Physical Principles in Biology
 Biology 3550
 Spring 2024
 Lecture 16:
 Diffusion Continued: Fick's First and Second Laws

Wednesday, 14 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

An Idealized Macroscopic Diffusion Experiment

■ How will plot of $C(x)$ versus x change with time?

Diffusion Across a Thin Slice of Volume

■ Slices are δ_{x} thick and have cross-sectional area across the x-axis of A
■ Volume of each slice is $A \delta_{x}$

- During time τ, all of the molecules will move (on average) the distance δ_{x} along the x-axis.
- In a given slice, $1 / 2$ of the molecules will move to the right and half to the left.

Fick's First Law of Diffusion

$$
J=-\frac{\delta_{x}^{2}}{2 \tau} \frac{d C}{d x}
$$

- Symbols:
- $J=$ flux of molecules per unit area per unit time:
- $\delta_{x}=$ RMS step length along the x-direction.
- $\tau=$ average duration of random steps.
- $\frac{d C}{d x}=$ derivative of concentration with x, "concentration gradient."
- If concentration increases with x, flux is in the negative x direction.

The Diffusion Coefficient, D

- Consider the term from Fick's first law: $\frac{\delta_{X}^{2}}{2 \tau}$

Both δ_{x} and τ are parameters describing the random walk of molecules (or larger particles) undergoing diffusion, and are constant for a given type of particle under defined solution conditions.

■ Define a new parameter, the diffusion coefficient, D :

$$
D=\frac{\delta_{x}^{2}}{2 \tau}
$$

■ The usual form of Fick's first law:

$$
J=-D \frac{d C}{d x}
$$

■ D can be experimentally determined, without knowing anything about the microscopic random walk steps.

Clicker Question \#1

What are the units of the diffusion coefficient: $D=\frac{\delta_{x}^{2}}{2 \tau}$?
A) $\mathrm{mol} / \mathrm{s}$
B) $\mathrm{m}^{2} / \mathrm{s}$
C) $\mathrm{mol} / \mathrm{m} / \mathrm{s}$
D) m / s

Clicker Question \#2

What are the units of the concentration gradient: $\frac{d C}{d x}$?
A) $\mathrm{mol} / \mathrm{m}$
B) $\mathrm{mol} / \mathrm{m}^{2}$
C) $\mathrm{mol} / \mathrm{m}^{3}$
D) $\mathrm{mol} / \mathrm{m}^{4}$

Dimensional Analysis of Fick's First Law

- The diffusion coefficient: $D=\frac{\delta_{x}^{2}}{2 \tau}$, units: $\mathrm{m}^{2} / \mathrm{s}$
- The concentration gradient: $\frac{d C}{d x}$
C (concentration) units: moles $/ \mathrm{m}^{3}$
x (distance) units: m
$\frac{d C}{d x}$ has units of $\frac{\text { moles } / \mathrm{m}^{3}}{\mathrm{~m}}=\frac{\text { moles }}{\mathrm{m}^{4}}$
■ Flux, J

$$
J=-D \frac{d C}{d x}=\frac{\mathrm{m}^{2}}{\mathrm{~s}} \frac{\text { moles }}{\mathrm{m}^{4}}=\frac{\mathrm{moles}}{\mathrm{~s} \cdot \mathrm{~m}^{2}}
$$

moles per unit time per unit area, as originally defined.

Diffusion of Molecules Across a Cellular Membrane

Some plausible values:
■ Diffusion coefficient for a small molecule: $\approx 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ (to be considered later)

- Thickness of a biological membrane: $\approx 3 \mathrm{~nm}$

■ Diameter of a molecular pore: $\approx 1 \mathrm{~nm}$

■ Concentrations: 50 mM and 5 mM

Clicker Question \#3

Membrane

- Thickness of membrane: $\approx 3 \mathrm{~nm}$

■ Diameter of pore: $\approx 1 \mathrm{~nm}$
■ Concentrations: 50 mM and 5 mM

Estimate the concentration gradient:

$$
\frac{d C}{d x} \approx \frac{\Delta C}{\Delta x}
$$

A) $1.5 \times 10^{3} \mathrm{moles} / \mathrm{m}^{4}$
B) $1.5 \times 10^{6} \mathrm{moles} / \mathrm{m}^{4}$
C) $1.5 \times 10^{9} \mathrm{moles} / \mathrm{m}^{4}$
D) $1.5 \times 10^{10} \mathrm{moles} / \mathrm{m}^{4}$
E) $4.5 \times 10^{10} \mathrm{moles} / \mathrm{m}^{4}$

Applying Fick's First Law

- Approximate the concentration gradient:

$$
\frac{d C}{d x} \approx \frac{\text { concentration difference }}{\text { membrane thickness }}=\frac{50 \mathrm{mM}-5 \mathrm{mM}}{3 \mathrm{~nm}}=15 \mathrm{mM} / \mathrm{nm}
$$

■ Convert this to units with moles and meters:

$$
15 \mathrm{mM} / \mathrm{nm}=\frac{0.015 \mathrm{moles} / \mathrm{L}}{10^{-9} \mathrm{~m}} \times \frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}=1.5 \times 10^{10} \mathrm{moles} / \mathrm{m}^{4}
$$

- Flux from Fick's first law:

$$
J=-D \frac{d C}{d x}=-10^{-10} \mathrm{~m}^{2} / \mathrm{s} \times 1.5 \times 10^{10} \mathrm{moles} / \mathrm{m}^{4}=-1.5 \mathrm{moles} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right)
$$

Negative sign indicates that diffusion is in the direction opposite to the concentration gradient.

