\frac{1}{V} = \frac{1}{[S]} \cdot \frac{K_m}{V_{max}} + \frac{1}{V_{max}}$$

■ A "double-reciprocal" plot of 1/V versus 1/[S] should generate a straight line with a slope of K_m/V_{max} and an intercept of 1/V_{max} on the 1/V axis.

The Lineweaver-Burk Plot

■ If the data are perfect, this plot gives good estimates of *K*_m and *V*_{max}.

But, experimental error in V can lead to strange effects!

Experimental Error and Uncertainty

Error bars for rate measurements are of approximately constant size (e.g., ±0.005 A/min), rather than a constant percentage of the measurement.

■ For 0.1 A/min, ±0.005 A/min = ±5%.

- For 0.01 A/min, ±0.005 A/min = ±50%.
- Least-squares fitting works well if the *absolute* uncertainties of all data points are approximately equal.

What Happens When We Take Reciprocals?

$$\frac{1}{0.105} = 9.52, \qquad \frac{1}{0.095} = 10.5, \qquad \frac{1}{V} = 10 \pm 0.5$$

$$V = 0.01 \pm 0.005$$

$$\frac{1}{0.015} = 66.7, \qquad \frac{1}{0.005} = 200, \qquad \frac{1}{V} = 100 \pm 50$$

 $V = 0.1 \pm 0.005$

The values of 1/V derived from small velocities can have very large <u>absolute</u> errors.

The Effects on a Lineweaver-Burk Plot

Errors in the least precise measurements (low V) can cause large changes in the line fit to the Lineweaver-Burk plot.

Clicker Question #3

Which parameter is likely to be more sensitive to errors in a Lineweaver-Burk plot?

Two Ways to Deal with This Problem

- Use Lineweaver-Burk, but weight data according to uncertainties in 1/V.
- Fit velocity data directly to the Michaelis-Menten equation using non-linear least-squares method.

Equal errors in *V* are weighted equally.

Interpreting $K_{\rm m}$

• When $[S] = K_m$, half of total enzyme has substrate bound.

The larger K_m is, the more substrate is required to reach V_{max}/2, or any specified fraction of V_{max}.

Clicker Question #4:

Data for three substrates with the same enzyme.

Which substrate binds most tightly to the enzyme? No wrong answers, for now.

A Closer Look at Binding and K_m : K_m versus K_d

$$E + S \xleftarrow{k_1} E \cdot S \xrightarrow{k_{cat}} E + P$$

• $K_{\rm m}$ is defined in terms of the rate constants:

$$K_{\rm m} = rac{k_{-1}+k_{
m cat}}{k_1}$$

 \blacksquare K_d is the equilibrium constant for dissociation.

$$\mathcal{K}_{\mathsf{d}} = rac{[\mathsf{E}]_{\mathsf{eq}}[\mathsf{S}]_{\mathsf{eq}}}{[\mathsf{E}\cdot\mathsf{S}]_{\mathsf{eq}}} = rac{k_{-1}}{k_1}$$

A large K_d indicates <u>weak</u> binding.

$K_{\rm m}$ versus $K_{\rm d}$

$$\begin{aligned} \mathcal{K}_{\mathrm{m}} &= \frac{k_{-1} + k_{\mathrm{cat}}}{k_{1}} \\ \mathcal{K}_{\mathrm{d}} &= \frac{[\mathsf{E}]_{\mathrm{eq}}[\mathsf{S}]_{\mathrm{eq}}}{[\mathsf{E} \cdot \mathsf{S}]_{\mathrm{eq}}} = \frac{k_{-1}}{k_{1}} \end{aligned}$$

If k_{cat} ≪ k₋₁, the E⋅S complex is more likely to dissociate than undergo catalysis:

$$K_{
m m}pprox rac{k_{-1}}{k_1}=K_{
m d}$$

- In general, $K_{\rm m} \ge K_{\rm d}$
- Strength of equilibrium binding may be greater than indicated by K_m .