Physical Principles in Biology Biology 3550
 Spring 2024
 Lecture 13:

Variations on the Two-dimensional Random Walk and Continuous Probability Distribution Functions

Wednesday, 7 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Problem Set 2:
- Due 11:59 PM, Monday, 12 February.
- Download problems from Canvas.
- Upload work to Gradescope.
- Show your work!
- Please don't scrunch things up!
- Quiz 2:
- Friday, 9 February
- 25 min , second half of class.

■ Review Session

- 5:15 PM, Thursday, 8 February
- HEB 2002
- Come with questions!

The Unbiased Random Walk in Two Dimensions

■ $\left\langle x_{n}^{2}\right\rangle=\left\langle y_{n}^{2}\right\rangle=n I^{2} / 2$

- $\left\langle r_{n}^{2}\right\rangle=n I^{2}$

Description of a Three-dimensional Random Walk

■ Each step is defined by a tilt from the local z-axis (ϕ_{i}) and a rotation around the z-axis $\left(\theta_{i}\right)$.

- The end of each step lies on a sphere of radius $/$.

■ $\left\langle x_{n}^{2}\right\rangle=\left\langle y_{n}^{2}\right\rangle=\left\langle z_{n}^{2}\right\rangle=n l^{2} / 3$

- $\left\langle r^{2}\right\rangle=n I^{2}$, and $\operatorname{RMS}(r)=\sqrt{n} l$, just like in one and two dimensions.

Ants on a Walk for Food

■ Do either look like a random walk?
Pearce-Duvet, J. M. C., Elemens, C. P. H. \& Feener, D. H. (2011). Walking the line: search behavior and foraging success in ant species. Behavioral Ecology, 22, 501-509.
http://dx.doi.org/10.1093/beheco/arr001

Simple Variations on the Two-dimensional Random Walk

■ Constrain change in direction.

■ Introduce variation in step length.

A 'Plain’ Random Walk

- Step length = 20

■ No. steps = 200

A "Correlated" Random Walk

- Turn angle restricted to -90° to 90°
- Step length = 8

■ No. steps $=200$

A Random Walk With a Distribution of Step Lengths

- Turn angle restricted to -90° to 90°

■ Half-Gaussian (bell curve) distribution of step lengths

■ No. steps $=200$

A "Lévy Flight"

A random walk with a "heavy-tailed" distribution of step lengths

- Turn angle restricted

$$
\text { to }-90^{\circ} \text { to } 90^{\circ}
$$

- Pareto distribution of step lengths, for Vilfredo Pareto (1842-1923)

$■$ No. steps $=200$

Clicker Question \#1

What does the ant walk most resemble?

Brachymyrmex depilis
(25 s)
A) A plain random walk
B) A correlated random walk
C) A Lévy Flight

Warning!

Direction Change

Continuous Probability Distribution Functions

Discrete Probability Distribution Functions

- For random processes with discrete outcomes.

■ Variables take on discrete values.
■ The probability distribution functions can be viewed as tables or bar graphs

Bucket No.	Probability
0	$1 / 64$
1	$6 / 64$
2	$15 / 64$
3	$20 / 64$
4	$15 / 64$
5	$6 / 64$
6	$1 / 64$

Introducing Continuous Probability Distribution Functions

- A spinner to choose directions for the 2-dimensional random walk

■ We could divide up the circle into a finite number of sectors.

- Two sectors: Like flipping a coin
- Six sectors: Like throwing a die
- Lots of other possibilities
$■$ OR, we can treat the result as a continuous variable from 0 to $2 \pi \mathrm{rad}$

A Continuous Probability Distribution Function for the Spinner

$■ \theta$ is a continuous variable, with values from 0 to 2π.
$\square p(\theta)$ is a function of θ, with a constant value, c, for all values of θ.
■ Interpretation of $p(\theta)$: The integral

$$
\int_{a}^{b} p(\theta) d \theta
$$

is the probability that the spinner lands between the values a and b.

