Physical Principles in Biology
 Biology 3550
 Spring 2023
 Lecture 25
 Entropy and the Second Law

Monday, 18 March 2023
©David P. Goldenberg University of Utah
goldenberg@biology.utah.edu

The Maximum-work Path for Isothermal Gas Expansion

■ Piston is allowed to move upward in infinitesimally small steps.

- Temperature is never allowed to drop.
- Pressure drops as gas expands, so less work is done per step.

■ If larger steps are ever taken:

- The temperature drops.
- The pressure drops more than it would in an infinitesimal step.
- Less work is produced.

Work for the Isothermal Reversible Gas Expansion

$$
w_{\mathrm{rev}}=-\left.n R T \ln (V)\right|_{V_{1}} ^{V_{2}}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=-n R T \ln \left(\frac{C_{1}}{C_{2}}\right)
$$

- $w_{\text {rev }}$ depends only on n, T, V_{1} and V_{2}.
$w_{\text {rev }}$ represents a change in a state function, ΔF.
- If $V_{2}>V_{1}$, the gas expands and the system does work on the surroundings.
- If $V_{2}<V 1$, the gas is compressed, and work is done on the system.

Reconsider the Adiabatic Expansion Without Work

■ The energy available for work has decreased.

- We suspect that this has to do with the loss of order, or increase in entropy.

■ But, what is entropy? How do we give it a number?

The "Classical" Definition of Entropy, S

- Entropy is a state function.

■ For two states for which temperature remains constant during the reversible process of converting one to the other:

$$
\Delta S=\frac{q_{\mathrm{rev}}}{T}
$$

■ For two states separated by a reversible process for which the temperature does not stay constant:

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{q_{\mathrm{rev}}}{T} d T
$$

■ Units for entropy: energy/temperature, J / K.

Entropy Change for Isothermal Expansion of a Gas

- From before, q_{rev} :

$$
q_{\mathrm{rev}}=-w_{\mathrm{rev}}=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=n R T \ln \left(\frac{C_{1}}{C_{2}}\right)
$$

- Entropy:

$$
\Delta S=\frac{q_{\mathrm{rev}}}{T}=n R \ln \left(\frac{V_{2}}{V_{1}}\right)=n R \ln \left(\frac{C_{1}}{C_{2}}\right)
$$

$\square \Delta S$ is positive if volume increases (or concentration decreases).
$\square \Delta S$ does not depend on temperature (in this case).
■ What does this have to do with order or disorder?

The Statistical Definition of Entropy

Ludwig Boltzmann, 1844-1906
Tombstone in Vienna, Austria

- $S=k \ln \Omega$
$k=$ Boltzmann's constant, with correct units for entropy (J / K).
- What is Ω ?
- For a given state, Ω is the number of equally probable ways to arrange the components making up that state.
- The different arrangements are called microstates.
- There is no proof! We believe it because it works.

Calculating Ω For Gas Molecules in a Container

■ The state of the system at any instant is defined by the positions and velocities of each of the molecules.

■ For a gas, there are a vast number of different microstates with different positions and velocities for each molecule.

■ But, if the temperature isn't going to change, we can focus just on the positions.

Calculating Ω For Gas Molecules in a Container

- Divide volume of gas into small cubes:

■ No. of molecules: N

- Total volume: V
- Volume of little cubes: V_{c}

■ No. of little cubes: $N_{c}=V / V_{c} \gg N$

- It is very unlikely that any of the little cubes will have more than one molecule in it, and most will have none.

Calculating Ω For Gas Molecules in a Container

■ N is the number of molecules, and N_{c} is the number of little cubes that contain a molecule. $N_{c} \gg N$.

■ How many ways can we place N molecules in N_{c} positions?

- There are N_{c} ways to place the first molecule.
- There are $N_{c}-1$ ways to place the second molecule. But, $N_{c}-1 \approx N_{c}$
- The number of ways to place all N molecules is
$\approx N_{c} \cdot N_{c} \cdot N_{c} \cdots N_{c} \cdot N_{c} \cdot N_{c}=N_{c}^{N}$
■ But, all of the molecules are identical, so we have to divide this number by the number of ways of choosing the molecules, N !

$$
\Omega=\frac{N_{\mathrm{c}}^{N}}{N!}
$$

Calculating the Entropy of Gas Molecules in a Container

■ From Boltzmann:

$$
S=k \ln \Omega=k \ln \left(\frac{N_{\mathrm{c}}^{N}}{N!}\right)
$$

■ What if we divided the volume up into smaller cubes? Would the the entropy change?

