Physical Principles in Biology Biology 3550 Spring 2025

Lecture 20:

Rates of Diffusion and a Plant Faces Diffusion

Monday, 24 February 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Time Required for Diffusion Over a Range of Distances

- Time required is inversely related to the diffusion coefficient.
- Diffusion is effective over short distances, but not long.

Calculating Diffusion Coefficients

- What determines diffusion coefficient?
 - Velocity of molecules (temperature and mass)
 - Size and shape of molecules
 - How often molecules colide
- Stokes-Einstein equation for spherical particles:

$$D = \frac{kT}{6\pi\eta r}$$

r = sphere radius

 $\eta =$ viscosity

- A key result from the 1905 Einstein paper on Brownian motion.
- A testable prediction!

Viscosity: Property of a Liquid (or Gas) Resistance to Motion of Molecules Past One Another

A molecular property easily observed on the macroscopic scale.

From a 1960s TV ad for Prell Shampoo https://www.youtube.com/watch?v=91FsrjoLKq0

- Reflects what we commonly think of as the "thickness" of a liquid.
- Units are not straight forward! See the notes.

Some Calculated Diffusion Coefficients

The Stokes-Einstein equation for spherical particles:

$$D = \frac{kT}{6\pi\eta r}$$

- In water at 25°C:
 - Small molecule (1 nm): 2×10⁻¹⁰ m²s⁻¹
 - Protein (10 nm): $2 \times 10^{-11} \text{ m}^2 \text{s}^{-1}$
 - Bacterium (1 μm): 2×10⁻¹³ m²s⁻¹
 - 1 mm sphere: 2×10⁻¹⁶ m²s⁻¹

How Far Apart are Molecules in Air? (on average)

- A) $\approx 1\,\mathrm{nm}$
- B) $\approx 1\,\mu$ m
- C) $\approx 1\,\text{mm}$
- D) $pprox 1\,{
 m cm}$
- E) $\approx 1\,\text{m}$

All answers count for now.

Calculate the RMS distance an N₂ molecule travels before changing direction.

A) $\approx 1\,\mathrm{nm}$

- B) $\approx 10 \, \mathrm{nm}$
- C) $\approx 100 \, \text{nm}$
- D) $pprox 1\,\mu{
 m m}$
- E) pprox 10 μ m
- Diffusion coefficients of gasses (at atmospheric pressure): $\approx 2 \times 10^{-5} \text{ m}^2/\text{s}$
- From a previous lecture: RMS velocity of N_2 : $\approx 300 \text{ m/s}$.

Diffusion in Gasses

- Diffusion coefficients of gasses (at atmospheric pressure): $\approx 2 \times 10^{-5} \text{ m}^2/\text{s}$
- From a previous lecture: RMS velocity of N_2 : $\approx 300 \text{ m/s}$.

•
$$D = \delta_x^2/(2 au)$$
, and $v = \delta_x/ au$

$$\delta_{\mathrm{x}}=2D/v=1.3 imes10^{-7}\,\mathrm{m}=130\,\mathrm{nm}$$

The "mean-free-path" distance. Is this the distance between molecules?

Time between collisions:

$$au = \delta_{ imes}/ extsf{v} pprox extsf{4.4} imes 10^{-10}\, extsf{s}$$

Much longer random walk steps than in liquids, but still pretty short.

Diffusion in Liquids vs. Atmosphere

A small molecule in water, $D = 2 \times 10^{-10} \text{ m}^2/\text{s}$

 ${
m N_2}$ in atmosphere, $D=2 imes 10^{-5}\,{
m m^2/s}$

Warning!

Direction Change

A Plant Faces Diffusion

Growth of a Hypothetical Plant

- 1 kg carbon per year, for net growth and replacement of leaves.
- Where does the carbon come from?

From thin air!

$$\mathrm{6CO_2} + \mathrm{6H_2O} \longrightarrow \mathrm{C_6H_{12}O_6} + \mathrm{6O_2}$$

An extremely unfavorable reaction, unless coupled to the energy of absorbed light.

How much CO_2 does the plant have to assimilate per second? (for 1 kg carbon/yr)

A) $pprox 1\,\mu{
m mol/s}$

- B) $pprox 2\,\mu {
 m mol/s}$
- C) $\approx 5 \,\mu \text{mol/s}$
- D) pprox 10 μ mol/s
- E) pprox 20 μ mol/s

Growth of a Hypothetical Plant

■ How much CO₂ (in moles) does the plant have to assimilate per second?

 $1 \, \text{kg} \div 12 \, \text{g/mol} \approx 80 \, \text{mol}$

 $1 \, \text{yr} \times 365 \, \text{days/yr} \times 24 \, \text{hr/day} \times 60 \, \text{min/hr} \times 60 \, \text{s/min} \approx 3 \times 10^7 \, \text{s}$

But, CO₂ is incorporated only during daylight, so the total time available is only about half of this.

 $80 \text{ mol} \div 1.5 \times 10^7 \text{ s} \approx 5 \times 10^{-6} \text{ mol/s}$

Growth of a Hypothetical Plant

- Total rate of CO₂ assimilation: 5×10⁻⁶ mol/s
- Assume 1,000 leaves of 1 cm² each:

1,000 cm² ×
$$\left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 = 0.1 \text{ m}^2$$

Flux, per second, per unit of leaf area:

$$J = 5 \times 10^{-6} \text{ mol/s} \div 0.1 \text{ m}^{2}$$
$$= 5 \times 10^{-5} \text{ mol} \cdot \text{s}^{-1} \text{m}^{-2}$$

But, diffusion does not take place across all of the leaf area.

