Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

> Lecture 3: pH and Buffers

Tuesday, 17 January 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Lab Safety

- Always be aware of your environment and what you are working with!
- In the lab:
 - No food or drink in the lab.
 - Safety glasses are required for all laboratory sessions.

Prescription glasses are not adequate.

- Full-length trousers or equivalent are required.
- Shoes must fully cover your feet.
- Lab coats must be worn in the lab. They are provided at no cost.
- Latex or nitrile gloves must be worn when working with hazardous chemicals.
- Personal electronic devices will not be allowed in the laboratory (except when used for an experiment).

H⁺ Concentration Determines Equilibria Between Protonated and De-protonated Species

General representation of an acid-base equilibrium:

 $\mathsf{A}\mathsf{H} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+$

Brønsted definition of acids and bases:
 Acids release H⁺ ions to solution. (AH)
 Bases accept H⁺ ions from solution. (A⁻)

Some examples: • Acetic acid/acetate $H_{3}C \xrightarrow{OH}_{O} \iff H_{3}C \xrightarrow{O^{-}}_{O} + H^{+}$ (AH) (A⁻) • Imidazole $H_{N} \xrightarrow{NH}_{H} \iff H_{N} \xrightarrow{N}_{H} + H^{+}$

Chemical properties of protonated and de-protonated functional groups are radically different!

The Equilibrium Between Protonated and De-protonated Species Also Depends on Affinity for H⁺ lons

$$\mathsf{A}\mathsf{H} \Longrightarrow \mathsf{A}^- + \mathsf{H}^+$$

The acid dissociation constant:

$$\mathcal{K}_{\mathsf{a}} = \frac{[\mathsf{H}^+][\mathsf{A}^-]}{[\mathsf{H}\mathsf{A}]}$$

A large value of K_a means that HA likes to give up its H⁺.

Commonly expressed in logarithmic form:

$$\mathsf{p}K_\mathsf{a} = -\log K_\mathsf{a}$$

by analogy to pH:

 $\mathsf{p}\mathsf{H} = -\log\left[\mathsf{H}^+\right]$

But, don't confuse pK_a and pH!

A **small** value of ${}_{P}K_{a}$ means that HA likes to give up its H⁺.

pH Meter with Combination Electrode

 Difference in [H⁺] creates voltage difference across glass membrane.

pH Buffers

The basic idea: A weak acid and it's conjugate base in equilibrium:

$\mathsf{A}\mathsf{H} \rightleftharpoons \mathsf{A}^- + \mathsf{H}^+$

- If [H⁺] increases, A⁻ combines with H⁺, and pH is (mostly) restored.
- If [H⁺] decreases, AH dissociates, and pH is (mostly) restored.
- In order for a buffer to be effective:
 - Concentrations of AH and A⁻ must be greater than potential change in H⁺ concentration.
 - Concentrations of AH and A⁻ must be roughly equal.
- Relative concentrations of AH and A⁻ are determined by [H⁺] and K_a (pH and pK_a).

The Henderson-Hasselbalch Equation

The acid dissociation equilibrium:

$$K_{\mathsf{a}} = \frac{[\mathsf{H}^+][\mathsf{A}^-]}{[\mathsf{H}\mathsf{A}]}$$

- Take logarithms of both sides: $\log K_a = \log \frac{[H^+][A^-]}{[HA]}$
- Separate out $\log [H^+]$ on the right-hand side: $\log K_a = \log [H^+] + \log \frac{|A^-|}{|HA|}$
- Substitute $\log K_a = -pK_a$ and $\log [H^+] = -pH$, and rearrange things a bit:

$$\begin{split} -p \mathcal{K}_{a} &= -p H + \log \frac{[A^{-}]}{[HA]} \\ p H - p \mathcal{K}_{a} &= \log \frac{[A^{-}]}{[HA]} \end{split}$$

It's just an equilibrium expression!

The Henderson-Hasselbalch Equation

$$\mathsf{pH} - \mathsf{p}\mathcal{K}_\mathsf{a} = \log\frac{[\mathsf{A}^-]}{[\mathsf{HA}]}$$

If
$$pH = pK_a$$
:
$$\log \frac{[A^-]}{[HA]} = 0, \qquad \frac{[A^-]}{[HA]} = 1, \qquad [A^-] = [HA]$$

If $pH > pK_a$:
$$\log \frac{[A^-]}{[HA]} > 0, \qquad \frac{[A^-]}{[HA]} > 1, \qquad [A^-] > [HA]$$

If $pH < pK_a$:
$$\log \frac{[A^-]}{[HA]} < 0, \qquad \frac{[A^-]}{[HA]} < 1, \qquad [A^-] < [HA]$$

Clicker Question #1

What is the fraction of imidazole in the protonated state at pH 8?

A) $\sim 1\%$ B) $\sim 10\%$ C) $\sim 50\%$ D) $\sim 90\%$ E) $\sim 99\%$

Calculating the "Fraction of . . ."

$$AH \rightleftharpoons A^- + H^+$$

The fraction protonated:

$$f_{p} = \frac{[AH]}{[A^{-}] + [AH]}$$

A number between 0 and 1.

Compare to the ratio of protonated and deprotonated molecules:

 $r = \frac{[AH]}{[A^-]}$

A number between 0 and ∞ .

Calculated from the Henderson-Hasselbalch equation, given $pH - pK_a$

Calculating the "Fraction of . . ."

