Physical Principles in Biology Biology 3550 Spring 2024

Lecture 18:

Thermal Motion of Molecules

Wednesday, 21 February 2024

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Problem Set 3:
 - Due 11:59 PM, Monday, 26 February.
 - Download problems from Canvas.
 - Upload work to Gradescope.
 - Show your work!
- Quiz 3:
 - Friday, 23 February
 - 25 min, second half of class
- No office hours on Thursday, 22 February
- Review Session
 - 5:15 PM, Thursday, 22 February
 - HEB 2002
 - Come with questions!

Kinetic Energy

A object of mass, m, moving with velocity, v, in the x-direction has kinetic energy in that direction of:

 $E_{k,x} = m v_x^2/2$

- What does this mean?
 - The energy required to accelerate the mass, *m*, from rest to velocity, v_x .
 - Also the energy released during the deceleration of the mass from velocity, v_x, to rest.
 - Kinetic energy does not depend on the rate of acceleration or deceleration, only the final velocity.

Kinetic Energy of Molecules

- Temperature is the measure of kinetic energy of molecules.
- How do we measure temperature?
- Pressure of a gas is due to the collision of molecules against container walls.

$$PV = nRT$$

P = pressure, V = volume, n = number of moles, T = temperature, R = gas constant.

Clicker Question #1

$$PV = nRT$$

What are the units of the gas constant?

- A) pascal $\cdot L \cdot K^{-1} mol^{-1}$
- **B)** kg \cdot m²s⁻²K⁻¹mol⁻¹
- C) $m^3 bar \cdot K^{-1} mol^{-1}$
- D) $JK^{-1}mol^{-1}$
- **E)** L \cdot atm \cdot K⁻¹mol⁻¹

All of the above!

Units of the Gas Constant

From the ideal gas law:

$$R = \frac{PV}{nT}$$

In SI basic units:

Pressure, force per unit area: kg \cdot m \cdot s^{-2} \div m^2 = kg \cdot m^{-1} s^{-2} = Pa Volume: m^3

$$\text{Gas constant:} \ \frac{\mathsf{kg} \cdot \mathsf{m}^{-1} \cdot \mathsf{s}^{-2} \times \mathsf{m}^{3}}{\mathsf{K} \cdot \mathsf{mol}} = \mathsf{kg} \cdot \mathsf{m}^{2} \mathsf{s}^{-2} \mathsf{K}^{-1} \mathsf{mol}^{-1}$$

■ Joule (unit of energy) = Nm = kg \cdot m²s⁻²

The gas constant expressed in energy units:

$$Rpprox 8.314~{
m JK}^{-1}{
m mol}^{-1}pprox 1.987~{
m cal}\cdot{
m K}^{-1}{
m mol}^{-1}$$

The kinetic energy of one mole of molecules at temperature T is proportional to RT.

Kinetic Energy of Molecules

■ The Boltzmann constant, *k*, the "gas constant per molecule":

$$k = R/N_{A} = 8.314 \text{ JK}^{-1} \text{mol}^{-1} \div 6.02 \times 10^{23} \text{ molecule/mol}$$

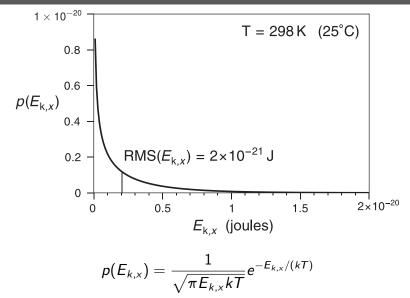
= $1.38 \times 10^{-23} \text{ JK}^{-1}$

- Molecules at a given temperature do not have unique velocities or kinetic energies.
- Molecules have a broad distribution of energies, with RMS average translational kinetic energy in each direction (x, y or z):

 $\operatorname{RMS}(E_{k,x}) = kT/2$

- Translational kinetic energy does *not* depend on mass or structure.
- In context of molecular motion, " $E_{k,x}$ " will imply RMS value.

