Physical Principles in BiologyBiology 3550

$$
\text { Spring } 2024
$$

Lecture 10:
The One-dimensional Random Walk
Wednesday, 31 January 2024
©David P. Goldenberg University of Utah
goldenberg@biology.utah.edu

A Random Walk in One Dimension

$x=0$

1. Start at position $x=0$.
2. Flip coin.

- Heads, take step of length / to the right.
- Tails, take step of length / to the left.

3. Repeat 2 another ($n-1$) times.

- Final position is x_{n}.

■ What factors will determine the distribution of x_{n} for a large number of random walks?

- The step length, I.
- The number of steps, n
- The probability of a step to the right or left.

Calculate The Average Final Position (The Expected Value of x_{n})

- For a single random walk, the final position will be:

$$
x_{n}=\sum_{i=1}^{n} \delta_{i}
$$

where i is the step number, and δ_{i} is the displacement along the x-axis for step i and is either $+/$ or $-l$, with probabilities p_{+}and p_{-}.
■ For each step, δ_{i} is a random variable, with an expected value, $E\left(\delta_{i}\right)$:

$$
\begin{aligned}
E\left(\delta_{i}\right) & =I p_{+}+\left(-I p_{-}\right)=I p_{+}-I p_{-} \\
& =I\left(p_{+}-p_{-}\right) \\
& =I\left(p_{+}-\left(1-p_{+}\right)\right) \\
& =I\left(2 p_{+}-1\right)
\end{aligned}
$$

Calculating The Expected Value of x_{n}

- An important theorem: If x and y are two independent random variables, then the expected value of the sum is calculated as:

$$
E(x+y)=E(x)+E(y)
$$

■ Since:

$$
x_{n}=\sum_{i=1}^{n} \delta_{i}
$$

The expected value of x_{n} is calculated as:

$$
\begin{aligned}
E\left(x_{n}\right) & =\sum_{i=1}^{n} E\left(\delta_{i}\right)=n E\left(\delta_{i}\right) \\
& =n I\left(2 p_{+}-1\right)
\end{aligned}
$$

Clicker Question \#1

If the random-walk step size is 0.5 m , and the probability of a forward step, p_{+}, is 0.3 , what is the expected value of x_{n} for a 50 -step random walk?

$$
\begin{gathered}
\text { A) }-10 \mathrm{~m} \\
\text { B) }-5 \mathrm{~m} \\
\text { C) } 0 \mathrm{~m} \\
\text { D) } 5 \mathrm{~m} \\
\text { E) } 10 \mathrm{~m} \\
E\left(x_{n}\right)=n I\left(2 p_{+}-1\right) \\
=50 \times 0.5 \mathrm{~m}\left(2 p_{+}-1\right)=50 \times 0.5 \mathrm{~m}(2 \cdot 0.3-1) \\
=50 \times 0.5 \mathrm{~m} \times-0.4=-10 \mathrm{~m}
\end{gathered}
$$

Expected Value of x_{n} for a One-dimensional Random Walk

Some Different Kinds of Average

For N random walks of n steps each:
■ The mean:

$$
\left\langle x_{n}\right\rangle=\frac{1}{N} \sum_{j=1}^{N} x_{n, j}, \text { for large } N
$$

Angle brackets, 〈 >, indicate average over a large sample. $x_{n, j}$ is the final position of the $j^{\text {th }}$ walk.
■ The mean-square average:

$$
\left\langle x_{n}^{2}\right\rangle=\frac{1}{N} \sum_{j=1}^{N} x_{n, j}^{2}
$$

■ The root-mean-square (RMS) average:

$$
\operatorname{RMS}\left(x_{n}\right)=\sqrt{\left\langle x_{n}^{2}\right\rangle}=\sqrt{\frac{1}{N} \sum_{j=1}^{N} x_{n, j}^{2}}
$$

An Application of Mean-square and Root-mean-square Averages: Household Power (US)

Voltage versus time

Time (s)

An Application of Mean-square and Root-mean-square Averages: Household Power (US)

Voltage squared versus time

An Application of Mean-square and Root-mean-square Averages: Household Power (US)
$\sqrt{V^{2}}$ versus time

Clicker Question \#2

For the numbers: $-4,2,-3,1,5$, Calculate the root-mean-square average

$$
\begin{aligned}
& \text { A) } \sim 0.2 \\
& \text { B) } \sim 1.5 \\
& \text { C) } \sim 2.9 \\
& \text { D) } \sim 3.3 \\
& \text { E) } \sim 4.8
\end{aligned}
$$

$$
\mathrm{RMS}=\sqrt{\frac{-4^{2}+2^{2}+-3^{2}+1^{2}+5^{2}}{5}}=\sqrt{\frac{16+4+9+1+25}{5}}=\sqrt{\frac{55}{5}}=\sqrt{11}
$$

Warning!