A Quick Refresher of Integrals (as "area under the curve")

■ To approximate the area between the x-axis and the function $f(x)$, between $x=a$ and $x=b$:

- Divide up the range $a \leq x \leq b$ into n segments $\Delta x=(b-a) / n$ wide.
- Draw n rectangles Δx wide and $f\left(x_{i}\right)$ high.
- Sum the areas of the rectangles

$$
\text { area } \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

A Quick Refresher of Integrals (as "area under the curve")

■ Improve approximation by making Δx smaller (and n larger).

- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from a to b with respect to x, is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

A Quick Refresher of Integrals (as "area under the curve")

■ Improve approximation by making Δx smaller (and n larger).

- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from a to b with respect to x, is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

A Quick Refresher of Integrals (as "area under the curve")

■ Improve approximation by making Δx smaller (and n larger).

- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from a to b with respect to x, is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

A Quick Refresher of Integrals (as "area under the curve")

■ Improve approximation by making Δx smaller (and n larger).

- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from a to b with respect to x, is defined as:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Back to the Continuous Probability Distribution Function (PDF) for the Spinner

- $p(\theta)$ is a function of θ, with a constant value, c, for all values of θ.

- The integral

$$
\int_{a}^{b} p(\theta) d \theta=\int_{a}^{b} c d \theta
$$

is the probability that the spinner lands between the values a and b.

An Important Constraint on a Continuous PDF

■ To be make sense, the integral over all possible values must equal 1:

$$
\int_{0}^{2 \pi} p(\theta) d \theta=1
$$

- Equivalent to the requirement for a discrete PDF that the sum of all probabilities be equal to 1 .

■ For the spinner pdf, the constant, c, is chosen to normalize the PDF.
$p(\theta)=c$

Clicker Question \#2

What value of c should be used to normalize the spinner PDF, so that:

$$
\int_{0}^{2 \pi} p(\theta) d \theta=1
$$

A) 0
B) $\frac{1}{2 \pi}$
C) 1
D) π
E) 2π

Choosing the Constant

What value of c should be used to normalize the spinner PDF?, so that:

$$
\begin{aligned}
& \int_{0}^{2 \pi} p(\theta) d \theta=1 \\
& \int_{0}^{2 \pi} c d \theta=1 \\
& \left.c \theta\right|_{0} ^{2 \pi}=c \cdot 2 \pi-c \cdot 0=1 \\
& c 2 \pi=1 \\
& c=\frac{1}{2 \pi}
\end{aligned}
$$

Clicker Question \#3

What is the probability that the spinner will lie between 45° and 60° ?

A) ≈ 0.02
B) ≈ 0.04
C) ≈ 0.06
D) ≈ 0.08
E) ≈ 0.1

The probability that the spinner will lie between 45° and 60°

$$
\begin{aligned}
& \square 45^{\circ}=\pi / 4 \mathrm{rad} \\
& \square 60^{\circ}=\pi / 3 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
p & =\int_{\pi / 4}^{\pi / 3} p(\theta) d \theta=\int_{\pi / 4}^{\pi / 3} \frac{1}{2 \pi} d \theta \\
& =\left.\frac{1}{2 \pi} \theta\right|_{\pi / 4} ^{\pi / 3}=\frac{1}{2 \pi}\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\frac{1}{2 \pi}\left(\frac{4 \pi}{12}-\frac{3 \pi}{12}\right)=\frac{1}{24} \approx 0.04
\end{aligned}
$$

The Expected Value (Mean) for a Continuous PDF

■ For a discrete random variable, x, with discrete PDF, $p(x)$, the expected value is:
$E(x)=\mu=\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}$
■ For a continuous random variable, x, with range $x_{1} \leq x \leq x_{2}$ and continuous PDF, $p(x)$, the expected value is:
$E(x)=\mu=\int_{x_{1}}^{x_{2}} p(x) x d x$

- For the spinner variable, θ :
$E(\theta)=\mu=\int_{0}^{2 \pi} p(\theta) \theta d \theta=\int_{0}^{2 \pi} \frac{1}{2 \pi} \theta d \theta=\left.\frac{1}{4 \pi} \theta^{2} d \theta\right|_{0} ^{2 \pi}=\pi$