Distribution of Molecular Kinetic Energies



Clicker Question #2

How fast does a small molecule move at room temperature (between collisions)?

- **A)** 10⁻⁴ m/s
- **B)** 10^{-2} m/s
- **C)** 1 m/s
- **D)** 10² m/s
- **E)** 10⁴ m/s

All answers count for now.

Velocities of Molecules

- Kinetic energy of a molecule, in *x*-direction: $RMS(E_{k,x}) = kT/2$
- Kinetic energy of any object: $E_{k,x} = mv_x^2/2$

Solving for *v*:

$$mv_x^2/2 = kT/2$$
$$v_x^2 = kT/m$$
$$v_x = \sqrt{kT/m}$$

(also an RMS value)

- Velocity increases with \sqrt{T} and decreases with \sqrt{m} .
- Energy does not depend on molecular mass, but velocity does.

Velocity of an N₂ Molecule at Room Temperature

Mass

$$m=28\,\mathrm{g/mol}\div 6.02 imes 10^{23}\,\mathrm{molecules/mol}$$
 $=4.65 imes 10^{-23}\,\mathrm{g}=4.65 imes 10^{-26}\,\mathrm{kg}$

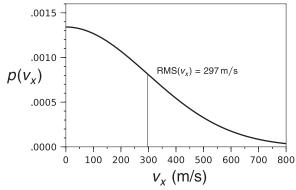
Temperature =
$$25^{\circ}C$$
 = 298 K

Velocity:

$$RMS(v_x) = \sqrt{kT/m}$$

= $\sqrt{1.38 \times 10^{-23} \text{ kg} \cdot \text{m}^2 \text{s}^{-2} \text{K}^{-1} \times 298 \text{ K}/4.65 \times 10^{-26} \text{ kg}}$
 $\approx 300 \text{ m/s} \quad (1,000 \text{ km/hr})$

Distribution of N_2 Velocities in a Gas at 298 K



The Maxwell-Boltzmann distribution

$$p(v_x) = \sqrt{\frac{m}{2\pi kT}} e^{-mv_x^2/(2kT)}$$

(assumes ideal gas behavior)

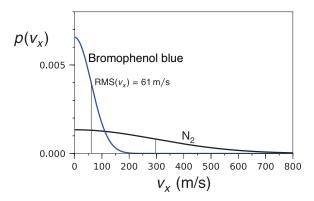
Diffusion of Bromophenol Blue Revisited

- From diffusion experiment: $D = 2 \times 10^{-10} \text{ m}^2/\text{s}$
- Definition of the diffusion coefficient: $D = \frac{\delta_x^2}{2\tau}$.
- δ_x/τ = velocity, which we can calculate now!
 - $v_x = \sqrt{kT/m}$
 - Molar mass = 670 g/mol Molecular mass = 1.11×10^{-24} kg

$$v_x = \sqrt{1.38 imes 10^{-23} \, \text{kg} \cdot \text{m}^2 \text{s}^{-2} \text{K}^{-1} imes 298 \, \text{K} / 1.1 imes 10^{-24} \, \text{kg}}$$

= 61 m/s

Distribution of Velocities at 298 K



- Average (RMS) kinetic energies of molecules are the same.
- Based on ideal gas behavior.
- Distribution is similar in liquids.

