Biological Chemistry Laboratory

Biology 3515/Chemistry 3515
Spring 2023
Lecture 2:
Units and Dimensions
Concentration and pH
Thursday, 12 January 2023
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

How to Succeed in this Class

- Come to lectures prepared to participate.
- Review the slides from the previous lecture.
- Bring questions about what you don't understand.
- Participate in class.

■ Come to lab sessions prepared to work efficiently.

- Carefully read protocols ahead of time.
- Thoughtfully write the protocol outlines.

■ Make the most of the early labs and computer sessions.

- First few weeks are designed to build skills.
- Subsequent labs and lab reports will be much more challenging!
- Mastering skills early will pay off!

How to Succeed in this Class

■ Do the lab reports to learn.

- Start early.
- Work with a group.
- Work with a group the smart way: Don't rely on the "smart" person!

■ Use the quizzes and exams from previous years to learn.

- Answers will not be provided.
- Work on your own to solve the problems.
- Ask classmates, TAs and instructor for help.

■ If you have questions or concerns come talk to me!

A Bit on Units and Conversion Factors

- All measurements are comparisons.

- Units of measurement are defined by the reference for comparison.
- Suppose that we want to use other units, such as mg or ounces? (what kind of ounces?)

Conversion Factors

- As instructions:
- To convert from g to mg, multiply by 1,000
- To convert from g to ounces (U.S.), divide by 28.349

■ As equations:

- $1 \mathrm{~g}=1,000 \mathrm{mg}$
- $1 \mathrm{oz}=28.349 \mathrm{~g}$
- As ratios equal to 1 :

$$
\begin{array}{ll}
\frac{1 \mathrm{~g}}{1,000 \mathrm{mg}}=1 & \frac{1,000 \mathrm{mg}}{1 \mathrm{~g}}=1 \\
\frac{1 \mathrm{oz}}{28.349 \mathrm{~g}}=1 & \frac{28.349 \mathrm{~g}}{1 \mathrm{oz}}=1
\end{array}
$$

We can always multiply or divide by 1 without changing anything!

Conversion by Multiplication (or Division?)

■ Convert 3 g to ounces

- Divide

$$
3 \mathrm{~g} \div \frac{28.349 \mathrm{~g}}{1 \mathrm{oz}} \quad=0.1 \mathrm{oz}
$$

- or Multiply?

$$
3 \mathrm{~g} \times \frac{28.349 \mathrm{~g}}{1 \mathrm{oz}}=85 \mathrm{~g}^{2} / \mathrm{oz}
$$

■ Units can be treated as algebraic entities (and should cancel sensibly in the result!)

■ "Dimensional analysis" or "unit factor analysis"

Clicker Question \#1

"English" units for mass:
■ $1 \mathrm{Lb}=16 \mathrm{oz}$ (avoirdupois)
■ $1 \mathrm{oz}=28.349523125 \mathrm{~g}$
■ 1 stone $=14 \mathrm{Lb}$
If someone weighs 11 stone, what is that person's mass in kg ?
A) $\sim 50 \mathrm{~kg}$
B) $\sim 70 \mathrm{~kg}$
C) $\sim 90 \mathrm{~kg}$
D) $\sim 110 \mathrm{~kg}$

Stones to kg

11 stone $\times 14 \mathrm{Lb} /$ stone $=154 \mathrm{Lb}$
$154 \mathrm{Lb} \times 16 \mathrm{oz} / \mathrm{Lb}=2.46 \times 10^{3} \mathrm{oz}$
$2.46 \times 10^{3} \mathrm{oz} \times 28.35 \mathrm{~g} / \mathrm{oz}=6.98 \times 10^{4} \mathrm{~g}$
$6.98 \times 10^{4} \mathrm{~g} \div 1000 \mathrm{~g} / \mathrm{kg} \approx 70 \mathrm{~kg}$
$1 \mathrm{~kg} \approx 2.2 \mathrm{Lb}$

Units of Concentration

■ Most convenient: amount of solute per volume of solution

- $\mathrm{g} / \mathrm{L}(=\mathrm{mg} / \mathrm{mL}): 1 \mathrm{~g}$ solute in 1 L final volume of solution
- molar $(\mathrm{M})=$ mole/L: 1 mole of solute in 1 L final volume of solution

■ What is a mole?
1 mole $=$ amount of a substance containing Avogadro's number, N_{A}, of atoms or molecules

- What is Avogadro's number?
- Before 20 May 2019: $N_{\mathrm{A}}=$ the number of atoms in 12 g of pure ${ }^{12} \mathrm{C}$.
- After 20 May 2019: $N_{\mathrm{A}}=6.02214076 \times 10^{23} \mathrm{~mol}^{-1}$, exactly!

