Physical Principles in Biology Biology 3550 Spring 2025

Lecture 12:

Simulating Random Processes and

Two-dimensional Random Walks

Monday, 3 February 2025 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

Problem set 2:

- Due 11:59 PM, Friday, 7 January.
- Download problems from Canvas.
- Upload work to Gradescope and Canvas (spreadsheet)!
- Work must be typed!
- Quiz 2:
 - Friday, 7 February
 - 25 min, second half of class.
- Discussion/Problem-solving Sessions:
 - Mondays, 3:00 P.M. AEB 306
- Instructor Office hours:
 - Wednesdays, 11:00 AM ASB 306
 - Other times by appointment

Simulating Random Processes with a Computer

- Computers aren't supposed to do things at random!
- But, we often ask them to!
- Pseudo-random number generators

Function has to be carefully designed so that numbers "look random".

How Do We Decide if Numbers "Look Random"?

- After generating lots of numbers, they should approximate a defined distribution; for instance evenly distributed numbers from 0 to 1.
- Shouldn't be able to predict one number from a previous one, without knowing the algorithm.
- A sign of trouble: Numbers start repeating.
 - Eventually this will happen with any pseudo-random number generator.
 - Repeat period should be very large. (greater than the number of numbers to be used)

Where Does the Seed Number Come From?

- A user-specified number, to generate a predictable set of pseudo-random numbers. Useful for simulations.
- The computer's clock. Very common method.
- A truly random physical process:
 - Radioactive decay.

https://www.fourmilab.ch/hotbits/

• A lava lamp!

https://en.wikipedia.org/wiki/Lavarand

• Electronic or thermal noise.

https://en.wikipedia.org/wiki/Hardware_random_number_generator Now incorporated in many computer CPUs and USB dongles.

Good random numbers are are becoming more important every day!

A Random Walk in Two Dimensions

- **1.** Start at (x, y) coordinates (0,0).
- 2. Choose a random direction, defined by the angle θ from the *x*-axis.
- 3. Move distance / in the chosen direction.
- **4.** Repeat another (n-1) times.

Important Parameters for a Two-Dimensional Random Walk

- *I*: The step length. Fixed for our simulations.
- θ_i : Turn angle for step *i*. Uniformly distributed from 0 to 2π radians for our simulations.
- *n*: Number of steps in a single random walk.
- *N*: Total number of random walks used for averaging. 100 in our simulations.
- x_n and y_n : Final x and y-coordinates of random walk.
- r_n : Distance between start and end of random walk.
- $\langle x \rangle, \langle y \rangle$ and $\langle r \rangle$: Mean values of x_n, y_n and r_n , over a large number of walks.
- $\langle x^2 \rangle$, $\langle y^2 \rangle$ and $\langle r^2 \rangle$: Mean-square averages of x_n , y_n and r_n .
- **RMS**(x), RMS(y) and RMS(r): Root-mean-square averages of x_n , y_n and r_n .

$\langle x \rangle$ versus *I* and *n*

- Values cluster around 0.
- $\langle y \rangle$ looks just like $\langle x \rangle$.

$\langle x^2 \rangle$ versus *I* and *n*

- $\langle x^2 \rangle$ is proportional to *n*.
- Increase in $\langle x^2 \rangle$ with *I* is not linear.
- $\langle y^2 \rangle$ looks just like $\langle x^2 \rangle$.

• $\langle r^2 \rangle$ is proportional to *n*.

Increase in $\langle r^2 \rangle$ with *I* is not linear.

RMS(x) versus *I* and *n*

- RMS(x) is proportional to /
- Increase in RMS(x) with *n* is not linear.
- **RMS**(y) looks just like RMS(x)
- Looks a lot like x_n in one-dimensional random walk!

RMS(r) versus *I* and *n*

- RMS(r) is proportional to I
- The increase in RMS(r) with *n* is not linear.
- Looks a lot like *x_n* in one-dimensional random walk!

A Summary

Observed proportionalities:

 $\langle x^2
angle \propto n$ $\langle y^2
angle \propto n$ $\langle r^2
angle \propto n$ RMS(x) $\propto l$

 $RMS(y) \propto I$ $RMS(r) \propto I$

Inferred proportionalities:

 $\begin{aligned} \mathsf{RMS}(x) \propto \sqrt{n} \\ \mathsf{RMS}(y) \propto \sqrt{n} \\ \mathsf{RMS}(r) \propto \sqrt{n} \end{aligned}$

I
$$\langle x^2 \rangle \propto l^2$$
I $\langle y^2 \rangle \propto l^2$ I $\langle r^2 \rangle \propto l^2$

 $\begin{array}{ll} \langle x^2 \rangle \propto nl^2 & \langle y^2 \rangle \propto nl^2 & \langle r^2 \rangle \propto nl^2 \\ \\ \mathsf{RMS}(x) \propto \sqrt{n}l & \mathsf{RMS}(y) \propto \sqrt{n}l & \mathsf{RMS}(r) \propto \sqrt{n}l \end{array}$

What are the constants of proportionality? (slopes)

Theory Says:

For a two-dimensional random walk:

$$\langle x^2 \rangle = \frac{n}{2} l^2$$
 $\langle y^2 \rangle = \frac{n}{2} l^2$ $\langle r^2 \rangle = n l^2$

$$\mathsf{RMS}(x) = \sqrt{\frac{n}{2}}I$$
 $\mathsf{RMS}(y) = \sqrt{\frac{n}{2}}I$ $\mathsf{RMS}(r) = \sqrt{n}I$

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m, what is the expected value of the final *x*-coordinate, $\langle x \rangle$

- **A)** 0 m
- **B)** 3.1 m
- **C)** 4.3 m
- **D)** 9.4 m
- E) 18.8 m

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m, what is the expected value of the square of the final x-coordinate, $\langle x^2 \rangle$? **A)** 0 m² **B)** 3.1 m² **C)** 4.3 m² **D**) 9.4 m² **E)** 19.4 m²

$$\langle x_n^2 \rangle = \frac{n}{2} l^2 = \frac{75}{2} (0.5 \,\mathrm{m})^2 = 9.4 \,\mathrm{m}^2$$

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m, what is the expected root-mean-square end-to-end distance, RMS(r)?

A) 0 m

E) 18.8 m

 $RMS(r^2) = I\sqrt{n} = 0.5 \text{ m} \times \sqrt{75} = 4.3 \text{ m}$

A turtle walks into a bar and, after a few hours, walks out and starts on a random walk! The turtle walks straight for a period, turns in a random direction, walks straight again, and repeats.

After watching the random walk for several hours, an observer concludes that:

- The turtle walks at a remarkably steady pace of 0.5 m/min.
- The time interval between turns is also very consistent.
- The RMS overall distance traveled by the turtle in 30 min, measured along a straight line, (RMS(r)) is 4 m.

For how long does the turtle walk between turns?

- A) $pprox 1 \min$
- B) $\approx 2 \min$
- C) $\approx 5 \, \text{min}$
- D) $\approx 10 \, {\rm min}$
- E) $\approx 20 \min$