Physical Principles in Biology Biology 3550 Spring 2024

Lecture 24

Introduction to Thermodynamics:

Expansion of a Gas

Monday, 11 March 2024

©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Midterm Exam:
 - Friday, 15 March
 - Will cover all material from before Spring Break
 - 50 min
- Review Session
 - 5:15 PM, Thursday, 14 March
 - HEB 2002
 - Come with questions!

Why is Thermodynamics Important?

- Thermodynamics is the fundamental science of energy, something almost everyone cares about! (because we pay for it)
- Defines the rules for interchange of different forms of energy.
 (e.g., the conversion of an H⁺ concentration gradient into mechanical motion in the bacterial rotary motor.)
- Places strict constraints on whether or not a physical, chemical or biological process is favorable under specified conditions.
 - But, it won't say whether the process <u>will</u> take place, or by what mechanism or how fast!
- Particularly important in the context of climate change and society's need for energy.

Why is Thermodynamics Hard?

- The ideas are abstract and subtle.
- It depends on math! (And, the quantities are subtle.)
- The language can be confusing (and varies among disciplines).
- Historical confusion.
 - Developed over multiple generations of scientists in the 18th–20th centuries.
 - Periods of profound confusion.
- But it's worth it!

Units of Energy

- Energy is the ability to do work.
- Unit of work or energy: $1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 \text{ Kg} \cdot \text{m}^2/\text{s}^2$ Energy required to apply 1 N of force over a distance of 1 m.

$$1 J = 1 \text{ watt} \cdot \text{s}$$
 $1 \text{ kwatt} \cdot \text{hr} = 3.6 \times 10^6 \text{ J}$

- Another unit of energy commonly used in thermodynamics: calorie
 - Originally defined as energy required to raise the temperature of 1 g of water by 1°C. (depends on starting temperature)
 - Now defined as exactly 4.184 J
- "Big C" Calorie, or "kg calorie": 1 Calorie = 1,000 calories.
 - Energy required to raise the temperature of 1 kg of water by 1°C.
 - Big C Calorie is the one used for nutritional information.
- Calorie units are still commonly used in thermodynamics because they directly relate energy to temperature.

Temperature Versus Heat

Temperature

- A property of matter, which we measure with a thermometer.
- Directly related to the kinetic energy of the molecules making up the matter.
- For an ideal gas, $RMS(E_k) = 3kT/2$ Three degrees of translational freedom, in x-, y-, and z-direction.
- Non-ideal gasses, liquids and solids have additional motional modes and generally greater kinetic energy at a given temperature.

Heat

- Sometimes described as a "form of energy", and it has the units of energy (joule or calorie).
- Better definition: Flow of energy from a warmer object to a cooler one; equilibration of kinetic energy.
- At one time, heat was thought to be a massless substance, called "caloric", that moved within or between objects.

Our Starting Point for Thermodynamics: Expansion and Compression of Gasses

Historical origins:

- Development of thermodynamics was first motivated by the invention of the steam engine, and the desire to make better ones.
- Many of the basic ideas were formulated in this context and are still easiest to visualize in it.
- Original treatments did not consider molecular motion (because it wasn't understood) and were very abstract; "classical thermodynamics."
- Molecular interpretation developed later, "statistical thermodynamics".
- We will use both classical and statistical viewpoints, which complement each other.
- An ideal gas is the simplest system in which to formulate ideas.
- Also ties back to our discussion of molecular motion in diffusion.

Adiabatic (without heat flow) Expansion of a Gas

- Insulation prevents heat flow into or out of device.
- What changes?

Clicker Question #1

Which of the following properties of the gas change?

- A) Temperature
- B) Pressure
- C) Volume
- D) Kinetic energy

Any answers count for now!

Adiabatic (without heat flow) Expansion of a Gas

- Insulation prevents heat flow into or out of device.
 - Temperature stays constant.
- What changes?
 - · Volume of gas increases.
 - Pressure of gas decreases
 (PV = nRT)
 - Does the energy stay constant? (yes)
 - Has any work been done? (no)
 - Has anything else changed?

Adiabatic Gas Expansion With Work

- Collisions of gas molecules with piston move the weight up.
- What changes?

Clicker Question #2

Any answers count for now!

Adiabatic Gas Expansion With Work

- Collisions of gas molecules with piston move the weight up.
- What changes?

energy.