Definition of the kilogram was also changed, as of 20 May 2019.

Silicon Sphere Used to Establish Avogadro's Number (1 of 2)

■ 99.995% pure ${ }^{28} \mathrm{Si}$, determined by mass spectrometry.

- World's roundest and most precisely measured objects. Cost about $\$ 3.2$ million.
- Atomic spacings determined by X-ray crystallography.

Cho, A. (2018). World poised to adopt new metric units. Science, 362, 625-626.
http://doi.org/10.1126/science.362.6415.625
Photograph from the Physikalisch-Technische Bundesansttalt (PTB), Germany.

Units of Concentration

■ Most convenient: amount of solute per volume of solution:

- $\mathrm{g} / \mathrm{L}(=\mathrm{mg} / \mathrm{mL}): 1 \mathrm{~g}$ solute in 1 L final volume of solution
- molar $(M)=$ mole/L: 1 mole of solute in 1 L final volume of solution

■ Some less commonly used units of concentration:

- molal: 1 mole of solute dissolved in 1 kg solvent
- $1 \%(\mathrm{~m} / \mathrm{v}): 1 \mathrm{~g}$ solute in 100 mL final volume of solution
- $1 \%(\mathrm{v} / \mathrm{v}): 1 \mathrm{~mL}$ pure liquid in 100 mL final volume of solution

A Source of Confusion: Units for "Molecular Weight"

- Molecular weight or molecular mass:
- The mass of a single molecule
- Units: atomic mass unit (u or amu) or dalton (Da) or kilodalton (kDa) $1 \mathrm{amu}=1 \mathrm{Da}=$ mass of one atom of ${ }^{12} \mathrm{C} \div 12$
- Units are often not included, because it is a relative mass, M_{r}.
- amu is commonly used in mass spectrometry
- Da and kDa are very commonly used in biochemistry and molecular biology, especially for proteins and other macromolecules.

■ Molar mass:

- Mass of one mole of a compound
- Units: $\mathrm{g} / \mathrm{mol}$ (which doesn't completely make sense)

■ Molecular mass of $100 \mathrm{Da} \rightarrow$ molar mass of $100 \mathrm{~g} / \mathrm{mol}$

To Calculate the Amount of Solute in a Solution

■ The number of grams in 53 mL of a $5 \mathrm{~g} / \mathrm{L}$ solution:

$$
\begin{aligned}
& 53 \mathrm{~mL} \times 0.001 \mathrm{~L} / \mathrm{mL}=0.053 \mathrm{~L} \\
& 0.053 \mathrm{~L} \times 5 \mathrm{~g} / \mathrm{L}=0.26 \mathrm{~g}
\end{aligned}
$$

■ The number of moles in 1.3 L of a 15 mM solution $(1 \mathrm{mM}=0.001 \mathrm{M})$:

$$
\begin{aligned}
& 15 \mathrm{mM} \times 0.001 \mathrm{M} / \mathrm{mM}=0.015 \mathrm{M}=0.015 \mathrm{~mol} / \mathrm{L} \\
& 1.3 \mathrm{~L} \times 0.015 \mathrm{~mol} / \mathrm{L}=0.0195 \mathrm{~mol}
\end{aligned}
$$

■ The number of molecules in 1.3 L of a 15 mM solution:

$$
\begin{aligned}
& 1 \mathrm{~mol}=6.02 \times 10^{23} \text { molecules } \\
& 0.0195 \mathrm{~mol} \times 6.02 \times 10^{23} \text { molecules } / \mathrm{mol}=1.17 \times 10^{22} \text { molecules }
\end{aligned}
$$

Clicker Question \#2

How many moles of water molecules $\left(M_{\mathrm{r}}=18\right)$ are in $1 \mathrm{~L}(\approx 1000 \mathrm{~g})$?

$$
\begin{aligned}
& \text { A) } \sim 10 \\
& \text { B) } \sim 30 \\
& \text { C) } \sim 50 \\
& \text { D) } \sim 70
\end{aligned}
$$

