Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

Lecture 18

SARS-CoV-2 Proteases and Inhibitors

and Introduction to Electrophoresis

16 March 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

The Coronavirus Lifecycle

Illustration from: Morse, J. S., Lalonde, T., Xu, S. & Liu, W. R. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. *ChemBioChem*, 21. https://doi.org/10.1002/cbic.202000047

Processing of SARS-CoV-2 Non-structural Proteins (nsps)

- PLpro: Papain-like protease.
- Mpro: Main protease. (Also called C3Lpr: C3-like protease.)
- Both are cysteine proteases.

Illustration adapted from:

https://doi.org/10.3389/fchem.2021.819165

Lv, Z., Cano, K. E., Jia, L., Drag, M., Huang, T. T. & Olsen, S. K. (2022). Targeting SARS-CoV=2 Proteases for COVID-19 antiviral development. *Front. Chem.*, 9, 819165.

Crystal Structure of SARS-CoV-2 Main Protease

Protein Data Bank entry 6LU7, deposited 26 January 2020. X. Liu, B. Zhang, Z. Jin, H. Yang and Z. Rao.

SARS-CoV-2 Main Protease and Bovine Trypsin

Close-up of SARS-CoV-2 Main Protease Active Site

Lv, Z., Cano, K. E., Jia, L., Drag, M., Huang, T. T. & Olsen, S. K. (2022). Targeting SARS-CoV-2 Proteases for COVID-19 antiviral development. *Front. Chem.*, 9, 819165. https://doi.org/10.3389/fchem.2021.819165

An Inhibitor of SARS-CoV-2 Main Protease: Nirmatrelvir

- Reacts with active-site Cys sulfur atom.
- Inhibition is reversible!
- Active component of Pfizer oral COVID-19 treatment, Paxlovid.

Owen, D. R., Allerton, C. M. N., *et al.* (2021). An oral SARS-CoV-2 M_{pro} inhibitor clinical candidate for the treatment of COVID-19. *Science*, 374, 1586–1593. https://www.science.org/doi/abs/10.1126/science.ab14784 34 co-authors!

Warning!

Direction Change

Separation Techniques

Separation Techniques in Biochemistry

- Isolation of pure components
- Analysis of complex mixtures
- Can be the basis of enzyme assays
- Physical characterization:

Separation methods generally depend on differences in physical properties of molecules, such as size, shape and charge.

Separation Methods: The General Idea

- Something (a "force"*) causes molecules to move through a medium.
- The rate of motion depends on the strength of the force and the interactions of the molecules with the medium.
- Different kinds of molecules move at different rates, allowing them to be separated.

^{* &}quot;Force" is used rather loosely here to describe anything that causes motion of the molecules.

Two Biochemical Separation Methods that We Will Study

Electrophoresis

Charged molecules are subjected to an electric field and move through a medium.

Chromatography

Molecules are carried by flow of medium in one phase past a second, stationary phase.

Electrophoresis:

Separation based on movement in an electric field

A Gel "Sandwich" for Electrophoresis

Apparatus for Gel Electrophoresis

Electrophoresis Through a Gel

Rate of migration through the gel depends on:

- Strength of the electric field.
- Net charge of the protein.
- Size and shape of the protein.
- Density of the gel matrix

Separation of Proteins by Electrophoresis

- Proteins with different mobilities migrate as "bands" in the gel.
- Various ways of detecting the proteins in the gel.

Two Major Variants of Gel Electrophoresis for Proteins

1. Non-denaturing ("Native") electrophoresis.

- Carried out in the absence of denaturants, though sometimes relatively low or high pH values are used.
- Protein migrates through the gel on the basis of its intrinsic net charge, size and shape, and the sieving effect of the gel.
- 2. SDS gel electrophoresis
 - Proteins are denatured in the presence of sodium dodecyl sulfate (SDS), a detergent that denatures proteins and complexes.
 - Mobilities reflect molecular weights of polypeptide chains.
 - Very useful for analyzing complex samples and macromolecular complexes composed of multiple polypeptides (*e.g.*, viruses, organelles, membranes).
 - By far the most common form of protein electrophoresis.

Ribonuclease A: A "Classic" Protein Stabilized by Disulfide Bonds

- Hydrolyzes RNA, much as trypsin hydrolyzes proteins.
 - Like trypsin, made in pancreas.
 - A favorite protein for chemical, enzymatic and structural studies in the 1950s and 1960s. Two Nobel prizes (4 awardees).
 - Produced in large quantities (kilogram) by the Armour Meat Packing Company near the end of World War II, and provided at very low price to scientists.
 - Close relatives are cytotoxic and are being explored as anti-cancer agents.
 - Presence of 4 disulfide bonds allows some neat chemical manipulations of the protein.

Outline of Experiment 5

Day 1:

1. Preparation of modified RNase A

Day 2:

- 1. Non-denaturing gel electrophoresis of native and modified RNase A
- 2. Trypsin treatment of RNase A forms

Day 3:

- 1. SDS gel electrophoresis of trypsin-treated RNase A samples
- 2. Image capture of non-denaturing gel
- Day 3+1 (first day of experiment 6):
 - 1. Image capture and quantitation of SDS gel

Unfolding RNAse A by Reducing its Disulfides

- Without disulfides, the folded protein conformation is unstable.
- Unfolded protein is a broad ensemble of rapidly interconverting conformations.
- Reaction is shown here as a reductive half-reaction.
- There are a variety of ways to promote the reduction reaction.

Reduction of Protein Disulfides by Thiol-Disulfide Exchange

With dithiothreitol (DTT, Cleland's reagent)

Clicker Question #1

Which reagent (at equal concentrations) will reduce protein disulfides more rapidly:

All answers count for now.

Rate is much higher in presence of strong denaturants, such as 8 M urea or 6 M GuHCI (guanidinium chloride).

Urea and GuHCl destabilize folded proteins. Why?
Probably by weakening the hydrophobic effect
Probably by interacting with the polypeptide backbone (as of 2023).