Physical Principles in Biology
Biology 3550
Spring 2024
Lecture 17:

Diffusion from a Sharp Boundary

 andKinetic Energy

Friday, 16 February 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

■ Problem Set 3:

- Due 11:59 PM, Monday, 26 February.
- Download problems from Canvas.
- Upload work to Gradescope.
- Show your work!
- Please don't scrunch things up!

■ Quiz 3:

- Friday, 23 February
- 25 min , second half of class.

■ Review Session

- 5:15 PM, Thursday, 22 February
- HEB 2002
- Come with questions!

Fick's First and Second Laws of Diffusion

■ First law:

$$
J=-D \frac{d C}{d x}
$$

- Flux, J, at position x is proportional to the concentration gradient at that position.
- Second law:

$$
\frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}
$$

- Rate of change in concentration at position x is proportional to the derivative of the concentration gradient.

Fick's Second Law of Diffusion

$$
\frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}
$$

■ A "second-order differential equation".

- The solution to the equation is a function:

$$
C=f(x, t)
$$

that satisfies the equation:

$$
\frac{d f(x, t)}{d t}=D \frac{d^{2} f(x, t)}{d x^{2}}
$$

- The trick is to find $C=f(x, t)$.
- The solution depends on the shape of the volume and the initial concentrations, the boundary conditions.

Diffusion from a Sharp Boundary

At $t=0$

- For $x<0: C(x)=0, \quad \frac{d C}{d x}=0, \quad \frac{d^{2} C}{d x^{2}}=0$
- At $x=0: \quad \frac{d C}{d x} \rightarrow \infty$

For $x>0: C(x)=1, \quad \frac{d C}{d x}=0, \quad \frac{d^{2} C}{d x^{2}}=0$

Diffusion from a Sharp Boundary

Consider molecules at a position $x=a>0$:
■ Molecules will begin to diffuse via a random walk.
■ How will the molecules initially at position a be distributed after a time, t ?

Diffusion from a Sharp Boundary

Distribution of molecules originally at

$$
p(x)=\frac{1}{\sqrt{2 \pi n\left\langle\delta_{x}^{2}\right\rangle}} e^{-(x-a)^{2} /\left(2 n\left\langle\delta_{x}^{2}\right\rangle\right)}
$$

$n=$ number of steps in random walk
$\left\langle\delta_{x}^{2}\right\rangle=$ mean-square step distance along
x-axis

Diffusion from a Sharp Boundary

Distribution of molecules originally at

$$
p(x)=\frac{1}{\sqrt{2 \pi n\left\langle\delta_{x}^{2}\right\rangle}} e^{-(x-a)^{2} /\left(2 n\left\langle\delta_{x}^{2}\right\rangle\right)}
$$

■ Diffusion coefficient, $D=\frac{\delta_{X}^{2}}{2 \tau}$
$\tau=$ average time of each RW step
After time, $t, n=t / \tau$

$$
n\left\langle\delta_{x}^{2}\right\rangle=\frac{t\left\langle\delta_{x}^{2}\right\rangle}{\tau}=2 D t
$$

Diffusion from a Sharp Boundary

Distribution of molecules originally at

$$
p(x)=\frac{1}{\sqrt{4 \pi D t}} e^{-(x-a)^{2} /(4 D t)}
$$

Diffusion from a Sharp Boundary

- Distribution of molecules from all starting points, $a \geq 0$.

- At position x, concentration is the sum of molecules that have diffused from $a \geq 0$

$$
C(x, t)=\frac{1}{\sqrt{4 \pi D t}} \int_{0}^{\infty} e^{-(x-a)^{2} /(4 D t)} d a
$$

Does the "Solution" Satisfy Fick's Second Law?

■ Putative solution:

$$
C(x, t)=\frac{1}{\sqrt{4 \pi D t}} \int_{0}^{\infty} e^{-(x-a)^{2} /(4 D t)} d a
$$

■ Fick's second law:

$$
\frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}
$$

■ Need to evaluate $\frac{d C}{d t}$ and $\frac{d^{2} C}{d x^{2}}$ and see if they satisfy the equation. They do!
$■ C(x, t)$ can't be evaluated analytically, but it can be numerically.

Diffusion from a Sharp Boundary

- $C(x, t)$ is the integral of a Gaussian function with respect to x.
- The derivative of $C(x, t)$ with respect to x is a Gaussian function!

Diffusion from a Sharp Boundary

■ Concentration increases most rapidly where the second derivative is most postitive.

- Concentration decreases most rapidly where the second derivative is most negative.

■ Concentration does not change at $x=0$, where the flux, J, is greatest!

Estimating D from Diffusion from a Sharp Boundary

$$
\begin{aligned}
& C(x, t)=\int_{0}^{\infty} \frac{1}{\sqrt{4 \pi D t}} e^{-(x-a)^{2} /(4 D t)} d a \\
& t=48 \mathrm{hr}=1.7 \times 10^{5} \mathrm{~s} \\
& D \approx 2 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s} \\
& D=\frac{\delta_{x}^{2}}{2 \tau}
\end{aligned}
$$

■ What are the average length $\left(\delta_{x}\right)$ and duration (τ) of the random walk steps?
■ We could answer these questions if we knew the velocity of the molecules, δ_{x} / τ.

Warning!

Direction Change

Molecular Motion and Kinetic Energy

Molecular Motion and Kinetic Energy

■ What is energy?
Capacity to do work.

- What is work?

Mechanical work: The application of force over distance:

$$
w=\int_{a}^{b} F d x
$$

- The units of work and energy.
- Force: Units defined by Newton's second law: $F=$ mass \times acceleration SI unit of mass: Kg
Acceleration: change in velocity (m / s) with time. SI units: $\mathrm{m} / \mathrm{s}^{2}$
SI units of Force: $\mathrm{Kg} \cdot \mathrm{m} / \mathrm{s}^{2}$

$$
1 \mathrm{~N}=1 \mathrm{Kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

- Work or energy: $\mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$

$$
1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{Kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

Kinetic Energy

- A object of mass, m, moving with velocity, v, in the x-direction has kinetic energy in that direction of:

$$
E_{\mathrm{k}, x}=m v_{x}^{2} / 2
$$

Check the units: $\mathrm{Kg} \times(\mathrm{m} / \mathrm{s})^{2}=\mathrm{Kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2} \quad$ It's OK !
■ What does this mean?

- The energy required to accelerate the mass, m, from rest to velocity, v_{x}.
- Also the energy released during the deceleration of the mass from velocity, v_{x}, to rest.
- Kinetic energy does not depend on the rate of acceleration or deceleration, only the final velocity.
- But, amount of wasted energy likely does depend on rate of acceleration!
- $E_{\mathrm{k}, x}$ is proportional to v_{x}^{2}. What are the implications?

Clicker Question \#1

What is the kinetic energy of a baseball ($m=145 \mathrm{~g}$) with a velocity of $40 \mathrm{~m} / \mathrm{s}(\approx 90$ miles $/ \mathrm{h})$?
A) 3 J
B) $50 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$
C) 100 Nm
D) 200 J
E) 200 N

$$
E_{\mathrm{k}}=\frac{1}{2} m v^{2}=\frac{1}{2} 0.145 \mathrm{Kg}(40 \mathrm{~m} / \mathrm{s})^{2}=120 \mathrm{Kg} \cdot \mathrm{~m}^{2} \mathrm{~s}^{-2}=120 \mathrm{Nm}=120 \mathrm{~J}
$$