■ It's OK, if we limit ourselves to changes in entropy.

Calculating ΔS for a Change in Gas Volume

■ Define starting and ending volumes in terms of the number of little cubes they contain, $N_{\mathrm{c}, 1}$ and $N_{\mathrm{c}, 2}$.

■ The volumes of the individual little cubes is the same, V_{c}.

- Change in entropy for changing the volume:

$$
\begin{aligned}
\Delta S & =S_{2}-S_{1}=k \ln \Omega_{2}-k \ln \Omega_{1} \\
& =k \ln \left(\frac{N_{\mathrm{c}, 2}^{N}}{N!}\right)-k \ln \left(\frac{N_{\mathrm{c}, 1}^{N}}{N!}\right)
\end{aligned}
$$

Quick Review of Some Rules for Logarithms

$$
\ln (a \cdot b)=\ln (a)+\ln (b)
$$

$$
\ln \left(\frac{1}{a}\right)=-\ln (a)
$$

$$
\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)
$$

$$
\ln \left(a^{b}\right)=b \ln (a)
$$

Calculating ΔS for a Change in Gas Volume

■ Change in entropy for changing the volume:

$$
\begin{aligned}
\Delta S & =S_{2}-S_{1}=k \ln \Omega_{2}-k \ln \Omega_{1} \\
& =k \ln \left(\frac{N_{\mathrm{c}, 2}^{N}}{N!}\right)-k \ln \left(\frac{N_{\mathrm{c}, 1}^{N}}{N!}\right)=k \ln \left(\frac{N_{\mathrm{c}, 2}^{N}}{N!}\right)+k \ln \left(\frac{N!}{N_{\mathrm{c}, 1}^{N}}\right) \\
\Delta S & =k \ln \left(\frac{N_{\mathrm{c}, 2}^{N}}{N!} \cdot \frac{N!}{N_{\mathrm{c}, 1}^{N}}\right)=k \ln \left(\frac{N_{\mathrm{c}, 2}^{N}}{N_{\mathrm{c}, 1}^{N}}\right)=k \ln \left(\frac{N_{\mathrm{c}, 2}}{N_{\mathrm{c}, 1}}\right)^{N} \\
& =N k \ln \left(\frac{N_{\mathrm{c}, 2}}{N_{\mathrm{c}, 1}}\right)
\end{aligned}
$$

Calculating ΔS for a Change in Gas Volume

- From the previous slide:

$$
\Delta S=N k \ln \left(\frac{N_{c, 2}}{N_{c, 1}}\right)
$$

- $N_{\mathrm{c}, 2}$ and $N_{\mathrm{c}, 1}$ (the number of little cubes in the two volumes) are related to the volumes according to:

$$
\frac{N_{c, 2}}{N_{c, 1}}=\frac{V_{2}}{V_{1}}
$$

$$
\Delta S=N k \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

Calculating ΔS for a Change in Gas Volume

■ From the previous slide:

$$
\Delta S=N k \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

$\square N$ is the number of molecules. If n is the number of moles, $N=n N_{\text {A }}$

$$
\Delta S=n N_{\mathrm{A}} k \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

$\square k$ is the gas constant, R, divided by N_{A}. So, $k N_{\mathrm{A}}=R$, and:

$$
\Delta S=n R \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

■ Exactly the same as the result from the classical definition!

What About the Size of the Little Cubes?

■ Suppose that we divide each of the original cubes into 8 smaller cubes.

