Physical Principles in Biology Biology 3550 Spring 2024

Lecture 14:

The Gaussian Probability Distribution

Friday, 9 February 2024

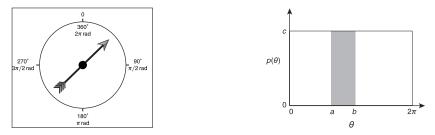
©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

Problem Set 2:

- Due 11:59 PM, Monday, 12 February.
- Download problems from Canvas.
- Upload work to Gradescope.
- Show your work!
- Please don't scrunch things up!
- Quiz 2:
 - Friday, 9 February
 - 25 min, second half of class.

A Continuous Probability Distribution Function for the Spinner



• θ is a continuous variable, with values from 0 to 2π .

• $p(\theta)$ is a function of θ , with a constant value, c, for all values of θ .

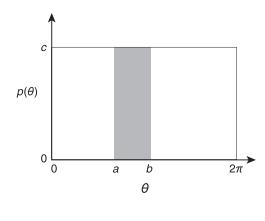
Interpretation of $p(\theta)$: The integral

•

$$\int_{a}^{b} p(\theta) d\theta$$

is the probability that the spinner lands between the values *a* and *b*.

An Important Constraint on a Continuous PDF



To be make sense, the integral over all possible values must equal 1:

$$\int_0^{2\pi} p(\theta) d\theta = 1$$

- Equivalent to the requirement for a discrete PDF that the sum of all probabilities be equal to 1.
- For the spinner pdf, the constant, *c*, is chosen to normalize the PDF.

$$p(heta)=rac{1}{2\pi}$$

The Expected Value (Mean) for a Continuous PDF

For a discrete random variable, x, with discrete PDF, p(x), the expected value is:

$$E(x) = \mu = \sum_{i=1}^{n} p(x_i) x_i$$

■ For a continuous random variable, x, with range x₁ ≤ x ≤ x₂ and continuous PDF, p(x), the expected value is:

$$E(x) = \mu = \int_{x_1}^{x_2} p(x) x dx$$

For the spinner variable, θ :

$$E(heta)=\mu=\int_{0}^{2\pi}p(heta) heta d heta=\int_{0}^{2\pi}rac{1}{2\pi} heta d heta=rac{1}{4\pi} heta^{2}d hetaigg|_{0}^{2\pi}= au$$

The Variance for a Continuous PDF

For a discrete random variable, x, with discrete PDF, p(x), the variance is:

$$\sigma^2 = \sum_{i=1}^n p(x_i)(x_i - \mu)^2$$

■ For a continuous random variable, x, with range x₁ ≤ x ≤ x₂ and continuous PDF, p(x), the variance is:

$$\sigma^2 = \int_{x_1}^{x_2} p(x)(x-\mu)^2 dx$$

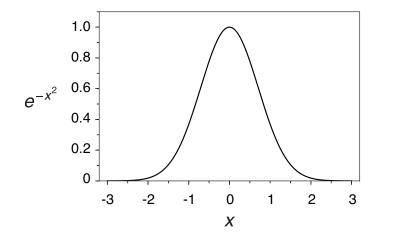
For the spinner variable, θ :

$$\sigma^2 = \int_0^{2\pi} p(heta)(heta-\mu)^2 d heta = rac{\pi^2}{3}$$

Warning!

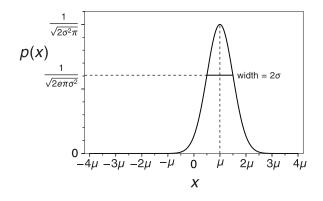
Direction Change The Gaussian Distribution Function

The Simplest Form of a Gaussian Function



$$f(x)=e^{-x^2}$$

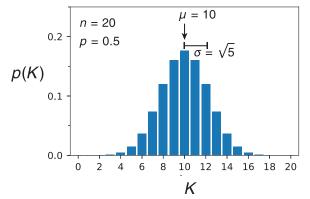
The Gaussian Probability Distribution Function



$$p(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- Also called the normal probability distribution function.
- Mean $= \mu$
- Variance = σ^2
- Standard deviation $= \sigma$

Mean and Variance for The Binomial Distribution



Mean

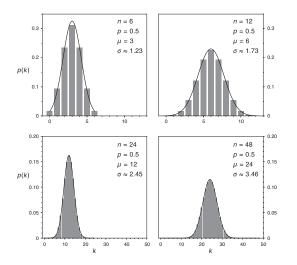
$$\mu = np_s$$

Variance
 $\sigma^2 = np_s(1 - p_s)$

Gaussian probability function to approximate the binomial distribution function with the same mean and variance:

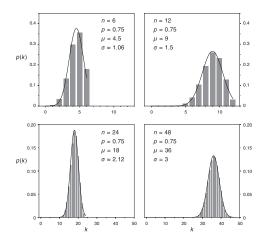
$$p(k) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(k-\mu)^2}{2\sigma^2}} = rac{1}{\sqrt{2\pi n p_{
m s}(1-p_{
m s})}} e^{-rac{(k-np_{
m s})^2}{2np(1-p_{
m s})}}$$

Approximation of Binomial Distributions by Gaussian Distributions



n doesn't have to be very large for a pretty good approximation!

Approximation of Binomial Distributions by Gaussian Distributions



- It doesn't work so well if the binomial distribution is biased, with *p*_s ≠ 0.5.
- The Gaussian distribution is always symmetrical, but the binomial distribution only is if p_s = 0.5.
- If n is large enough, the Gaussian distribution is a good approximation, even if p_s ≠ 0.5.