From the previous slide:

$$f_{p} = \frac{[AH]}{[A^{-}] + [AH]}$$
$$r = \frac{[AH]}{[A^{-}]}$$

■ With some rearranging, substituting and rearranging:

$$[AH] = r[A^-]$$
$$f_p = \frac{r[A^-]}{[A^-] + r[A^-]}$$
$$f_p = \frac{r}{1+r}$$

Why Calculate the "Fraction of . . . "?

- Generally, we know the total concentration of a compound that undergoes ionization, or other rapid equilibrium.
- What is often most relevant is the concentration of one form of the compound, say the protonated form.
- If we know the fraction of molecules in the form of interest, and the total concentration, it is easy to calculate the concentration we are most interested in.

 $[AH] = f_p \times Total concentration$

Expressing things this way also helps in thinking clearly about what is going on.

Choosing a Buffer Compound

- Concentrations AH and A⁻ should be roughly equal.
 - $[AH] = [A^-]$ when $pH = pK_a$.
 - Decide on pH for experiment, then choose buffer with ${}_{\rm p}{\it K}_{\rm a}$ close to ${}_{\rm p}{\it H}.$
- A common rule of thumb: ${}_{p}K_{a}$ of buffer should be within 1 pH unit of solution pH.

$$0.1 \lesssim \frac{[\mathsf{A}^-]}{[\mathsf{A}\mathsf{H}]} \lesssim 10$$

■ A better rule of thumb: pK_a of buffer should be within 0.5 pH unit of solution pH.

$$0.3 \lesssim rac{[\mathsf{A}^-]}{[\mathsf{AH}]} \lesssim 3$$

A Buffer Calculation Example

MOPS: 3-morpholinopropane-1-sulfonic acid

- Suppose that I want to make 500 mL of a 0.15 M MOPS solution, with a pH of 7.
- I dissolve 0.075 moles of MOPS (acid form) in \approx 400 mL of water.
- What will the pH be?

Clicker Question #2:

After dissolving the MOPS (acid), what will the pH be?

A Buffer Calculation Example: How do we adjust the pH to 7?

- The ionization equilibrium: $AH \implies A^- + H^+$
- Calculate the ratio of [A⁻] and [AH] at pH 7.

$$pH - pK_{a} = \log \frac{[A^{-}]}{[AH]}$$
$$7 - 7.2 = -0.2 = \log \frac{[A^{-}]}{[AH]}$$
$$\frac{[A^{-}]}{[AH]} = 10^{-0.2} = 0.631$$

- How do we make the concentrations of A⁻ and AH satisfy this condition?
- Add a strong base (*e.g.*, NaOH) to convert some of the AH to A⁻.

 $AH + OH^{-} \rightleftharpoons A^{-} + H_{2}O$

How Much NaOH Should We Add?

Use moles instead of concentrations.

 $\frac{[A^{-}]}{[AH]} = \frac{\text{moles } A^{-}/L}{\text{moles } AH/L} = \frac{\text{moles } A^{-}}{\text{moles } AH}$

Both species are in the same volume, so the volume cancels out.

 Assume that very little of the MOPS is initially ionized. (MOPS is a *weak* acid.)

Starting moles of AH = 0.075

Starting moles of $A^-\approx 0$

 Assume that each mole of NaOH added drives the ionization of one mole of MOPS. (OH⁻ is a *strong* base.)

 $AH + OH^{-} \rightleftharpoons A^{-} + H_2O$

How Much NaOH Should We Add?

After adding x moles of NaOH: moles AH = 0.075 - xmoles $A^- = x$ **at pH 7**: $\frac{\text{moles } A^{-}}{\text{moles } AH} = \frac{x}{0.075 - x} = 0.631$ Solve for x: x = 0.631(0.075 - x)x = 0.0473 - 0.631x1.631x = 0.0473x = 0.029 moles NaOH

Does this make sense?

A Reality Check: The "ICE" Table

	Moles AH	Moles A ⁻
Initial	0.075	\sim 0
<u>C</u> hange	-x = -0.029	x = 0.029
<u>E</u> quilibrium	0.046	0.029

- Added NaOH converts a bit less than half of AH to A⁻.
- Final pH (7) is a bit less than pK_a (7.2)
- Sounds about right!

A Common Mistake

Start with Henderson-Hasselbalch:

$$\mathsf{p}\mathsf{H}-\mathsf{p}\mathsf{K}_\mathsf{a}=\mathsf{log}\,rac{[\mathsf{A}^-]}{[\mathsf{A}\mathsf{H}]}$$

- moles A⁻ = moles NaOH (the base, x moles)
- moles AH = moles MOPS (the acid, 0.075 moles)
- [A⁻] and [AH] are the final equilibrium concentrations of the base and acid forms of the MOPS.

The Buffer We Will Use for Most of Our Experiments

Tris: tris(hydroxymethyl)aminomethane

- Works well at pH 8, where we will do most of our experiments.
- Largely unreactive with biological molecules.
- Relatively inexpensive.

Clicker Question #3

What will the pH be if we make a solution of 0.2 M tris base?

Protocol for Preparing Tris Buffer

- Measure out tris base to make 50 mL of a 0.2 M solution.
- Dissolve tris in about 40 mL of water.
- Adjust pH to 8.0, at 25°C by adding HCl and monitoring with a pH meter.
- Adjust final volume to 50 mL, using a graduated cylinder.
- Filter solution and store in a carefully labeled vessel.