Physical Principles in Biology Biology 3550
 Spring 2024
 Lecture 12:
 Simulating Random Processes and
 Two-dimensional Random Walks

Monday, 5 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Simulating Random Processes with a Computer

■ Computers aren't supposed to do things at random!
■ But, we often ask them to!
■ Pseudo-random number generators

■ Function has to be carefully designed so that numbers "look random".

How Do We Decide if Numbers "Look Random"?

- After generating lots of numbers, they should approximate a defined distribution; for instance evenly distributed numbers from 0 to 1.

■ Shouldn't be able to predict one number from a previous one, without knowing the algorithm.

■ A sign of trouble: Numbers start repeating.

- Eventually this will happen with any pseudo-random number generator.
- Repeat period should be very large. (greater than the number of numbers to be used)

Where Does the Seed Number Come From?

- A user-specified number, to generate a predictable set of pseudo-random numbers. Useful for simulations.
- The computer's clock. Very common method.
- A truly random physical process:
- Radioactive decay. https://www.fourmilab.ch/hotbits/
- A lava lamp! https://en.wikipedia.org/wiki/Lavarand
- Electronic or thermal noise. https://en.wikipedia.org/wiki/Hardware_random_number_generator Now incorporated in many computer CPUs and USB dongles.

■ Good random numbers are are becoming more important every day!

A Random Walk in Two Dimensions

1. Start at (x, y) coordinates $(0,0)$.
2. Choose a random direction, defined by the angle θ from the x-axis.
3. Move distance / in the chosen direction.
4. Repeat another $(n-1)$ times.

Important Parameters for a Two-Dimensional Random Walk

■ I: The step length. Fixed for our simulations.
■ θ_{i} : Turn angle for step i. Uniformly distributed from 0 to 2π radians for our simulations.

■ n : Number of steps in a single random walk.
■ N : Total number of random walks used for averaging. 100 in our simulations.
$\square x_{n}$ and y_{n} : Final x and y-coordinates of random walk.

- r_{n} : Distance between start and end of random walk.
$\square\langle x\rangle,\langle y\rangle$ and $\langle r\rangle$: Mean values of x_{n}, y_{n} and r_{n}, over a large number of walks.
■ $\left\langle x^{2}\right\rangle,\left\langle y^{2}\right\rangle$ and $\left\langle r^{2}\right\rangle$: Mean-square averages of x_{n}, y_{n} and r_{n}.
■ $\operatorname{RMS}(x), \operatorname{RMS}(y)$ and $\operatorname{RMS}(r)$: Root-mean-square averages of x_{n}, y_{n} and r_{n}.

$\langle x\rangle$ versus / and n

■ Values cluster around 0.

- $\langle y\rangle$ looks just like $\langle x\rangle$.

$\left\langle x^{2}\right\rangle$ versus / and n

- $\left\langle x^{2}\right\rangle$ is proportional to n.
- Increase in $\left\langle x^{2}\right\rangle$ with / is not linear.
- $\left\langle y^{2}\right\rangle$ looks just like $\left\langle x^{2}\right\rangle$.

$\left\langle r^{2}\right\rangle$ versus / and n

- $\left\langle r^{2}\right\rangle$ is proportional to n.

■ Increase in $\left\langle r^{2}\right\rangle$ with / is not linear.

RMS(x) versus / and n

- $\operatorname{RMS}(x)$ is proportional to I

■ Increase in $\operatorname{RMS}(x)$ with n is not linear.
■ RMS(y) looks just like RMS(x)

A Random Walk in Two Dimensions

RMS(r) versus / and n

- $\mathrm{RMS}(r)$ is proportional to I
- The increase in RMS (r) with n is not linear.

■ Looks a lot like x_{n} in one-dimensional random walk!

A Summary

Observed proportionalities:

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & \propto n \\
\left\langle y^{2}\right\rangle & \propto n \\
\left\langle r^{2}\right\rangle & \propto n
\end{aligned}
$$

$\operatorname{RMS}(x) \propto 1$
$\operatorname{RMS}(y) \propto I$
$\operatorname{RMS}(r) \propto I$

Inferred proportionalities:
$\operatorname{RMS}(x) \propto \sqrt{n}$
$\operatorname{RMS}(y) \propto \sqrt{n}$
$\operatorname{RMS}(r) \propto \sqrt{n}$

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle \propto I^{2} \\
& \left\langle y^{2}\right\rangle \propto I^{2} \\
& \left\langle r^{2}\right\rangle \propto I^{2}
\end{aligned}
$$

$\left.\left\langle y^{2}\right\rangle \propto n\right|^{2}$
$\operatorname{RMS}(y) \propto \sqrt{n} I$
$\left\langle r^{2}\right\rangle \propto n I^{2}$
$\operatorname{RMS}(r) \propto \sqrt{n} I$
$■$ What are the constants of proportionality? (slopes)

Theory Says:

For a two-dimensional random walk:

$$
\left\langle x^{2}\right\rangle=\frac{n}{2} I^{2} \quad\left\langle y^{2}\right\rangle=\frac{n}{2} I^{2} \quad\left\langle r^{2}\right\rangle=n I^{2}
$$

$\operatorname{RMS}(x)=\sqrt{\frac{n}{2}} I$
$\operatorname{RMS}(y)=\sqrt{\frac{n}{2}} I$
$\operatorname{RMS}(r)=\sqrt{n} I$

Clicker Question \#1

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m , what is the expected value of the final x-coordinate, $\langle x\rangle$
A) 0 m
B) 3.1 m
C) 4.3 m
D) 9.4 m
E) 18.8 m

Clicker Question \#2

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m , what is the expected value of the square of the final x-coordinate, $\left\langle x^{2}\right\rangle$?
A) $0 \mathrm{~m}^{2}$
B) $3.1 \mathrm{~m}^{2}$
C) $4.3 \mathrm{~m}^{2}$
D) $9.4 \mathrm{~m}^{2}$
E) $19.4 \mathrm{~m}^{2}$

$$
\left\langle x_{n}^{2}\right\rangle=\frac{n}{2} I^{2}=\frac{75}{2}(0.5 \mathrm{~m})^{2}=9.4 \mathrm{~m}^{2}
$$

Clicker Question \#3

For an unbiased 2-dimensional rw of 75 steps of length 0.5 m , what is the expected root-mean-square end-to-end distance, $\mathrm{RMS}(r)$?
A) 0 m
B) 3.1 m
C) 4.3 m
D) 9.4 m
E) 18.8 m

$$
\operatorname{RMS}\left(r^{2}\right)=I \sqrt{n}=0.5 \mathrm{~m} \times \sqrt{75}=4.3 \mathrm{~m}
$$

Clicker Question \#4

A turtle walks into a bar and, after a few hours, walks out and starts on a random walk! The turtle walks straight for a period, turns in a random direction, walks straight again, and repeats.

After watching the random walk for several hours, an observer concludes that:

■ The turtle walks at a remarkably steady pace of $0.5 \mathrm{~m} / \mathrm{min}$.

- The time interval between turns is also very consistent.
- The RMS overall distance traveled by the turtle in 30 min , measured along a straight line, $(\mathrm{RMS}(r))$ is 4 m .

For how long does the turtle walk between turns?
A) $\approx 1 \mathrm{~min}$
B) $\approx 2 \mathrm{~min}$
C) $\approx 5 \mathrm{~min}$
D) $\approx 10 \mathrm{~min}$
$E) \approx 20 \mathrm{~min}$