Diffusion of Bromophenol Blue Revisited

- $D = \delta_x^2/(2\tau) = 2 \times 10^{-10} \, \mathrm{m}^2/\mathrm{s}$
- Express *D* in terms of velocity:

 $D = v_x \delta_x/2$

•
$$v_x = \delta_x/\tau = 61 \,\mathrm{m/s}$$

Solve for δ_x

$$\delta_x = 2D/v_x = 2 \times 2 \times 10^{-10} \text{ m}^2/\text{s} \div 61 \text{ m/s}$$

= $6.5 \times 10^{-12} \text{ m}$

Diffusion of Bromophenol Blue Revisited

From the previous slide

 $\delta_x = v_x \cdot \tau = 6.5 imes 10^{-12} \,\mathrm{m}$

Solve for τ

$$egin{aligned} &v_{
m x} = \delta_{
m x}/ au \ & au = \delta_{
m x}/v_{
m x} = 6.5 imes 10^{-12}\,{
m m} \div 61\,{
m m/s} \ &= 10^{-13}\,{
m s} = 0.1\,{
m ps} \end{aligned}$$

VERY short distances and times!

Clicker Question #3

A "typical" protein molecule in water: $D = 1 \times 10^{-11} \text{ m}^2/\text{s}$ and $v_x = 6 \text{ m/s}$

What is the RMS step length, δ_x , as the molecule diffuses via a random walk?

A)
$$1 \times 10^{-13} \text{ m}$$

B) $3 \times 10^{-13} \text{ m}$
C) $1 \times 10^{-12} \text{ m}$
D) $3 \times 10^{-12} \text{ m}$
E) $1 \times 10^{-11} \text{ m}$
 $\delta_x = \frac{2D}{v_x} = \frac{2 \times 1 \times 10^{-11} \text{ m}^2/\text{s}}{6 \text{ m/s}} = 3.3 \times 10^{-12} \text{ m}$

6 m/s

Clicker Question #4

A "typical" protein molecule in water: $D=1 imes 10^{-11}\, {
m m^2/s}$ and $v_x=6\, {
m m/s}.$

What is the RMS average time between direction changes, τ , as the molecule diffuses via a random walk?

> **A)** 5×10^{-14} s $D = \frac{\delta_x^2}{2\pi}$ **B)** 5×10^{-13} s **C)** 5×10^{-12} s **D)** 5×10^{-11} s **E)** 5×10^{-10} m $\tau = \frac{\delta_x}{v} = \frac{3.3 \times 10^{-12} \,\mathrm{m}}{6 \,\mathrm{m/s}} = 5.5 \times 10^{-13} \,\mathrm{s}$

A Small Molecule Versus a Big One

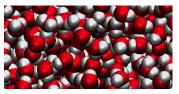
	Bromophenol blue	Protein
Molar mass	670 g/mol	60,000 g/mol
Velocity	60 m/s	6 m/s
D	$2 imes 10^{-10}\mathrm{m^2/s}$	$1 imes 10^{-11}\mathrm{m^2/s}$
δ_{\times}	$6 \times 10^{-12} \mathrm{m}$	$3 \times 10^{-12} \mathrm{m}$
τ	$1 \times 10^{-13} s$	$5 \times 10^{-13} \mathrm{s}$

How do we think about the numbers on a molecular scale?

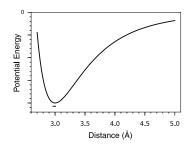
Have to think about liquids.

The Nature of Liquids

- Molecules are very densely packed
- Motions of molecules are limited by the "energy barriers" surrounding them.
- Other molecules in a solution are similarly constrained.
- Molecules move only very short distances before they change direction.
- The larger the molecule is, the less freedom it has and the more slowly it moves.



From a simulation of liquid water.



RMS Distance of Diffusion

• Random walk along one direction: $\langle x^2 \rangle = n \delta_x^2$

For diffusion:

$$D = \frac{\delta_x^2}{2\tau}$$

$$\delta_x^2 = 2D\tau$$

$$n = t/\tau$$

$$\langle x^2 \rangle = n\delta_x^2 = \frac{t}{\tau}2D\tau = 2Dt$$

$$RMS(x) = \sqrt{2Dt}$$

For bromophenol blue (and molecules of similar size):

$$\mathsf{RMS}(x) = \sqrt{t/s} imes 2 imes 10^{-5} \,\mathrm{m}$$

RMS Distance of Diffusion for a Small Molecule