Diffusion Through a Membrane Pore

- The pore:

Diameter $=1 \mathrm{~nm}$
Area $=\pi r^{2}=\pi(0.5 \mathrm{~nm})^{2}=7.8 \times 10^{-19} \mathrm{~m}^{2}$

- Flux:

$$
J=-1.5 \mathrm{moles} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right)
$$

■ Moles per second through the pore:

$$
1.5 \mathrm{moles} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right) \times 7.8 \times 10^{-19} \mathrm{~m}^{2}=1.2 \times 10^{-18} \mathrm{moles} / \mathrm{s}
$$

Diffusion Through a Membrane Pore

■ Moles per second through the pore:

$$
1.5 \mathrm{moles} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right) \times 7.8 \times 10^{-19} \mathrm{~m}^{2}=1.2 \times 10^{-18} \mathrm{moles} / \mathrm{s}
$$

■ Molecules per second through the pore:
$1.2 \times 10^{-18} \mathrm{moles} / \mathrm{s} \times 6.02 \times 10^{23}$ molecules $/ \mathrm{mole}=7 \times 10^{5} \mathrm{molecules} / \mathrm{s}$

How Many Molecules are in the Pore?

- Pore volume:

$$
\begin{aligned}
V=\pi r^{2} \times I & =\pi(0.5 \mathrm{~nm})^{2} \times 3 \mathrm{~nm} \\
& =2.4 \mathrm{~nm}^{3} \times\left(10^{-9} \mathrm{~m} / \mathrm{nm}\right)^{3}=2.4 \times 10^{-27} \mathrm{~m}^{3} \\
& =2.4 \times 10^{-27} \mathrm{~m}^{3} \times 10^{3} \mathrm{~L} / \mathrm{m}^{3}=2.4 \times 10^{-24} \mathrm{~L}
\end{aligned}
$$

- Assume that the concentration in the pore is the mean of the concentrations on the two sides:

$$
C=(50 \mathrm{mM}-5 \mathrm{mM}) / 2=22 \mathrm{mM}=0.022 \mathrm{moles} / \mathrm{L}
$$

How Many Molecules are in the Pore?

■ Concentration: 0.022 moles/L
■ Moles in pore:

$$
0.022 \text { moles } / \mathrm{L} \times 2.4 \times 10^{-24} \mathrm{~L}=5.3 \times 10^{-26} \text { moles }
$$

- Molecules in pore:

$$
5.3 \times 10^{-26} \text { moles } \times 6.02 \times 10^{23} \text { molecules } / \text { mole } \approx 0.03 \text { molecules }
$$

Most of the time, the pore is "empty"!

Warning!

Direction Change

Change in Concentration with Time

An Idealized Macroscopic Diffusion Experiment

\square How will plot of $C(x)$ versus x change with time?

Clicker Question \#4

Where will the flux, J, be greatest?

At point B, where the concentration gradient is greatest.
■ But, the molecules move at the same rate everywhere!

Fick's Second Law of Diffusion

■ How does the concentration at a given point change with time?

■ Net number of molecules moving to the right at two sides of a slice, during interval $d t$:

$$
\begin{aligned}
& N_{x}=J_{x} A d t \\
& N_{x+\delta_{x}}=J_{x+\delta_{x}} A d t
\end{aligned}
$$

■ Change in number of molecules in the slice:

$$
\begin{aligned}
d N & =N_{x}-N_{x+\delta_{x}} \\
& =A J_{x} d t-A J_{x+\delta_{x}} d t \\
& =A d t\left(J_{x}-J_{x+\delta_{x}}\right)
\end{aligned}
$$

Fick's Second Law of Diffusion

■ Change in concentration in the slice:

$$
\begin{aligned}
d C & =\frac{d N}{A \delta_{x}}=\frac{A d t\left(J_{x}-J_{x+\delta_{x}}\right)}{A \delta_{x}} \\
& =-d t \frac{J_{x+\delta_{x}}-J_{x}}{\delta_{x}}
\end{aligned}
$$

■ In the limit of small $d t$ and small δ_{x} :

$$
\frac{d C}{d t}=-\frac{J_{x+\delta_{x}}-J_{x}}{\delta_{x}}=-\frac{d J}{d x}
$$

■ How does J change with x ?

Fick's Second Law of Diffusion

- Fick's first law:

$$
J=-D \frac{d C}{d x}
$$

■ Derivative of J with respect to x :

$$
\frac{d J}{d x}=-D \frac{d^{2} C}{d x^{2}}
$$

- Fick's second law:

$$
\frac{d C}{d t}=-\frac{d J}{d x}=D \frac{d^{2} C}{d x^{2}}
$$

Also called the diffusion equation. What is it good for? How do we use it?

Fick's First and Second Laws of Diffusion

- First law:

$$
J=-D \frac{d C}{d x}
$$

- Flux, J, at position x is proportional to the concentration gradient at that position.

■ Second law:

$$
\frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}
$$

- Rate of change in concentration at position x is proportional to the derivative of the concentration gradient.

Clicker Question \#5

Where will the concentration increase most rapidly?

At point A. where the concentration gradient increases most rapidly with respect to x.

Fick's Second Law of Diffusion

$$
\frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}
$$

■ A "second-order differential equation".

- The solution to the equation is a function:

$$
C=f(x, t)
$$

that satisfies the equation:

$$
\frac{d f(x, t)}{d t}=D \frac{d^{2} f(x, t)}{d x^{2}}
$$

- The trick is to find $C=f(x, t)$.
- The solution depends on the shape of the volume and the initial concentrations, the boundary conditions.

