Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

Lecture 8:

Curve Fitting, Continued and Introduction to Proteases

Thursday, 2 February 2023

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Computer Labs

- Computer Labs this week and next week.
 - Start at 1:00 PM!
 - Room 150 Biology Building
- This week: Graphing and curve fitting with SciDAVis.
- Next week: Molecular modeling with PyMOL.
- We will use the computers in the lab, not personal laptops.
- But, you should still install SciDAVis and PyMOL on your own computer. Use the versions available on Canvas.

The Curve-Fitting Problem

- How do we find the equation of the line (or other function) that best "fits" the experimental data?
- What assumptions do we make when fitting data to a function?
- How do we determine how well the function (model) fits the data?

The Method of Least Squares

- Adjust m' and b' to minimize the value of χ² for the particular values of x_i and y_i in the experimental data set.
- The method can be applied to other functions to fit paramaters.

A Linear Least-squares Fit to Bradford Calibration Data

- The estimated parameters for y = mx + b: m = 0.052 ± 0.006 b = 0.08 ± 0.06
- The uncertainties are analogous to the standard error of the mean.

The Coefficient of Determination, R^2

- R² represents the fraction of the variation that is accounted for by the fit function.
- **\square** R^2 usually lies between 0 and 1.
- R² can be negative for certain functions and data sets!

Clicker Question #1

What if the fit isn't as good as we'd like?

Should we:

- A) Delete some points?
- B) Find a function that better represents the data?
- C) Accept that there is some error in our measurements?
- D) Repeat the experiment more carefully?

All answers count (for now)!

Polynomials as Fitting Functions

General form of a polynomial function:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

- A polynomial in which the largest power of x is xⁿ is called an nth-order polynomial.
 - A first-order polynomial is a straight line: $y = a_0 + a_1 x$
 - A second-order polynomial is also called a quadratic function:

 $y = a_0 + a_1 x + a_2 x^2$

• A third-order polynomial is also called a cubic function:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

- An *n*th-order polynomial contains n + 1 coefficients $(a_0, a_1, a_2, ..., a_n)$.
- A **minimum** of *n* + 1 data points are required to fit an *n*th-order polynomial.

A 2nd-order Polynomial Least-squares Fit to Bradford Calibration Data

For 2nd-order polynomial fit:

$$\chi^2 = 0.012$$

 $R^2 = 0.988$

For linear fit:

 $\chi^2 = 0.062$ $R^2 = 0.93$

- Increasing the number of parameters almost always improves the fit!
- Is it justified here?

Does the Fit Function Make Sense Physically?

Should the absorbance decrease as the amount of BSA increases beyond 20 µg?

Probably not!

The function could serve as a calibration curve over the range used to fit it, but not beyond. A 4th-order Polynomial Least-squares Fit to Bradford Calibration Data

Clicker Question #2

Which is the most reasonable fit?

All answers count (for now)!

A 7th-order Polynomial Least-squares Fit to Bradford Calibration Data with 8 Points

For 7th-order polynomial fit:

$$\chi^2 = 0$$

 $R^2 = 1$
A perfect fit!
Or, perfectly absurd?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

John von Neumann, according to Enrico Fermi, as quoted by Freeman Dyson. Nature (2004) 427, 297

Fitting an Elephant

Mayer, J., Khairy, K. & Howard, J. (2010). Drawing an elephant with four complex parameters. *Am. J. Phys.*, 78, 648–649. http://dx.doi.org/10.1119/1.3254017

Another Interesting Function

$$y = \frac{1}{b+x} \approx \frac{1}{x} = a$$

A constant, a.

"Linear" versus "Non-linear" Curve Fitting

In the context of curve-fitting, a polynomial

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

is said to be a "linear" function in the sense that y is a linear function of each of the fit parameters, a_i (even if it isn't linear with respect to x).

- Equations of this type can be fit to data relatively easily using equations like those shown for the straight line fit.
- The equation for a rectangular hyperbola:

$$y = \frac{a \cdot x}{b + x}$$

is not linear with respect to the parameter b.

 For non-linear equations, least-squares fitting usually must be done iteratively.

An Iterative Method to Minimize χ^2

- 1. Make initial estimates of parameters a and b
- **2.** Calculate χ^2
- 3. Change the parameters a little bit and recalculate χ^2
- 4. If χ^2 decreases, change the parameters some more in the same direction; otherwise change, the parameters in the opposite direction.
- **5.** Repeat until χ^2 does not decrease further.

A Rectangular Hyperbola Fit to Bradford Calibration Data

For fit to rectangular hyperbola: $\chi^2 = 0.02$ $R^2 = 0.977$ With only two parameters! For 2nd-order polynomial fit: $\chi^{2} = 0.01$ $R^2 = 0.988$ For linear fit: $\chi^2 = 0.062$

 $R^2 = 0.93$

Does the Fit Function Make Sense Physically?

- Does the extrapolation look plausible?
- Is the curvature real?
- How could we find out?
- Why might the Bradford calibration curve have this shape?

A Rectangular Hyperbola Fit to Bradford Calibration Data

A Rectangular Hyperbola Fit to Bradford Calibration Data

Why Are the Uncertainties So Large?

- To determine both a and b, we need data over a range that includes values that are less than b and values that are greater than b.
- Good data analysis requires good experimental design! (And, good data!)

■ When *x* is small relative to *b*:

$$y = \frac{ax}{b+x} \approx \frac{ax}{b}$$

A line through the point (0, 0), with slope a/b.

If we only have data in this region, the slope, a/b, is well defined, but lots of pairs of *a* and *b* will fit the data well.

When *x* is large relative to *b*:

$$y = \frac{ax}{b+x} \approx \frac{ax}{x} = a$$

If we only have data in this region, what will happen to our fit?

Warning!

Direction Change Introduction to Proteases

The General Protease Reaction

About 2% of genes in most organisms encode proteases. (Hedstrom, L. 2002, *Chem. Rev.* 102, 4429)

Some Biological Functions of Proteases

Digestion of food

- Not very selective
- Catalyzed by trypsin, chymotrypsin, pepsin and other proteases
- Intracellular protein degradation
 - Highly selective and regulated
 - Often catalyzed by large protein complexes, *e.g.*, the proteasome
- Regulation of biological activity by proteolytic activation
 - Angiotensin converting enzyme (blood pressure regulation)
 - Blood clotting and disruption of blood clots
 - Complement fixation (an element of the immune response)
 - Apoptosis (programmed cell death)

Maturation of viral proteins, e.g., HIV, coronaviruses and many others

General Protease Mechanism is Nucleophilic Substitution

Water Can Act as the Nucleophile, but Must be Activated by a Base

- Why is this reaction so slow in the absence of an enzyme?
- How do enzymes enhance the rate?