Direction Change

Back to the one-dimensional random walk

Calculating the Mean-Square Displacement for a 1-d Random Walk

■ For a single random walk, the final position will be:

$$
x_{n}=\sum_{i=1}^{n} \delta_{i}
$$

where i is the step number, and δ_{i} is either $-l$ or $+l$.
■ Here, we will assume that positive and negative steps are equally probable.
■ We can also express x_{n} in terms of the position after the next-to-last step, x_{n-1} :

$$
x_{n}=x_{n-1}+\delta_{n}
$$

Something tricky is coming up!

Calculating The Mean-Square Displacement

■ If we do a large number, N, of random walks, the mean-square displacement, $\langle x\rangle$, will be:

$$
\left\langle x_{n}^{2}\right\rangle=\frac{1}{N} \sum_{j=1}^{N} x_{n, j}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(\sum_{i=1}^{n} \delta_{j, i}\right)^{2}
$$

where j is the random walk number, and $\delta_{j, i}$ is the displacement for step i of walk j.
■ We can also write the mean-square average as:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\frac{1}{N} \sum_{j=1}^{N}\left(x_{(n-1), j}+\delta_{j, n}\right)^{2} \\
& =\frac{1}{N} \sum_{j=1}^{N}\left(x_{(n-1), j}^{2}+2 x_{(n-1), j} \delta_{j, n}+\delta_{j, n}^{2}\right)
\end{aligned}
$$

Calculating The Mean-Square Displacement

- Following from the previous slide:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\frac{1}{N} \sum_{j=1}^{N}\left(x_{(n-1), j}^{2}+2 x_{(n-1), j} \delta_{j, n}+\delta_{j, n}^{2}\right) \\
& =\frac{1}{N} \sum_{j=1}^{N} x_{(n-1), j}^{2}+\frac{1}{N} \sum_{j=1}^{N}\left(2 x_{(n-1), j} \delta_{j, n}+\frac{1}{N} \sum_{j=1}^{N} \delta_{j, n}^{2}\right. \\
& =\left\langle x_{n-1}^{2}\right\rangle+\left\langle 2 x_{n-1} \delta_{n}\right\rangle+\left\langle\delta_{n}^{2}\right\rangle
\end{aligned}
$$

■ For a large number of unbiased walks:

- For each walk, δ_{n} is either $+/$ or $-l$, with equal probability, and is independent of the position before the last step, x_{n-1}.
- The average of $2 x_{n-1} \delta_{n}$ over N walks, $\left\langle 2 x_{n-1} \delta_{n}\right\rangle$, is 0 .

Calculating The Mean-Square Displacement

- From the previous slide:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\left\langle x_{n-1}^{2}\right\rangle+\left\langle 2 x_{n-1} \delta_{n}\right\rangle+\left\langle\delta_{n}^{2}\right\rangle \\
& =\left\langle x_{n-1}^{2}\right\rangle+\left\langle\delta_{n}^{2}\right\rangle
\end{aligned}
$$

- Following the same logic:

$$
\left\langle x_{n-1}^{2}\right\rangle=\left\langle x_{n-2}^{2}\right\rangle+\left\langle\delta_{n-1}^{2}\right\rangle
$$

- and

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\left\langle x_{n-2}^{2}\right\rangle+\left\langle\delta_{n-1}^{2}\right\rangle+\left\langle\delta_{n}^{2}\right\rangle \\
& =\left\langle x_{n-2}^{2}\right\rangle+2\left\langle\delta^{2}\right\rangle
\end{aligned}
$$

