Physical Principles in Biology

Biology 3550
Spring 2024
Lecture 24
Thermodynamics:

The First Law, State Functions and Free Energy

Wednesday, 13 March 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

■ Midterm Exam:

- Friday, 15 March
- Will cover all material from before Spring Break
- 50 min

■ Review Session

- 5:15 PM, Thursday, 14 March
- HEB 2002
- Come with questions!

Adiabatic (without heat flow) Expansion of a Gas

Adiabatic Gas Expansion With Work

Isothermal Expansion with Work

Keeping Score

- Change in energy of the gas molecules (the "system"):

$$
\Delta E=E_{\text {tinal }}-E_{\text {start }}
$$

- Work, w:
- $w>0$, when work is done on the system.
- $w<0$, when the system does work on the outside world, as in the expansion of the gas.
- Heat, q.
- $q>0$, when heat flows into the system.
- $q<0$, when heat flows out of the system into the surroundings.

■ For both work, w, and heat, q, a positive value indicates a transfer to the system from the surroundings.

The First Law of Thermodynamics

■ Common statements in words:

- "The energy of the universe is conserved"
- "Energy cannot be created or destroyed" s
- Later modified to account for interconversion of mass and energy. (Einstein's $E=m c^{2}$)

■ The formal mathematical statement: For any process,

$$
\Delta E=q+w
$$

- Any change in the energy of the system has to be accounted for by work or heat.
- Work and heat represent the transfer of energy from the surroundings to the system.
- Ignores other forms of energy, such as electromagnetic radiation.

Clicker Question \#1

Adiabatic Expansion Without Work

Which of the following is true?
A) $q<0$
B) $q=0$
C) $q>0$

Clicker Question \#2

Adiabatic Expansion Without Work

Which of the following is true?

$$
\begin{array}{ll}
q<0 & \text { A) } w<0 \\
q=0 & \text { B) } w=0 \\
q>0 & \text { C) } w>0
\end{array}
$$

Clicker Question \#3

Adiabatic Expansion Without Work

Which of the following is true?

$$
\begin{array}{lll}
\square q<0 & \square w<0 & \text { A) } \Delta E<0 \\
\square q=0 & \square w=0 & \text { B) } \Delta E=0 \\
\square q>0 & \square w>0 & \text { C) } \Delta E>0
\end{array}
$$

$$
\Delta E=q+w=0
$$

insulation

Clicker Question \#4

Adiabatic Expansion
With Work

Which of the following is true?
A) $q<0$
B) $q=0$
C) $q>0$

Clicker Question \#5

Adiabatic Expansion
With Work

Which of the following is true?

$$
\begin{array}{ll}
\square q<0 & \text { A) } w<0 \\
\square q=0 & \text { B) } w=0 \\
\square>0 & \text { C) } w>0
\end{array}
$$

Clicker Question \#6

Adiabatic Expansion With Work

Which of the following is true?
■ $q<0$
$-w<0$
A) $\Delta E<0$
$\square q=0$
■ $w=0$
B) $\Delta E=0$
■ $q>0$
■ $w>0$
C) $\Delta E>0$

$$
\Delta E=q+w<0
$$

Clicker Question \#7

Isothermal Expansion With Work

Which of the following is true?
A) $q<0$

B) $q=0$
C) $q>0$

Clicker Question \#8

Clicker Question \#9

Isothermal Expansion With Work

Which of the following is true?

$$
\begin{array}{lll}
\square q<0 & \square w<0 & \text { A) } \Delta E<0 \\
\square q=0 & \square w=0 & \text { B) } \Delta E=0 \\
\square q>0 & \square w>0 & \text { C) } \Delta E>0 \\
& \Delta E=q+w=0
\end{array}
$$

State Functions and Path-dependent Functions

■ State functions of a system depend only on the current state of the system and do not depend on history.
Examples:

- Temperature, T
- Pressure, P
- Volume, V
- Energy, E

■ For any change in a system, the change in a state function depends only on the beginning and ending states.

$$
\begin{aligned}
& \Delta T=T_{\text {final }}-T_{\text {start }} \\
& \Delta P=P_{\text {final }}-P_{\text {start }} \\
& \Delta V=V_{\text {tinal }}-V_{\text {start }} \\
& \Delta E=E_{\text {final }}-E_{\text {start }}
\end{aligned}
$$

- Work, w, and heat, q, are not state functions.

Adiabatic vs. Isothermal Gas Expansion

Adiabatic

Perfect
insulation

- The two processes start and end in the same states:

$$
\begin{array}{ll}
\Delta V_{\mathrm{ad}}=\Delta V_{\text {isot }}>0 & \Delta P_{\mathrm{ad}}=\Delta P_{\text {isot }}<0 \\
\Delta T_{\mathrm{ad}}=\Delta T_{\text {isot }}=0 & \Delta E_{\mathrm{ad}}=\Delta E_{\text {isot }}=0
\end{array}
$$

- But, the heat and work for the two processes are different:

$$
w_{\mathrm{ad}}=0 \quad w_{\text {isot }}<0 \quad q_{\mathrm{ad}}=0 \quad q_{\text {isot }}>0
$$

- Heat and work are "path-dependent" functions.

The Maximum-work Path for Gas Expansion

- Piston is allowed to move upward in infinitesimally small steps.
- Temperature is never allowed to drop.
- Pressure drops as gas expands, so less work is done per step.

