Physical Principles in Biology Biology 3550
 Spring 2024
 Lecture 15:

The Gaussian Probability Distribution Function and Introduction to Diffusion

Monday, 12 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

The Gaussian Probability Distribution Function

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

■ Also called the normal probability distribution function.

■ Mean $=\mu$
■ Variance $=\sigma^{2}$
■ Standard deviation $=\sigma$

Mean and Variance for The Binomial Distribution

- Mean

$$
\mu=n p_{\mathrm{s}}
$$

- Variance

$$
\sigma^{2}=n p_{\mathrm{s}}\left(1-p_{\mathrm{s}}\right)
$$

- Gaussian probability function to approximate the binomial distribution function with the same mean and variance:

$$
p(k)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(k-\mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi n p_{s}\left(1-p_{s}\right)}} e^{-\frac{\left(k-n p_{s}\right)^{2}}{2 n p_{s}\left(1-p_{s}\right)}}
$$

Approximation of Binomial Distributions

 by Gaussian Distributions

- n doesn't have to be very large for a pretty good approximation!

Approximation of Binomial Distributions by Gaussian Distributions

■ It doesn't work so well if the binomial distribution is biased, with $p_{\mathrm{s}} \neq 0.5$.

■ The Gaussian distribution is always symmetrical, but the binomial distribution only is if $p_{\mathrm{s}}=0.5$.

- If n is large enough, the Gaussian distribution is a good approximation, even if $p_{\mathrm{s}} \neq 0.5$.

The One-dimensional Random Walk with Continuously Variable Step Length

■ Mean displacement:

$$
\langle\delta\rangle=E(\delta)=\int_{\delta_{\min }}^{\delta_{\max }} p(\delta) \delta d \delta
$$

■ Mean-squared displacement:

$$
\left\langle\delta^{2}\right\rangle=E\left(\delta^{2}\right)=\int_{\delta_{\min }}^{\delta_{\max }} p(\delta) \delta^{2} d \delta
$$

■ If $\langle\delta\rangle=0$:

$$
\begin{aligned}
& \left\langle x_{n}\right\rangle=0 \\
& \left\langle x_{n}^{2}\right\rangle=n\left\langle\delta^{2}\right\rangle
\end{aligned}
$$

- The mean and variance of x_{n} :

$$
\begin{aligned}
\mu & =\int_{x_{n, \text { min }}}^{x_{n, \text { max }}} p\left(x_{n}\right) x_{n}=\left\langle x_{n}\right\rangle=0 \\
\sigma^{2} & =\int_{x_{n, \text { min }}}^{x_{n, \max }} p\left(x_{n}\right)\left(x_{n}-\mu\right)^{2}
\end{aligned}
$$

$$
=\int_{x_{n, \min }}^{x_{n, \max }} p\left(x_{n}\right) x_{n}^{2}=\left\langle x_{n}^{2}\right\rangle
$$

The Gaussian Distribution of End Points for a 1-dimensional Random Walk with Variable Displacements

■ $\mu=0$
$\square \sigma^{2}=\left\langle x_{n}^{2}\right\rangle=n\left\langle\delta^{2}\right\rangle$
$\square p\left(x_{n}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}}$

$$
=\frac{1}{\sqrt{2 \pi\left\langle x_{n}^{2}\right\rangle}} e^{-x^{2} /\left(2\left\langle x_{n}^{2}\right\rangle\right)}
$$

$\square p(0)=\frac{1}{\sqrt{2 \pi\left\langle x_{n}^{2}\right\rangle}}$

Warning!

Direction Change

Diffusion

Diffusion of Molecules Across a Cellular Membrane

\square How do the concentrations change with time?
■ WHY do the concentrations change?
■ How fast do the concentrations change?
■ How fast do the molecules move?

An Idealized Macroscopic Diffusion Experiment

- How will plot of $C(x)$ versus x change with time?
- There's a theory for that! Fick's laws of diffusion

Clicker Question \#1

How long has it been since there was a sharp boundary?

A) 10 min
B) 1 hr
C) 12 hr
D) 48 hr

All answers count! (for now)

Adolf Eugen Fick

■ 1829-1901
■ Physician and physiologist
■ Nephew, Adolf Gaston Eugen Fick, invented contact lenses in 1888.

