Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

Lecture 21:

Some Basic Principles of Electrophoresis

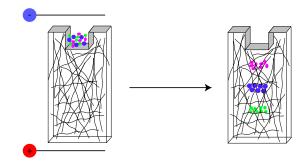
28 March 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

TA of the Semester: Nominate your TA!

Outline of Experiment 5

Day 1:

1. Preparation of modified RNase A


Day 2:

- 1. Non-denaturing gel electrophoresis of native and modified RNase A
- 2. Trypsin treatment of RNase A forms

Day 3:

- 1. SDS gel electrophoresis of trypsin-treated RNase A samples
- 2. Image capture of non-denaturing gel
- Day 3+1 (first day of experiment 6):
 - 1. Image capture and quantitation of SDS gel

Electrophoresis Through a Gel

Rate of migration through the gel depends on:

- Net charge of protein
- Size and shape of protein.
- Density of gel matrix

Electrophoresis in the Absence of a Gel

Electromotive force: $F_e = z \cdot e \cdot E$

- z = average net charge, a dimensionless number
- e = unit of electric charge: 1.6×10⁻¹⁹ coulomb (C)
- E = electric field strength, proportional to voltage: units of V/m
- Resistive force: $F_r = v \cdot f$

v = velocity

- f = frictional coefficient, a molecular property
- Molecule accelerates until $F_r = F_e$

Clicker Question #1

How long does it take an electrophoresing molecule to reach "terminal velocity"?

A) < 1 sec

- **B)** $\approx 1 \sec$
- C) $\approx 1 \, \text{min}$
- D) $\approx 1 \, \text{hr}$
- $\textbf{E)} > 1 \, \text{hr}$

All answers count for now.

Some Numbers for the Electrophoretic Force

Units of force:

$$F = mass \times acceleration = mass \times \Delta velocity/time$$

$$= kg \cdot (m/s)/s = kg \cdot m \cdot s^{-2}$$

$$= 1 \, \text{newton} = 1 \, \text{N}$$

Electrophoretic force

$$F_{\rm e} = z \cdot e \cdot E$$

 $e = 1.6 \times 10^{-19} \, {\rm coulomb(C)}$

Assume:

z = average net charge = 10 E = electric field strength = 200 V/m = 200 N/C

Force:

$$F_{\rm e} = z \cdot e \cdot E \approx 3 \times 10^{-16} \, \mathrm{N} = 3 \times 10^{-16} \, \mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$$

Some Numbers for the Frictional Force

Resistive force:

$$F_{\rm r} = v \cdot f$$

The frictional coefficient for a spherical particle in a viscous fluid:

$$f = 6\pi\eta r$$
 (Stokes' equation)
 $\eta =$ viscosity
 $r =$ radius

For water at 20°C:

$$\eta\approx 1\,\mathrm{cP}=10^{-3}\,\mathrm{kg}\cdot\mathrm{m}^{-1}\mathrm{s}^{-1}$$

For a smallish protein:

$$r = 25 \text{ Å} = 2.5 \times 10^{-9} \text{ m}$$

Frictional coefficient:

$$f=6\pi\eta rpprox 5 imes 10^{-11}\,{
m kg\cdot s^{-1}}$$

When Forces are Balanced:

$$F_{e} = F_{r} = v \cdot f$$

$$v = \frac{F_{e}}{f}$$

$$= \frac{3 \times 10^{-16} \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}}{5 \times 10^{-11} \text{ kg} \cdot \text{s}^{-1}}$$

$$= 6 \times 10^{-6} \text{ m} \cdot \text{s}^{-1}$$

■ Time to move 5 cm:

 $0.05\,\text{m} \div 6 \times 10^{-6}\,\text{m} \cdot \text{s}^{-1} \approx 8$, 000 s $\approx 2\,\text{h}$

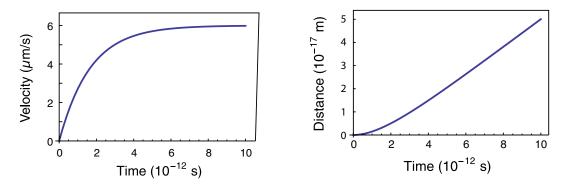
How long does it take to accelerate to terminal velocity?

A differential equation:

$$F = ma = m\frac{dv}{dt}$$
$$F = F_{e} - vf$$
$$F_{e} - vf = m\frac{dv}{dt}$$

Solution is a function describing velocity as a function of time, v(t), for which this equation is satisfied. (F_e is fixed by charge of the molecule and electric field.)

