Physical Principles in Biology Biology 3550 Spring 2024

Lecture 13:

Variations on the Two-dimensional Random Walk and Continuous Probability Distribution Functions

> Wednesday, 7 February 2024 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Problem Set 2:
 - Due 11:59 PM, Monday, 12 February.
 - Download problems from Canvas.
 - Upload work to Gradescope.
 - Show your work!
 - Please don't scrunch things up!
- Quiz 2:
 - Friday, 9 February
 - 25 min, second half of class.
- Review Session
 - 5:15 PM, Thursday, 8 February
 - HEB 2002
 - Come with questions!

The Unbiased Random Walk in Two Dimensions

•
$$\langle x_n^2 \rangle = \langle y_n^2 \rangle = nl^2/2$$

• $\langle r_n^2 \rangle = nl^2$

Description of a Three-dimensional Random Walk

- Each step is defined by a tilt from the local *z*-axis (φ_i) and a rotation around the *z*-axis (θ_i).
- The end of each step lies on a sphere of radius *l*.
- $\langle x_n^2 \rangle = \langle y_n^2 \rangle = \langle z_n^2 \rangle = nl^2/3$
- $\langle r^2 \rangle = nl^2$, and RMS $(r) = \sqrt{n}l$, just like in one and two dimensions.

Ants on a Walk for Food

Do either look like a random walk?

Pearce-Duvet, J. M. C., Elemens, C. P. H. & Feener, D. H. (2011). Walking the line: search behavior and foraging success in ant species. *Behavioral Ecology*, 22, 501–509. http://dx.doi.org/10.1093/beheco/arr001

Simple Variations on the Two-dimensional Random Walk

Constrain change in direction.

Introduce variation in step length.

A 'Plain' Random Walk

A "Correlated" Random Walk

- Turn angle restricted to -90° to 90°
- Step length = 8
- No. steps = 200

A Random Walk With a Distribution of Step Lengths

- Turn angle restricted to -90° to 90°
- Half-Gaussian (bell curve) distribution of step lengths
- No. steps = 200

A "Lévy Flight"

A random walk with a "heavy-tailed" distribution of step lengths

- Turn angle restricted to -90° to 90°
- Pareto distribution of step lengths, for Vilfredo Pareto (1842–1923)

Clicker Question #1

What does the ant walk most resemble?

- A) A plain random walk
- B) A correlated random walk
- C) A Lévy Flight

Warning!

Direction Change

Continuous Probability Distribution Functions

Discrete Probability Distribution Functions

- For random processes with discrete outcomes.
- Variables take on discrete values.
- The probability distribution functions can be viewed as tables or bar graphs

Bucket No.	Probability		0.3 -							
0	1/64							_		
1	6/64	Probability	0.2 -							
2	15/64	oba	-							
3	20/64	ם [0.1 -							
4	15/64		- 0							
5	6/64		0	0	1	2	3	4	5	6
6	1/64]		Bucket Number						

Introducing Continuous Probability Distribution Functions

A spinner to choose directions for the 2-dimensional random walk

- We could divide up the circle into a finite number of sectors.
 - Two sectors: Like flipping a coin
 - Six sectors: Like throwing a die
 - Lots of other possibilities
- OR, we can treat the result as a continuous variable from 0 to 2π rad

A Continuous Probability Distribution Function for the Spinner

• θ is a continuous variable, with values from 0 to 2π .

• $p(\theta)$ is a function of θ , with a constant value, c, for all values of θ .

Interpretation of $p(\theta)$: The integral

•

$$\int_{a}^{b} p(\theta) d\theta$$

is the probability that the spinner lands between the values *a* and *b*.

- To approximate the area between the x-axis and the function f(x), between x = a and x = b:
 - Divide up the range $a \le x \le b$ into *n* segments $\Delta x = (b a)/n$ wide.
 - Draw *n* rectangles Δx wide and $f(x_i)$ high.
 - Sum the areas of the rectangles

area
$$\approx \sum_{i=1}^n f(x_i) \Delta x$$

- Improve approximation by making Δx smaller (and *n* larger).
- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from *a* to *b* with respect to *x*, is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \Delta x$$

- Improve approximation by making Δx smaller (and *n* larger).
- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from *a* to *b* with respect to *x*, is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \Delta x$$

- Improve approximation by making Δx smaller (and *n* larger).
- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from *a* to *b* with respect to *x*, is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \Delta x$$

- Improve approximation by making Δx smaller (and *n* larger).
- If the function is "well behaved", Δx can be made infinitesimally small.
- The definite integral, from *a* to *b* with respect to *x*, is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) \Delta x$$

Back to the Continuous Probability Distribution Function (PDF) for the Spinner

 $\mathbf{P}(\theta)$ is a function of θ , with a constant value, *c*, for all values of θ .

The integral

$$\int_a^b p(\theta) d\theta = \int_a^b c d\theta$$

is the probability that the spinner lands between the values *a* and *b*.

An Important Constraint on a Continuous PDF

To be make sense, the integral over all possible values must equal 1:

$$\int_{0}^{2\pi} p(heta) d heta = 1$$

- Equivalent to the requirement for a discrete PDF that the sum of all probabilities be equal to 1.
- For the spinner pdf, the constant, *c*, is chosen to normalize the PDF.

p(heta) = c

Clicker Question #2

What value of c should be used to normalize the spinner PDF, so that:

Choosing the Constant

What value of c should be used to normalize the spinner PDF?, so that:

$$\int_{0}^{2\pi} p(heta) d heta = 1$$
 $\int_{0}^{2\pi} c d heta = 1$
 $c heta|_{0}^{2\pi} = c \cdot 2\pi - c \cdot 0 = 1$
 $2\pi = 1$
 $= rac{1}{2\pi}$

Clicker Question #3

What is the probability that the spinner will lie between 45° and 60°?

The probability that the spinner will lie between 45° and 60°

- **45°** = $\pi/4$ rad
- $60^\circ = \pi/3 \operatorname{rad}$

$$p = \int_{\pi/4}^{\pi/3} p(\theta) d\theta = \int_{\pi/4}^{\pi/3} \frac{1}{2\pi} d\theta$$
$$= \frac{1}{2\pi} \theta \Big|_{\pi/4}^{\pi/3} = \frac{1}{2\pi} \left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$
$$= \frac{1}{2\pi} \left(\frac{4\pi}{12} - \frac{3\pi}{12}\right) = \frac{1}{24} \approx 0.04$$

The Expected Value (Mean) for a Continuous PDF

For a discrete random variable, x, with discrete PDF, p(x), the expected value is:

$$E(x) = \mu = \sum_{i=1}^{n} p(x_i) x_i$$

■ For a continuous random variable, x, with range x₁ ≤ x ≤ x₂ and continuous PDF, p(x), the expected value is:

$$E(x) = \mu = \int_{x_1}^{x_2} p(x) x dx$$

For the spinner variable, θ :

$$E(heta)=\mu=\int_{0}^{2\pi}p(heta) heta d heta=\int_{0}^{2\pi}rac{1}{2\pi} heta d heta=rac{1}{4\pi} heta^{2}d hetaigg|_{0}^{2\pi}= au$$