Biological Chemistry Laboratory

 Biology 3515/Chemistry 3515Spring 2023
Lecture 8:

Curve Fitting, Continued
 and
 Introduction to Proteases

Thursday, 2 February 2023
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Computer Labs

■ Computer Labs this week and next week.

- Start at 1:00 PM!
- Room 150 Biology Building

■ This week: Graphing and curve fitting with SciDAVis.
■ Next week: Molecular modeling with PyMOL.
■ We will use the computers in the lab, not personal laptops.
■ But, you should still install SciDAVis and PyMOL on your own computer. Use the versions available on Canvas.

The Curve-Fitting Problem

- How do we find the equation of the line (or other function) that best "fits" the experimental data?

■ What assumptions do we make when fitting data to a function?
■ How do we determine how well the function (model) fits the data?

The Method of Least Squares

■ Adjust m^{\prime} and b^{\prime} to minimize the value of χ^{2} for the particular values of x_{i} and y_{i} in the experimental data set.
■ The method can be applied to other functions to fit paramaters.

A Linear Least-squares Fit to Bradford Calibration Data

■ The estimated parameters for

$$
y=m x+b:
$$

$$
\begin{aligned}
& m=0.052 \pm 0.006 \\
& b=0.08 \pm 0.06
\end{aligned}
$$

- The uncertainties are analogous to the standard error of the mean.

The Coefficient of Determination, R^{2}

Clicker Question \#1

What if the fit isn't as good as we'd like?

Should we:
A) Delete some points?
B) Find a function that better represents the data?
C) Accept that there is some error in our measurements?
D) Repeat the experiment more carefully?

All answers count (for now)!

Polynomials as Fitting Functions

■ General form of a polynomial function:

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}
$$

- A polynomial in which the largest power of x is x^{n} is called an $n^{\text {th }}$-order polynomial.
- A first-order polynomial is a straight line: $y=a_{0}+a_{1} x$
- A second-order polynomial is also called a quadratic function:

$$
y=a_{0}+a_{1} x+a_{2} x^{2}
$$

- A third-order polynomial is also called a cubic function:

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

■ An $n^{\text {th }}$-order polynomial contains $n+1$ coefficients $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right)$.

- A minimum of $n+1$ data points are required to fit an $n^{\text {th }}$-order polynomial.

- Is it justified here?

■ Should the absorbance decrease as the amount of BSA increases beyond $20 \mu \mathrm{~g}$?
Probably not!

- The function could serve as a calibration curve over the range used to fit it, but not beyond.

■ For $4^{\text {th }}$-order polynomial fit:

$$
\begin{aligned}
& \chi^{2}=0.01 \\
& R^{2}=0.991
\end{aligned}
$$

- For $2^{\text {nd }}-$ order polynomial fit:

$$
\begin{aligned}
& \chi^{2}=0.012 \\
& R^{2}=0.988
\end{aligned}
$$

■ For linear fit:

$$
\begin{aligned}
& \chi^{2}=0.062 \\
& R^{2}=0.93
\end{aligned}
$$

- Have we gone to far?

Clicker Question \#2

Which is the most reasonable fit?

All answers count (for now)!

A $7^{\text {th }}$-order Polynomial Least-squares Fit to Bradford Calibration Data with 8 Points

- For $7^{\text {th }}$-order polynomial fit:

$$
\begin{aligned}
& \chi^{2}=0 \\
& R^{2}=1
\end{aligned}
$$

A perfect fit!
Or, perfectly absurd?
"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

Fitting an Elephant

Mayer, J., Khairy, K. \& Howard, J. (2010). Drawing an elephant with four complex parameters. Am. J. Phys., 78, 648-649.
http://dx.doi.org/10.1119/1.3254017

Another Interesting Function

$$
y=\frac{a x}{b+x}
$$

■ When $x \ll b$

$$
y=\frac{a x}{b+x} \approx \frac{a x}{b}
$$

A line through the point $(0,0)$, with slope a / b.