■ If larger steps are ever taken:

- The temperature drops.
- The pressure drops more than it would in an infinitesimal step.
- Less work is produced.

The Minimum-work Path for Gas Compression

- Piston is pushed down in infinitesimally small steps.

■ Energy is transferred from piston to gas molecules.
■ Temperature is never allowed to increase.
■ Excess energy flows to the reservoir as heat.
■ P increases as gas is compressed, so more work is required per step.
■ If larger steps are ever taken, more work is required.

A Reversible Cycle of Compression and Expansion

■ Steps in both directions are infinitesimal.

- Compression and expansion are exactly the reverse of one another.

$$
w_{\mathrm{comp}}=-w_{\mathrm{exp}}=-q_{\mathrm{comp}}=q_{\exp }
$$

■ For the complete cycle:

$$
\Delta E=0 \quad w=0 \quad q=0
$$

■ Either compression or expansion can be reversed at any point by an infinitesimal force in the opposite direction.

Another Kind of State Function

- w and q are not state functions.
- BUT, we can define the value of w (or q) for a specific process linking two states to be a change in a state function.
$■$ We define the work for the reversible (infinitely slow) conversion of one state to the another, $w_{\text {rev }}$, to be the change in the state function F.
- ΔF is called the change in "free energy." (Helmholtz free energy)
- ΔF is the maximum amount of work that can be obtained from the change in state.
- ΔF is "free energy" in the sense that it is energy that is available to do work.
- "Free energy" is really the most expensive kind of energy! It's the kind that we pay for to do work.
- The heat for a reversible process, $q_{\text {rev }}$, is also a state function that we will return to shortly.

Calculating the Work for the Reversible Isothermal Expansion of a Gas

- The work is calculated by integrating force with respect to distance.

$$
w_{\mathrm{rev}}=\int_{x_{1}}^{x_{2}} f d x
$$

f is force, and x represents the position of the piston.
■ The force can be expressed in terms of pressure, P, and the area that the piston presents to the gas, A :

$$
f=-P \cdot A
$$

Calculating the Work for the Reversible Isothermal Expansion of a Gas

- From the previous slide:

$$
w_{\mathrm{rev}}=\int_{x_{1}}^{x_{2}} f d x=-\int_{x_{1}}^{x_{2}} P \cdot A d x
$$

■ For each small increment in x, there is a corresponding increment in volume, $d V$.

$$
d V=A d x
$$

Calculating the Work for the

Reversible Isothermal Expansion of a Gas

- Substituting $d V$ for $A d x$ in the work integral:

$$
w_{\mathrm{rev}}=-\int_{x_{1}}^{x_{2}} P \cdot A d x=-\int_{V_{1}}^{V_{2}} P d V
$$

(The product $P V$ has the units of energy or work!)

- From the ideal gas law, $P=n R T / V$. Substituting:

$$
w_{\mathrm{rev}}=-\int_{V_{1}}^{V_{2}} \frac{n R T}{V} d V=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}
$$

Calculating the Work for the

Reversible Isothermal Expansion of a Gas

- From the previous slide:

$$
w_{\mathrm{rev}}=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}
$$

- From calculus:

$$
w_{\mathrm{rev}}=-\left.n R T \ln (V)\right|_{V_{1}} ^{V_{2}}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

- $w_{\text {rev }}$ depends only on n, T, V_{1} and V_{2}.
$W_{\text {rev }}$ represents a change in a state function, ΔF.

Clicker Question \#10

Calculate the work, $w_{\text {rev }}$, for the reversible expansion of 0.5 mole of gas from 1 L to 5 L at $37^{\circ} \mathrm{C}$.

$$
R=0.082 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=8.3 \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

A) -2100 J
B) -900 J
C) -250 J
D) 250 J
E) 900 J

$$
w_{\mathrm{rev}}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=-0.5 \mathrm{~mol} \times 8.3 \mathrm{~J} \cdot \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 310 \mathrm{~K} \times \ln \left(\frac{5 \mathrm{~L}}{1 \mathrm{~L}}\right)
$$

Calculating the Work for the Reversible Isothermal Expansion of a Gas

■ Since the number of moles remains constant, the change in volume can also be expressed in terms of a change in concentration:

$$
\begin{aligned}
& C_{1} V_{1}=\text { no. of moles }=C_{2} V_{2} \\
& V_{2} / V_{1}=C_{1} / C_{2}
\end{aligned}
$$

■ Substituting into the result from the previous slide:

$$
w_{\mathrm{rev}}=-n R T \ln \left(\frac{C_{1}}{C_{2}}\right)
$$

$q_{\text {rev }}$ for Isothermal Expansion

■ For an isothermal process (regardless of path):

$$
\begin{aligned}
& \Delta E=q+w=0 \\
& q=-w
\end{aligned}
$$

■ For reversible isothermal expansion:

$$
q_{\mathrm{rev}}=-w_{\mathrm{rev}}=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

■ Sign check:
For expansion, $V_{2}>V_{1}$ and $q_{\mathrm{rev}}>0$, and the heat flow is into the system, as we expect.

■ For any two states, there is, in principle, a reversible (infinitely slow) process separating them, and we can define $q_{\text {rev }}$ and $w_{\text {rev }}$.

Reconsider the Adiabatic Expansion Without Work

■ The energy available for work has decreased.

- We suspect that this has to do with the loss of order, or increase in entropy.

■ But, what is entropy? How do we give it a number?