Cross-section of a Plant Leaf

- Photosynthesis takes place in chloroplasts of mesophyll cells.
- Stomata control diffusion of gasses into and out of leaves.
- Diffusion through the stomata takes place in gas phase.

Scanning Electron Micrograph of a Tomato Leaf Stoma

Micrograph by Louisa Howard. http://remf.dartmouth.edu/images/botanicalLeafSEM/source/16.html

Opening and Closing of Stomata

Guard cells (swollen)

Stoma opening

Stoma closing

Illustration by Ali Zifan https://en.wikipedia.org/wiki/Stoma

Cross-section of a Plant Leaf

- CO₂ diffuses through stomata into leaf airspace.
- CO₂ diffuses into mesophyll cells and then into chloroplasts.
- CO₂ is reduced, or "fixed", into sugars by ribulose-1,5-bisphosphate carboxylase (Rubisco).
- Steady-state concentration of CO₂ in airspace is about 1/2 atmospheric concentration.

What is the concentration gradient, $\frac{dC}{dx}$, across the stomatal pore?

- Diffusion coefficient of CO₂ at atmospheric pressure and 298 K: D = 1.5 × 10⁻⁵ m²/s.
- Atmospheric CO₂ concentration: $15 \,\mu\text{M} \ (\approx 400 \,\text{ppm})$
- CO₂ concentration in leaf airspace: 7.5 μM
- Length of stomatal pore: \approx 40 μ m

- A) $\approx 2 \, mol \cdot m^{-4}$
- B) $\approx 20 \text{ mol} \cdot \text{m}^{-4}$

C)
$$\approx 200 \text{ mol} \cdot \text{m}^{-4}$$

D)
$$pprox 2000 \, {
m mol} \cdot {
m m}^{-4}$$

Diffusion of CO₂

- Concentration gradient:
 - Atmospheric CO₂ concentration: $15 \,\mu\text{M} = 1.5 \times 10^{-2} \,\text{mol}/\text{m}^3$
 - CO_2 concentration in leaf airspace: $7.5 \,\mu\text{M} = 7.5 \times 10^{-3} \,\text{mol/m}^3$
 - Length of stomatal pore: pprox 40 μ m = 4 imes 10⁻⁵ m

$$\frac{dC}{dx} \approx \frac{7.5 \times 10^{-3} \, \text{mol/m}^3}{4 \times 10^{-5} \, \text{m}} = 175 \, \text{mol} \cdot \text{m}^{-4}$$

What is the flux, J, of CO_2 through the stomata?

- Diffusion coefficient of CO₂ at atmospheric pressure and 298 K: D = 1.5 × 10⁻⁵ m²/s.
- Atmospheric CO₂ concentration: $15 \,\mu\text{M} \ (\approx 400 \,\text{ppm})$
- CO₂ concentration in leaf airspace: 7.5 μM
- Length of stomatal pore: pprox 40 μ m

A) $pprox -3 imes 10^{-4} \, mol \cdot m^{-2} s^{-1}$

$$\textbf{B})\approx -3\times 10^{-3}\,\text{mol}\cdot\text{m}^{-2}\text{s}^{-1}$$

C)
$$\approx -3 \times 10^{-2}\, \text{mol} \cdot \text{m}^{-2}\text{s}^{-1}$$

D)
$$pprox -3 imes 10^{-1} \, \text{mol} \cdot \text{m}^{-2} \text{s}^{-1}$$

Diffusion of CO₂

- Diffusion coefficient of CO₂ at atmospheric pressure and 298 K:
 - $D = 1.5 \times 10^{-5} \,\mathrm{m^2/s}.$
- Concentration gradient

$$rac{dC}{dx} pprox 175 \, ext{mol} \cdot ext{m}^{-4}$$

Flux:

$$J = -D\frac{dC}{dx} = -1.5 \times 10^{-5} \,\mathrm{m}^2/\mathrm{s} \times 175 \,\mathrm{mol} \cdot \mathrm{m}^{-4}$$
$$= -2.6 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{m}^{-2} \mathrm{s}^{-1}$$

How Many Stomata Does Our Plant Need?

- From before: 1 kg carbon/yr = 5×10^{-6} mol/s
- Surface area required:

$$5 \times 10^{-6} \text{ mol/s} = J \text{ (mol} \cdot \text{m}^{-2}\text{s}^{-1}) \times \text{area (m}^2)$$

area = $5 \times 10^{-6} \text{ mol/s} \div 2.6 \times 10^{-3} \text{ mol} \cdot \text{m}^{-2}\text{s}^{-1} \approx 0.002 \text{ m}^2$

- Cross section area of a stoma: $pprox \pi (5 imes 10^{-6} \, {
 m m})^2 pprox 10^{-10} \, {
 m m}^2$
- Number of stomata:

 $0.002\,\text{m}^2 \div 10^{-10}\,\text{m}^2/\text{stoma} = 2\times 10^7\,\text{stomata}$

- \blacksquare If total leaf surface area is $0.1\,m^2$ and each leaf is $\approx 1\,cm^2 = 1\times 10^{-4}\,m^2$
 - Stomatal pores represent $\approx 2\%$ of leaf area.
 - About 20,000 stomata per leaf, or 200 stomata/mm² of leaf area.
 - This is a minimal estimate of open stomata.

Actual numbers of stomata are typically 100-1,000 per mm² of leaf area.

Number varies with plant species and environmental conditions.