- If $N_{\mathrm{c}, 1}$ and $N_{\mathrm{c}, 2}$ are the numbers of the original cubes making up V_{1} and V_{2}, for the smaller cubes, we have:

$$
\begin{aligned}
& V_{1}=\left(8 \times N_{\mathrm{c}, 1}\right) \times V_{\mathrm{c}, \mathrm{~s}} \\
& V_{2}=\left(8 \times N_{\mathrm{c}, 2}\right) \times V_{\mathrm{c}, \mathrm{~s}}
\end{aligned}
$$

where $V_{\mathrm{c}, \mathrm{s}}$ is the volume of the new, smaller cubes.

What About the Size of the Little Cubes?

■ Change in entropy for changing the volume:

$$
\begin{aligned}
\Delta S & =S_{2}-S_{1}=k \ln \Omega_{2}-k \ln \Omega_{1} \\
& =k \ln \left(\frac{\left(8 \times N_{\mathrm{c}, 2}\right)^{N}}{N!}\right)-k \ln \left(\frac{\left(8 \times N_{\mathrm{c}, 1}\right)^{N}}{N!}\right) \\
\Delta S & =k \ln \left(\frac{\left(8 \times N_{\mathrm{c}, 2}\right)^{N}}{N!} \cdot \frac{N!}{\left(8 \times N_{\mathrm{c}, 1}\right)^{N}}\right)=k \ln \left(\frac{N_{\mathrm{c}, 2}}{N_{\mathrm{c}, 1}}\right)^{N} \\
& =N k \ln \left(\frac{N_{\mathrm{c}, 2}}{N_{\mathrm{c}, 1}}\right)
\end{aligned}
$$

■ The size factor (8) cancels out!

The Second Law of Thermodynamics

■ For a spontaneous process, the total entropy of the universe (the system and its surroundings) will increase.

$$
\Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0
$$

■ What does spontaneous mean?
Process occurs without an input of work to the system: $w \leq 0$.
If $w<0$, the process produces work.
■ $\Delta S_{\text {sys }}$ is the quantity we have been working with so far.
■ What is $\Delta S_{\text {surr }}$?

$$
\Delta S_{\text {surr }}=-\frac{q}{T}
$$

q is the heat absorbed by the system during the specific process being considered. $-q$ is the heat released to the surroundings.

The Second Law of Thermodynamics

■ For a spontaneous process at constant temperature:

$$
\begin{aligned}
\Delta S_{\text {univ }} & =\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0 \\
& =\frac{q_{\mathrm{rev}}}{T}-\frac{q}{T}>0
\end{aligned}
$$

- $S_{\text {surr }}$ is not a state function!
$\Delta S_{\text {surr }}$ depends on the path of the change in the system.
■ Flow of heat to surroundings represents an increase in entropy of the surroundings.

■ Heat flows spontaneously to surroundings only if the system is warmer than the surroundings: Another statement of the second law.

■ Entropy of the system can decrease in a spontaneous process, if there is a flow of heat to the surroundings.

Clicker Question \#1

What is $\Delta S_{\text {univ }}$?
Adiabatic expansion of a gas without work:

A) 0
B) $n R \ln \frac{V_{2}}{V_{1}}$
C) $n R \ln \frac{V_{1}}{V_{2}}$
D) $n R T \ln \frac{V_{2}}{V_{1}}$
E) $n R T \ln \frac{V_{1}}{V_{2}}$

Adiabatic Expansion of a Gas Without Work

■ $q=0$
■ $w=0$
$\square \Delta S_{\mathrm{sys}}=q_{\mathrm{rev}} / T=n R \ln \left(\frac{V_{2}}{V_{1}}\right)$
■ $\Delta S_{\text {surr }}=-q / T=0$
$\square \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=n R \ln \left(\frac{V_{2}}{V_{1}}\right)$
■ If $V_{2}>V_{1}, \Delta S_{\text {univ }}>0$
The process is spontaneous.

Clicker Question \#2

What is $\Delta S_{\text {univ }}$?
Reversible isothermal expansion of a gas:
A) 0
B) $n R \ln \frac{V_{2}}{V_{1}}$
C) $n R \ln \frac{V_{1}}{V_{2}}$
D) $n R T \ln \frac{V_{2}}{V_{1}}$
E) $n R T \ln \frac{V_{1}}{V_{2}}$

Reversible Isothermal Expansion of a Gas

Another Pathway for Gas Expansion