- Liters to grams:

$$
\begin{aligned}
& 1 \mathrm{~L} \times 1,000 \mathrm{ml} / \mathrm{L}=1,000 \mathrm{~mL} \\
& 1,000 \mathrm{~mL} \times 1 \mathrm{~g} / \mathrm{mL}=1,000 \mathrm{~g}
\end{aligned}
$$

■ Grams to moles:

$$
\begin{aligned}
1,000 \mathrm{~g} \div 18 \mathrm{~g} / \mathrm{mol} & =1,000 \mathrm{~g} \times 1 \mathrm{~mol} /(18 \mathrm{~g}) \\
& =56 \mathrm{~mol}
\end{aligned}
$$

Other Units of Concentration Commonly Used in Biochemistry

■ Based on molar units:

- $1 \mathrm{mM}=1 \times 10^{-3} \mathrm{M}$
- $1 \mu \mathrm{M}=1 \times 10^{-6} \mathrm{M}=1 \times 10^{-3} \mathrm{mM}$
- $1 \mathrm{nM}=1 \times 10^{-9} \mathrm{M}=1 \times 10^{-3} \mu \mathrm{M}$
- $1 \mathrm{pM}=1 \times 10^{-12} \mathrm{M}=1 \times 10^{-3} \mathrm{nM}$

■ Based on mass units:

- $1 \mathrm{mg} / \mathrm{mL}=1 \mathrm{~g} / \mathrm{L}$
- $1 \mu \mathrm{~g} / \mathrm{mL}=1 \times 10^{-3} \mathrm{mg} / \mathrm{mL}=1 \times 10^{-3} \mathrm{~g} / \mathrm{L}$
- $1 \mu \mathrm{~g} / \mu \mathrm{L}=1 \mathrm{mg} / \mathrm{mL}=1 \mathrm{~g} / \mathrm{L}$

A Special Measure of Concentration for Hydrogen lons

- Hydrogen ion concentration expressed as pH

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

with $\left[\mathrm{H}^{+}\right]$expressed in molar units

- To convert from pH to molar concentration:

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \mathrm{M}
$$

$■$ Why does H^{+}concentration get special treatment?

Between Protonated and De-protonated Species

■ General representation of an acid-base equilibrium:

$$
\mathrm{AH} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

- Brønsted definition of acids and bases:

Acids release H^{+}ions to solution. (AH)
Bases accept H^{+}ions from solution. (A^{-})
■ Some examples:

- Acetic acid/acetate

- Imidazole

■ Chemical properties of protonated and de-protonated functional groups are radically different!

The Equilibrium Between Protonated and De-protonated

Species Also Depends on Affinity for H^{+}lons

$$
\mathrm{AH} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

■ The acid dissociation constant:

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

A large value of K_{a} means that HA likes to give up its H^{+}.

- Commonly expressed in logarithmic form:

$$
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}
$$

by analogy to pH :

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

But, don't confuse $\mathrm{p} K_{\mathrm{a}} \mathrm{and} \mathrm{pH}$!
A small value of $\mathrm{p} K_{\mathrm{a}}$ means that HA likes to give up its H^{+}.

Why pH Requires Special Attention

■ Why not just add H^{+}ions to the desired concentration?

- The H^{+}concentration is usually very low. $\mathrm{pH} 7 \rightarrow 10^{-7} \mathrm{M}$
- Adding H^{+}ions will shift equilibria:

$$
\begin{aligned}
& \mathrm{H}^{+}+\mathrm{A}^{-} \rightleftharpoons \mathrm{AH} \\
& \mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Generally, the H^{+}concentration will increase less than expected from the addition of H^{+}.

- Two special means of dealing with pH :
- pH meter, directly measures pH of solution
- pH buffers, compounds added to solutions to establish and maintain pH

A Combination pH Electrode

■ Contains 2 electrodes:

- pH-sensitive electrode
- Reference electrode
- Reference electrode is electrically connected to test solution (porous plug)
reference electrode
porous plug
KCl solution
Ag electrode
KCl solution
glass bulb

■ H^{+}ions cannot cross glass membrane of bulb.

- $\left[\mathrm{H}^{+}\right]$inside bulb is fixed.

Separate pH and Reference Electrodes

■ Difference in $\left[\mathrm{H}^{+}\right]$creates voltage difference across glass membrane.

■ Electrode has to be calibrated to establish slope and intercept.