Diffusion as a Random Walk

- $\left\langle l_{i}^{2}\right\rangle$: Mean-square step length in three dimensions
- $\delta_{x}=\sqrt{\left\langle I_{i}^{2}\right\rangle / 3}$: RMS displacement along the x-direction.
- τ : Average time interval between changes in direction
- t : Time interval of interest

■ $n=t / \tau$: Average number of steps in time t

- $\left\langle x_{n}^{2}\right\rangle=n \delta_{x}^{2}=t \delta_{x}^{2} / \tau$

Diffusion Across a Thin Slice of Volume

- Slices are δ_{x} thick and have cross-sectional area across the x-axis of A

■ Volume of each slice is $A \delta_{x}$

- During time τ, all of the molecules will move (on average) the distance δ_{x} along the x-axis, to the left or right.
- In a given slice, $1 / 2$ of the molecules will move to the right and half to the left.

Diffusion Across a Thin Slice of Volume

■ $N_{x}=$ number of molecules starting in the slice centered at x.
■ $N_{x+\delta_{x}}=$ number of molecules starting in the slice centered at $x+\delta_{x}$
\square The net number of molecules moving from slice x to slice $x+\delta_{x}$, in time τ :

$$
\begin{aligned}
d N & =\frac{1}{2} N_{x}-\frac{1}{2} N_{x+\delta_{x}} \\
& =-\frac{1}{2}\left(N_{x+\delta_{x}}-N_{x}\right)
\end{aligned}
$$

Diffusion Across a Thin Slice of Volume

■ Definition: Flux, $J=$ net number of molecules (or moles) moving past a cross section, per unit time, per unit area.

$$
J=-\frac{1}{A \tau} \frac{1}{2}\left(N_{x+\delta_{x}}-N_{x}\right)
$$

Movement is defined in the direction of positive x.

Diffusion Across a Thin Slice of Volume

- Express number of molecules in each slice in terms of the concentrations and volumes of each slice.

$$
\begin{aligned}
& N_{x}=C_{x} \cdot V=C_{x} A \delta_{x} \\
& N_{x+\delta_{x}}=C_{x+\delta_{x}} \cdot V=C_{x+\delta_{x}} A \delta_{x}
\end{aligned}
$$

- Re-write the flux equation as:

$$
\begin{aligned}
J & =-\frac{1}{A \tau} \frac{1}{2}\left(N_{x+\delta_{x}}-N_{x}\right) \\
& =-\frac{1}{A \tau} \frac{1}{2}\left(C_{x+\delta_{x}} A \delta_{x}-C_{x} A \delta_{x}\right) \\
& =-\frac{\delta_{x}}{\tau} \frac{1}{2}\left(C_{x+\delta_{x}}-C_{x}\right)
\end{aligned}
$$

Diffusion Across a Thin Slice of Volume

- Write the concentration difference in terms of a derivative with respect to x :

$$
\frac{d C}{d x}=\lim _{\delta_{x} \rightarrow 0} \frac{\left(C_{x+\delta_{x}}-C_{x}\right)}{\delta_{x}}
$$

in the limit of small δ_{x} :

$$
\left(C_{x+\delta_{x}}-C_{x}\right)=\delta_{x} \frac{d C}{d x}
$$

- Flux equation:

$$
J=-\frac{\delta_{x}}{\tau} \frac{1}{2}\left(C_{x+\delta_{x}}-C_{x}\right)=-\frac{\delta_{x}^{2}}{2 \tau} \frac{d C}{d x}
$$

Fick's First Law of Diffusion

$$
J=-\frac{\delta_{x}^{2}}{2 \tau} \frac{d C}{d x}
$$

- Symbols:
- $J=$ flux of molecules per unit area per unit time:
- $\delta_{x}=$ RMS step length along the x-direction.
- $\tau=$ average duration of random steps.
- $\frac{d C}{d x}=$ derivative of concentration with x, "concentration gradient."
- If concentration increases with x, flux is in the negative x direction.
$■$ Why do molecules "move down the concentration gradient"?

The Diffusion Coefficient, D

- Consider the term from Fick's first law: $\frac{\delta_{X}^{2}}{2 \tau}$

Both δ_{x} and τ are parameters describing the random walk of molecules (or larger particles) undergoing diffusion, and are constant for a given type of particle under defined solution conditions.

■ Define a new parameter, the diffusion coefficient, D :

$$
D=\frac{\delta_{x}^{2}}{2 \tau}
$$

■ The usual form of Fick's first law:

$$
J=-D \frac{d C}{d x}
$$

■ D can be experimentally determined, without knowing anything about the microscopic random walk steps.

