Physical Principles in Biology
 Biology 3550
 Spring 2024
 Lecture 14:
 The Gaussian Probability Distribution

Friday, 9 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Problem Set 2:
- Due 11:59 PM, Monday, 12 February.
- Download problems from Canvas.
- Upload work to Gradescope.
- Show your work!
- Please don't scrunch things up!
- Quiz 2:
- Friday, 9 February
- 25 min, second half of class.

A Continuous Probability Distribution Function for the Spinner

$■ \theta$ is a continuous variable, with values from 0 to 2π.
$\square p(\theta)$ is a function of θ, with a constant value, c, for all values of θ.
■ Interpretation of $p(\theta)$: The integral

$$
\int_{a}^{b} p(\theta) d \theta
$$

is the probability that the spinner lands between the values a and b.

An Important Constraint on a Continuous PDF

■ To be make sense, the integral over all possible values must equal 1 :

$$
\int_{0}^{2 \pi} p(\theta) d \theta=1
$$

- Equivalent to the requirement for a discrete PDF that the sum of all probabilities be equal to 1 .
- For the spinner pdf, the constant, c, is chosen to normalize the PDF.

$$
p(\theta)=\frac{1}{2 \pi}
$$

The Expected Value (Mean) for a Continuous PDF

■ For a discrete random variable, x, with discrete PDF, $p(x)$, the expected value is:
$E(x)=\mu=\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}$
■ For a continuous random variable, x, with range $x_{1} \leq x \leq x_{2}$ and continuous PDF, $p(x)$, the expected value is:
$E(x)=\mu=\int_{x_{1}}^{x_{2}} p(x) x d x$

- For the spinner variable, θ :
$E(\theta)=\mu=\int_{0}^{2 \pi} p(\theta) \theta d \theta=\int_{0}^{2 \pi} \frac{1}{2 \pi} \theta d \theta=\left.\frac{1}{4 \pi} \theta^{2} d \theta\right|_{0} ^{2 \pi}=\pi$

The Variance for a Continuous PDF

■ For a discrete random variable, x, with discrete PDF, $p(x)$, the variance is:

$$
\sigma^{2}=\sum_{i=1}^{n} p\left(x_{i}\right)\left(x_{i}-\mu\right)^{2}
$$

■ For a continuous random variable, x, with range $x_{1} \leq x \leq x_{2}$ and continuous PDF, $p(x)$, the variance is:
$\sigma^{2}=\int_{x_{1}}^{x_{2}} p(x)(x-\mu)^{2} d x$

- For the spinner variable, θ :

$$
\sigma^{2}=\int_{0}^{2 \pi} p(\theta)(\theta-\mu)^{2} d \theta=\frac{\pi^{2}}{3}
$$

Warning!

Direction Change

The Gaussian Distribution Function

The Simplest Form of a Gaussian Function

The Gaussian Probability Distribution Function

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

■ Also called the normal probability distribution function.

■ Mean $=\mu$
■ Variance $=\sigma^{2}$
■ Standard deviation $=\sigma$

Mean and Variance for The Binomial Distribution

- Mean

$$
\mu=n p_{\mathrm{s}}
$$

- Variance

$$
\sigma^{2}=n p_{\mathrm{s}}\left(1-p_{\mathrm{s}}\right)
$$

- Gaussian probability function to approximate the binomial distribution function with the same mean and variance:

$$
p(k)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi n p_{s}\left(1-p_{\mathrm{s}}\right)}} e^{-\frac{\left(k-n p_{s}\right)^{2}}{2 n p^{2}\left(1-p_{s}\right)}}
$$

Approximation of Binomial Distributions

 by Gaussian Distributions

- n doesn't have to be very large for a pretty good approximation!

Approximation of Binomial Distributions by Gaussian Distributions

■ It doesn't work so well if the binomial distribution is biased, with $p_{\mathrm{s}} \neq 0.5$.

■ The Gaussian distribution is always symmetrical, but the binomial distribution only is if $p_{\mathrm{s}}=0.5$.

- If n is large enough, the Gaussian distribution is a good approximation, even if $p_{\mathrm{s}} \neq 0.5$.

