Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023
 Lecture 6:
 Dealing with Uncertainty

Thursday, 26 January 2023
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Computer Labs

■ Computer Labs next week and the following week.

- Start at 1:00 PM
- Room 150 S. Biology Building

■ Next week: Graphing and curve fitting with SciDAVis.
■ Following week: Molecular modeling with PyMOL.
■ We will use the computers in the lab, not personal laptops.
■ But, you should still install SciDAVis and PyMOL on your own computer. Use the versions available on Canvas.

How do we know? What do we do with it?

■ All of this is sometimes messy!

Dealing With Uncertainties

Pipette calibration data:
■ Mass of water (mg) delivered from a pipette set to $20 \mu \mathrm{~L}$: 20.1 18.5
18.2
22.4
22.9

■ mean $($ average $)=20.4 \mathrm{mg}$
■ What is the significance of the mean?
■ How do we quantify accuracy or precision?

Precision and Accuracy as Target Practice

http://www.antarcticglaciers.org/glacial-geology/dating-glacial-sediments-2/ precision-and-accuracy-glacial-geology/

Precision and Accuracy in Measurement

- Precision
- Reproducibility of individual measurements.
- Determined by making multiple measurements and comparing them.
- Accuracy
- Consistency with an accepted value.
- Requires comparison with an accepted standard.
- Without high precision, we can't have high accuracy!

Dealing With Uncertainties: The Working Model

Assumptions:

■ The measured values are determined by a "true" value plus random error (positive or negative).

■ The random errors are distributed according to a Gaussian function, i.e., a "bell curve".

■ Why is it bell shaped?

Estimating the "True" Value

- The best* estimate of the "true" value is the mean, \bar{x}.

$$
\begin{gathered}
\qquad \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
N=\text { number of measurements, } x_{i} \text { is the } i^{\text {th }} \text { measurement }
\end{gathered}
$$

[^0]
Estimating the Distribution Width (σ)

Two ways to estimate σ, the standard deviation:
■ From a histogram (takes lots of measurements!)
■ The sample standard deviation, s :

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{N-1}} \quad \text { an estimate of } \sigma
$$

Estimates Improve With More Measurements (A Simulation)

■ Estimate of true value (\bar{x}) approaches a limiting value (20 mg)
■ Estimate of standard deviation (s) approaches a limiting value (2 mg)
■ s doesn't approach zero.

Another Useful Statistic:

The Standard Error of the Mean (SEM)

$$
\text { SEM }=\sqrt{\frac{\sum(x-\bar{x})^{2}}{(N-1) N}}=s / \sqrt{N}
$$

- The standard error of the mean represents the uncertainty in the estimate of the mean, \bar{x}
- The uncertainty in \bar{x} decreases with more measurements.

■ The uncertainty in the mean can be made as small as we like, if we make enough measurements! (Assumes that errors are truly random.)

- Decreasing the uncertainty by half requires four times as many measurements.

Clicker Question \#1

If I want to report on how reproducible my pipette (and technique) is, which statistic should I use?
A) The sample standard deviation
B) The standard error of the mean

Clicker Question \#2

If I want to report on how reliably I have measured the average volume delivered by my pipette, which statistic should I use?
A) The sample standard deviation
B) The standard error of the mean

■ Whatever you report, be clear! (and specify N)

Significant Figures

■ The basic idea: The number of digits used to report a measurement should reflect the precision of the measurement.
$■$ Reporting more digits than justified by the measurements is dishonest!
■ A precise definition of 'significant figures' is not so simple!

Rules for Significant Figures

■ All non-zero digits are significant.

number	sig. figs.
12	2
12.5	3

■ Zeros between non-zero digits are significant.

number	sig. figs.
102	3
12.05	4

Rules for Significant Figures

■ Trailing zeros to the right of a decimal point are significant.

number	sig. figs.
12.00	4
12.500	5

- Leading zeros to the left are not significant.

number	sig. figs.
012	2
0.0012	2

■ What about trailing zeros without a decimal point?

number	sig. figs.
1200	$2 ?$

Rules for Significant Figures

- Avoid Ambiguity with Scientific Notation

number	sig. figs.
1200	$2 ?$
1.2×10^{3}	2
1.20×10^{3}	3
1.200×10^{3}	4
1200.	4

Rules for Significant Figures

■ Numbers with unlimited significant figures:

- Integers or ratios of integers (rational numbers), such as $2,1 / 2$ or $2 / 3$.
- Defined irrational numbers, such as $\sqrt{2}, \pi$ or e.
- Other numbers that are not derived from measurements, including most conversion factors.

Rules for Significant Figures

- Multiplication and division:

The calculated result should contain the number of significant figures of the measured quantity with the smallest number of significant figures.

$$
\begin{aligned}
& 15 \mathrm{~g} \div 121.1 \mathrm{~g} / \mathrm{mol}=0.12 \mathrm{~mol} \\
& \begin{aligned}
15 \mathrm{mM} \times 25 \mu \mathrm{~L} & =0.015 \mathrm{moles} / \mathrm{L} \times 2.5 \times 10^{-5} \mathrm{~L} \\
& =3.8 \times 10^{-7} \text { moles } \\
& =0.38 \mu \text { moles }
\end{aligned}
\end{aligned}
$$

Rules for Significant Figures

- For addition and subtraction:
- The last decimal place of the result is determined by last decimal place of the measured quantity with the smallest number of decimal places.

$$
125 \mathrm{~g}+0.035 \mathrm{~g}=125 \mathrm{~g}
$$

- Adding a more precise value to a less precise one doesn't increase the precision of the sum!
- The big message: The number of significant figures in a calculated value should not imply more precision than is present in the values going into the calculation!

[^0]: * "Best" means most likely to give the correct value.