Solution:


$$v(t) = \frac{F_{e}}{f} (1 - e^{-t \cdot f/m})$$

x = distance = $\int_{t=0}^{t=t} v dt = \frac{F_{e} \left(\left(e^{-t \cdot f/m} - 1 \right) m + t \cdot f \right)}{f^{2}}$

m = mass, assume $m = 50,000 \text{ g/mol} = 8.3 \times 10^{-23} \text{ kg/molecule}$

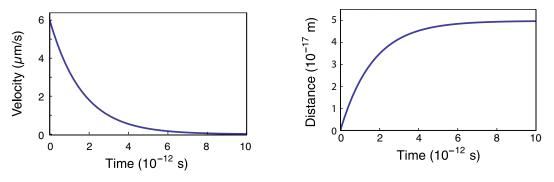
How long does it take to accelerate to terminal velocity?

Velocity as a function of time:

Distance as a function of time:

Clicker Question #2

What happens if we turn off the electric field?


A) The protein keeps coasting.

B) The protein decelerates in about a second.

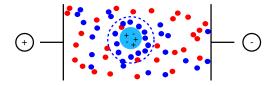
C) The protein stops almost instantly.

Velocity as a function of time:

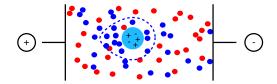
Distance as a function of time:

There's no coasting in biochemistry!

Shameless Plug for Another Class

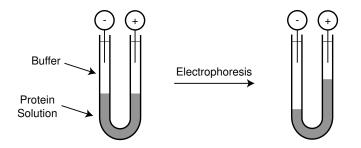

Biology 3550 Physical Principles in Biology Spring 2024

- Probability
- Diffusion and random walks
- Energy and thermodynamics
- Molecular motors
- And more!
- Satisfies University Quantitative Intensive (QI) requirement


http://goldenberg.biology.utah.edu/courses/biol3550/

A More Realistic Description of Electrophoresis

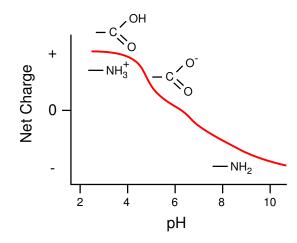
A particle with a net electric charge attracts a "cloud" of counterions.



The cloud is distorted as soon as the particle begins to migrate.

Describing these effects quantitatively is very difficult.

The Tiselius Free-Boundary Electrophoresis Apparatus


- Movement of solution boundaries is detected optically as electrophoresis progresses.
- Allows measurement of electrophoretic mobilities in free solution.
- Electrophoresis through gels is easier, cheaper and more useful!

Factors That Influence Mobilities in Non-Denaturing Gels

1. Net charge of protein

- Amino acid sequence (relative number of acidic and basic residues)
- Solution pH
- Three dimensional structure (can influence pK_as and interactions with ions.)
- 2. Size and shape of protein
- 3. Concentration and degree of cross-linking in gel
 - Gel will generally reduce mobilities of proteins, relative to their free mobilities.
 - Larger molecules will be affected by the gel more than smaller ones.
 - Composition of the gel can be manipulated to fractionate molecules of different sizes.
- Conditions often have to be optimized for a particular protein.

Effects of pH on Protein Net Charge

- Curve represents a population average! (or a time average)
- Shape of curve will depend on amino acid sequence and structure of a particular protein.
- For each protein, there is a pH at which positive and negative charges are balanced and the molecules have an average net charge of 0: The isoelectric point, pl.

pK_aValues of Ionizable Groups in Proteins

Group	In peptides	Avg. in proteins	Low in proteins	High in proteins
Asp	3.9	3.5±1.2	0.5	9.2
Glu	4.3	4.2±0.9	2.1	8.8
His	6.5	6.6±1.0	2.4	9.2
Cys	8.6	6.8±2.7	2.5	11.1
Tyr	9.8	10.3±1.2	6.1	12.1
Lys	10.4	10.5±1.1	5.7	12.1
C-term	3.7	3.3±0.8	2.4	5.9
N-term	8.0	7.7±0.5	6.8	9.1

Grimsley, G. R., Scholtz, J. M. & Pace, C. N. (2008). A summary of the measured pK values of the ionizable groups in folded proteins. *Protein Sci.*, 18, 247–251. http://dx.doi.org/10.1002/pro.19