- When $x \gg b$

$$
y=\frac{a x}{b+x} \approx \frac{a x}{x}=a
$$

A constant, a.

"Linear" versus "Non-linear" Curve Fitting

■ In the context of curve-fitting, a polynomial

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}
$$

is said to be a "linear" function in the sense that y is a linear function of each of the fit parameters, a_{i} (even if it isn't linear with respect to x).
■ Equations of this type can be fit to data relatively easily using equations like those shown for the straight line fit.
■ The equation for a rectangular hyperbola:

$$
y=\frac{a \cdot x}{b+x}
$$

is not linear with respect to the parameter b.

- For non-linear equations, least-squares fitting usually must be done iteratively.

An Iterative Method to Minimize χ^{2}

1. Make initial estimates of parameters a and b
2. Calculate χ^{2}
3. Change the parameters a little bit and recalculate χ^{2}
4. If χ^{2} decreases, change the parameters some more in the same direction; otherwise change, the parameters in the opposite direction.
5. Repeat until χ^{2} does not decrease further.

A Rectangular Hyperbola Fit to Bradford Calibration Data

- For fit to rectangular hyperbola:

$$
\begin{aligned}
& \chi^{2}=0.02 \\
& R^{2}=0.977
\end{aligned}
$$

With only two parameters!
■ For $2^{\text {nd }}$-order polynomial fit:

$$
\begin{aligned}
& \quad \chi^{2}=0.01 \\
& R^{2}=0.988 \\
& \text { ■ For linear fit: }
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{2}=0.062 \\
& R^{2}=0.93
\end{aligned}
$$

■ Does the extrapolation look plausible?

- Is the curvature real?

■ How could we find out?

- Why might the Bradford calibration curve have this shape?

A Rectangular Hyperbola Fit to Bradford Calibration Data

- Fit function:

$$
y=\frac{a x}{b+x}
$$

■ Fit parameters:

$$
\begin{aligned}
& a=2.32 \pm 0.53 \\
& b=24.9 \pm 6.6
\end{aligned}
$$

- What are the units for the parameters?

A Rectangular Hyperbola Fit to Bradford Calibration Data

- Fit function:

$$
y=\frac{a x}{b+x}
$$

■ Fit parameters:

$$
\begin{aligned}
& a=2.32 \pm 0.53 \\
& b=24.9 \pm 6.6
\end{aligned}
$$

- Why are the uncertainties so large?

Why Are the Uncertainties So Large?

■ To determine both a and b, we need data over a range that includes values that are less than b and values that are greater than b.

■ Good data analysis requires good experimental design! (And, good data!)

■ When x is small relative to b :

$$
y=\frac{a x}{b+x} \approx \frac{a x}{b}
$$

A line through the point $(0,0)$, with slope a / b.
If we only have data in this region, the slope, a / b, is well defined, but lots of pairs of a and b will fit the data well.

- When x is large relative to b :

$$
y=\frac{a x}{b+x} \approx \frac{a x}{x}=a
$$

If we only have data in this region, what will happen to our fit?

Warning!

Direction Change

Introduction to Proteases

The General Protease Reaction

■ About 2\% of genes in most organisms encode proteases. (Hedstrom, L. 2002, Chem. Rev. 102, 4429)

Some Biological Functions of Proteases

■ Digestion of food

- Not very selective
- Catalyzed by trypsin, chymotrypsin, pepsin and other proteases
- Intracellular protein degradation
- Highly selective and regulated
- Often catalyzed by large protein complexes, e.g., the proteasome

■ Regulation of biological activity by proteolytic activation

- Angiotensin converting enzyme (blood pressure regulation)
- Blood clotting and disruption of blood clots
- Complement fixation (an element of the immune response)
- Apoptosis (programmed cell death)

■ Maturation of viral proteins, e.g., HIV, coronaviruses and many others

General Protease Mechanism is Nucleophilic Substitution

$■$ Why is this reaction so slow in the absence of an enzyme?
■ How do enzymes enhance the rate?

