Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023 Lecture 6: Dealing with Uncertainty

Thursday, 26 January 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Computer Labs

- Computer Labs next week and the following week.
 - Start at 1:00 PM
 - Room 150 S. Biology Building
- Next week: Graphing and curve fitting with SciDAVis.
- Following week: Molecular modeling with PyMOL.
- We will use the computers in the lab, not personal laptops.
- But, you should still install SciDAVis and PyMOL on your own computer. Use the versions available on Canvas.

How do we know? What do we do with it?

All of this is sometimes messy!

Dealing With Uncertainties

Pipette calibration data:

• Mass of water (mg) delivered from a pipette set to $20 \,\mu$ L:

20.1 18.5 18.2 22.4 22.9

- mean (average) = 20.4 mg
- What is the significance of the mean?
- How do we quantify accuracy or precision?

Precision and Accuracy as Target Practice

http://www.antarcticglaciers.org/glacial-geology/dating-glacial-sediments-2/
precision-and-accuracy-glacial-geology/

Precision and Accuracy in Measurement

Precision

- Reproducibility of individual measurements.
- Determined by making multiple measurements and comparing them.

Accuracy

- Consistency with an accepted value.
- Requires comparison with an accepted standard.
- Without high precision, we can't have high accuracy!

Dealing With Uncertainties: The Working Model

Assumptions:

- The measured values are determined by a "true" value plus random error (positive or negative).
- The random errors are distributed according to a Gaussian function, *i.e.*, a "bell curve".

Estimating the "True" Value

The best* estimate of the "true" value is the mean, \bar{x} .

$$ar{x} = rac{1}{N}\sum_{i=1}^N x_i$$

N= number of measurements, x_i is the i^{th} measurement

* "Best" means most likely to give the correct value.

Estimating the Distribution Width (σ)

Two ways to estimate σ , the standard deviation:

From a histogram (takes lots of measurements!)

■ The sample standard deviation, *s*:

$$s = \sqrt{rac{\sum (x-ar{x})^2}{N-1}}$$
 an estimate of

 σ

Estimates Improve With More Measurements (A Simulation)

- Estimate of true value (\bar{x}) approaches a limiting value (20 mg)
- Estimate of standard deviation (s) approaches a limiting value (2 mg)
- s doesn't approach zero.

Another Useful Statistic: The Standard Error of the Mean (SEM)

$$\mathsf{SEM} = \sqrt{rac{\sum (x - ar{x})^2}{(N-1)N}} = s/\sqrt{N}$$

- The standard error of the mean represents the uncertainty in the estimate of the mean, x̄
- The uncertainty in *x* decreases with more measurements.
- The uncertainty in the mean can be made as small as we like, if we make enough measurements! (Assumes that errors are truly random.)
- Decreasing the uncertainty by half requires four times as many measurements.

Clicker Question #1

If I want to report on how reproducible my pipette (and technique) is, which statistic should I use?

A) The sample standard deviation

B) The standard error of the mean

Clicker Question #2

If I want to report on how reliably I have measured the average volume delivered by my pipette, which statistic should I use?

A) The sample standard deviation

B) The standard error of the mean

■ Whatever you report, be clear! (and specify *N*)

Significant Figures

- The basic idea: The number of digits used to report a measurement should reflect the precision of the measurement.
- Reporting more digits than justified by the measurements is dishonest!
- A precise definition of 'significant figures' is not so simple!

https://en.wikipedia.org/wiki/Significant_figures

All non-zero digits are significant.

number	sig. figs.
12	2
12.5	3

Zeros between non-zero digits are significant.

number	sig. figs.
102	3
12.05	4

Trailing zeros to the right of a decimal point are significant.

number	sig. figs.
12.00	4
12.500	5

Leading zeros to the left are *not* significant.

number	sig. figs.
012	2
0.0012	2

What about trailing zeros without a decimal point?

number	sig. figs.
1200	2?

Avoid Ambiguity with Scientific Notation

number	sig. figs.
1200	2?
1.2×10 ³	2
1.20×10 ³	3
1.200×10 ³	4
1200.	4

- Numbers with unlimited significant figures:
 - Integers or ratios of integers (rational numbers), such as 2, 1/2 or 2/3.
 - Defined irrational numbers, such as $\sqrt{2}$, π or *e*.
 - Other numbers that are not derived from measurements, including most conversion factors.

Multiplication and division:

The calculated result should contain the number of significant figures of the measured quantity with the smallest number of significant figures.

 $15 \text{ g} \div 121.1 \text{ g/mol} = 0.12 \text{ mol}$

$$\begin{split} 15\,\text{mM} \times 25\,\mu\text{L} &= 0.015\,\text{moles}/\text{L} \times 2.5 \times 10^{-5}\,\text{L} \\ &= 3.8 \times 10^{-7}\,\text{moles} \\ &= 0.38\,\mu\text{moles} \end{split}$$

- For addition and subtraction:
 - The last decimal place of the result is determined by last decimal place of the measured quantity with the smallest number of decimal places.

 $125\,g + 0.035\,g = 125\,g$

- Adding a more precise value to a less precise one doesn't increase the precision of the sum!
- The big message: The number of significant figures in a calculated value should not imply more precision than is present in the values going into the calculation!