Calculating The Mean-Square Displacement

■ Continuing in the same way:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\left\langle x_{n-2}^{2}\right\rangle+2\left\langle\delta^{2}\right\rangle \\
& =\left\langle x_{n-3}^{2}\right\rangle+\left\langle\delta_{n-2}^{2}\right\rangle+2\left\langle\delta^{2}\right\rangle \\
& =\left\langle x_{n-3}^{2}\right\rangle+3\left\langle\delta^{2}\right\rangle \\
\left\langle x_{n}^{2}\right\rangle & =\left\langle x_{n-4}^{2}\right\rangle+4\left\langle\delta^{2}\right\rangle
\end{aligned}
$$

■ and so on, until we have:

$$
\begin{aligned}
\left\langle x_{n}^{2}\right\rangle & =\left\langle x_{1}^{2}\right\rangle+(n-1)\left\langle\delta^{2}\right\rangle \\
& =\left\langle x_{0}^{2}\right\rangle+n\left\langle\delta^{2}\right\rangle \\
& =n\left\langle\delta^{2}\right\rangle
\end{aligned}
$$

- A derivation based on recursion!

The Mean-square Displacement for One Step: $\left\langle\delta^{2}\right\rangle$

■ The average of δ^{2} over a large number of steps is equal to the expected value of δ^{2} :

$$
\begin{aligned}
\left\langle\delta^{2}\right\rangle=E\left(\delta^{2}\right) & =p_{+}(+l)^{2}+p_{-}(-l)^{2} \\
& =p_{+} I^{2}+p_{-} l^{2} \\
& =l^{2}\left(p_{+}+p_{-}\right) \\
& =l^{2}
\end{aligned}
$$

■ The mean-square displacement for the random walk:

$$
\left\langle x_{n}^{2}\right\rangle=n I^{2}
$$

■ The root-mean-square displacement for the random walk:

$$
\operatorname{RMS}\left(x_{n}\right)=\sqrt{\left\langle x_{n}^{2}\right\rangle}=\sqrt{n} /
$$

The Root-mean-square Displacement for a One-dimensional Random Walk

$$
\operatorname{RMS}\left(x_{n}\right)=\sqrt{\left\langle x_{n}^{2}\right\rangle}=\sqrt{n} \mid
$$

■ This is THE most important thing to remember about random walks!

Clicker Question \#3

For a one-dimensional random walk of 100 steps, of length 0.25 m , what is the total distance traveled, as measured by a pedometer (or a FitBit)?
A) 2.5 m
B) 5 m
C) 8 m
D) 25 m
E) 50 m

Total distance $=n l$

$$
=100 \times 0.25 \mathrm{~m}=25 \mathrm{~m}
$$

Clicker Question \#4

For a one-dimensional random walk of 100 steps, of length 0.25 m , what is the expected RMS distance between the starting and ending points?

$$
\begin{aligned}
& \text { A) } 2.5 \mathrm{~m} \\
& \text { B) } 5 \mathrm{~m} \\
& \text { C) } 8 \mathrm{~m} \\
& \text { D) } 25 \mathrm{~m} \\
& \text { E) } 50 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{RMS}\left(x_{n}\right) & =\sqrt{n} 1 \\
& =\sqrt{100} \times 0.25 \mathrm{~m}=10 \times 0.25 \mathrm{~m}=2.5 \mathrm{~m}
\end{aligned}
$$

Clicker Question \#5

For a one-dimensional random walk of 10 steps, of length 2.5 m , what is the total distance traveled, as measured by a pedometer (or a FitBit)?
A) 2.5 m
B) 5 m
C) 7.9 m
D) 25 m
E) 50 m

Total distance $=n l$

$$
=10 \times 2.5 \mathrm{~m}=25 \mathrm{~m}
$$

Clicker Question \#6

For a one-dimensional random walk of 10 steps, of length 2.5 m , what is the expected RMS distance between the starting and ending points?
A) 2.5 m
B) 5 m
C) 8 m
D) 25 m
E) 50 m
$\operatorname{RMS}\left(x_{n}\right)=\sqrt{n} /$

$$
=\sqrt{10} \times 2.5 \mathrm{~m} \approx 3.162 \times 2.5 \mathrm{~m} \approx 7.9 \mathrm{~m}
$$

