Physical Principles in Biology Biology 3550 Spring 2023

Lecture 19:

Rates of Diffusion

Friday, 23 February 2024

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

A Quick Review from the Last Lecture

• Kinetic energy of an object along the *x*-axis: $E_{k,x} = mv_x^2/2$

- RMS translational kinetic energy of a molecule: $E_{k,x} = kT/2$
- RMS velocity of molecule: $v_x = \delta_x / \tau = \sqrt{kT/m}$
- The diffusion coefficient:

$$D=\frac{\delta_x^2}{2\tau}=\frac{v_x\delta_x}{2}$$

Calculating δ_x and τ from *D* and v_x :

$$\delta_{x} = \frac{2D}{v_{x}} = \frac{2D}{\sqrt{kT/m}}$$
$$\tau = \frac{\delta_{x}}{v_{x}} = \frac{\delta_{x}^{2}}{2D}$$

RMS Distance of Diffusion

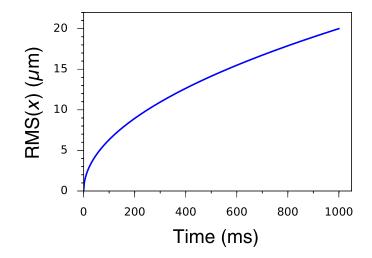
Random walk along one direction: $\langle x^2 \rangle = n \delta_x^2$

For diffusion:

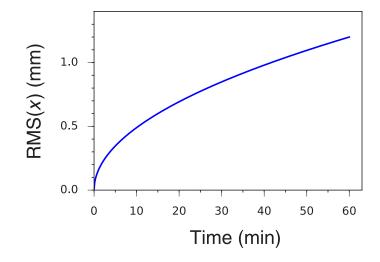
$$D = \frac{\delta_x^2}{2\tau}$$

$$\delta_x^2 = 2D\tau$$

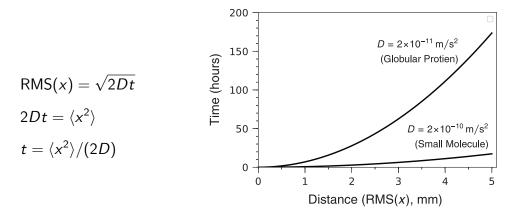
$$n = t/\tau$$


$$\langle x^2 \rangle = n\delta_x^2 = \frac{t}{\tau}2D\tau = 2Dt$$

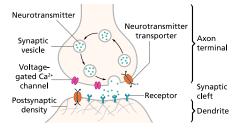
$$RMS(x) = \sqrt{2Dt}$$


For bromophenol blue (and molecules of similar size):

$$\mathsf{RMS}(x) = \sqrt{t/s} imes 2 imes 10^{-5} \,\mathrm{m}$$


RMS Distance of Diffusion for a Small Molecule

RMS Distance of Diffusion for a Small Molecule


Time Required for Diffusion Over a Range of Distances

- Time required is inversely related to the diffusion coefficient.
- Diffusion is effective over short distances, but not long.

Chemical Communication Between Neurons

Structure of a synapse

- Synaptic cleft: \approx 20 nm wide
- Time for diffusion for a small molecule: $\approx 10^{-6}$ s = 1 μ s

Time to diffuse over the length of a sciatic axon (1 m): $pprox 2 imes 10^9 \,
m s = 80 \,
m yr$