- Volume of gas? (increases)
- Temperature? (decreases as energy is transferred to piston)
- Pressure? (decreases, more than without the piston)
- Energy?Has any work been done? (yes)
- Where did the energy to do the work come from?
 Gas molecules have lost kinetic

Rules for Keeping Score

Change in energy of the gas molecules (the "system"):

$$\Delta E = E_{\text{final}} - E_{\text{start}}$$

- Work, *w*:
 - w > 0, when work is done on the system.
 - w < 0, when the system does work on the outside world, as in the expansion of the gas.
- For the adiabatic expansion of a gas with work:
 - $E_{\text{final}} < E_{\text{start}}$, and $\Delta E < 0$
 - w < 0, because the system did work.
 - $\Delta E = w$: Where else could the energy come from?
 - Does ΔE always equal w?
- Some books use the opposite sign convention for w.

What Does This Have to Do with Biology?

- Dilution of molecules in solution is analogous to expansion of a gas.
- Work (energy) is required to package neurotransmitters into vesicles.
- How much energy is lost when neurotransmitters are released into a synapse?
- Other examples of dilution and concentration in biology?

Isothermal Expansion with Work

- Reservoir restores the gas temperature. (isothermal)
- What changes?

Clicker Question #3

Which of the following properties of the gas change?

- A) Temperature
- B) Pressure
- C) (Volume
- D) Energy

Any answers count for now!

Isothermal Expansion with Work

- Reservoir restores the gas temperature.
- What changes?
 - Heat flows to keep gas temperature the same as the reservoir (which doesn't change).
 - As piston is pushed up, gas molecules lose energy, and temperature drops.
 - Heat flows from reservoir to restore temperature.
 - At the end, temperature is the same as at the beginning, and work has been done!

Is More Work Done in the Adiabatic or Isothermal Expansion?

Part way through the two expansion processes:

- $V_{ad} = V_{isot}$
- \blacksquare $T_{ad} < T_{isot}$
- \blacksquare $P_{\rm ad} < P_{\rm isot}$
- $ightharpoonup F_{ad} < F_{isot}$

P= Force/area.

- $\mathbf{w} = -\int F dx$
- $ightharpoonup w_{isot} < w_{ad}$

■ A more negative value of *w* means that the system does more work on the surroundings.

Isothermal Expansion with Work

The scorecard:

- $\Delta E = 0$, temperature hasn't changed.
- w < 0, because the system did work.
- $\Delta E \neq w$
- Where did the energy for work come from?
- Heat flow into the system.

Scorecard for Isothermal Expansion with Work

- Energy, E. Temperature at start and end are equal, $\Delta E = 0$.
- Work, w. Work has been done by the system, w < 0.
- A new quantity: Heat, q.
 - q > 0, when heat flows into the system.
 - q < 0, when heat flows out of the system into the surroundings.
 - For both work, w, and heat, q, a positive value indicates a transfer <u>to</u> the system from the surroundings.
- For this case, q > 0.

The First Law of Thermodynamics

- Common statements in words:
 - "The energy of the universe is conserved"
 - "Energy cannot be created or destroyed"
 - Later modified to account for interconversion of mass and energy. (Einstein's $E=mc^2$)
- The formal mathematical statement: For any process,

$$\Delta E = q + w$$

- Any change in the energy of the system has to be accounted for by work or heat.
- Work and heat represent the transfer of energy from the surroundings to the system.
- Ignores other forms of energy, such as electromagnetic radiation.
- We can apply the first law to the three gas expansion experiments.

Adiabatic (without heat flow) Expansion of a Gas

First law summary

lack q=0 Insulation prevents heat flow

• w = 0No work is done

ΔE = q + w = 0
 Consistent with no temperature change.

Adiabatic Gas Expansion With Work

First law summary

- q = 0Insulation prevents heat flow.
- w < 0Work is done by the system.
- $\Delta E = q + w = w < 0$ Consistent with temperature decrease.

Isothermal Expansion with Work

First law summary

- $\Delta E = 0$ Temperature doesn't change.
- w < 0Work is done by the system.
- q > 0Heat flows into the system.
- $\Delta E = q + w = 0$ and q = -wHeat flow and work are balanced, and temperature doesn't change.

Laws and Thermodynamics

- The laws of thermodynamics cannot be derived or proven!
- The laws are postulates, which no one has been able to disprove.
 And people have tried really hard!
- In 1775 the French Royal Academy of Sciences made the first law of thermodynamics (before it was called that) a legal law!
 - Declared that the French patent office would no longer accept applications to patent perpetual motion machines.