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The Maximum-work Path for Isothermal Gas Expansion

Weight

Weight

Weight

Thermal Reservoir Thermal ReservoirThermal Reservoir

Piston is allowed to move upward in infinitesimally small steps.

Temperature is never allowed to drop.

Pressure drops as gas expands, so less work is done per step.

If larger steps are ever taken:
• The temperature drops.
• The pressure drops more than it would in an infinitesimal step.
• Less work is produced.



Work for the Isothermal Reversible Gas Expansion

wrev = −nRT ln(V )
˛̨̨V2
V1
= −nRT ln

„
V2
V1

«
= −nRT ln

„
C1

C2

«

wrev depends only on n, T , V1 and V2.
wrev represents a change in a state function, ∆F .

If V2 > V1, the gas expands and the system does work on the surroundings.

If V2 < V 1, the gas is compressed, and work is done on the system.



Reconsider the Adiabatic Expansion Without Work

Perfect

insulation

q = 0

w = 0

∆E = q + w = 0

∆F = wrev = −nRT ln
“

V2
V1

”
< 0

The energy available for work has decreased.

We suspect that this has to do with the loss of order, or increase in entropy.

But, what is entropy? How do we give it a number?



The “Classical” Definition of Entropy, S

Entropy is a state function.

For two states for which temperature remains constant during the reversible
process of converting one to the other:

∆S =
qrev
T

For two states separated by a reversible process for which the temperature does
not stay constant:

∆S =

Z T2

T1

qrev
T

dT

Units for entropy: energy/temperature, J/K.



Entropy Change for Isothermal Expansion of a Gas

From before, qrev:

qrev = −wrev = nRT ln

„
V2
V1

«
= nRT ln

„
C1

C2

«
Entropy:

∆S =
qrev
T

= nR ln

„
V2
V1

«
= nR ln

„
C1

C2

«

∆S is positive if volume increases (or concentration decreases).

∆S does not depend on temperature (in this case).

What does this have to do with order or disorder?



The Statistical Definition of Entropy

Ludwig Boltzmann, 1844–1906
Tombstone in Vienna, Austria

S = k ln Ω

k = Boltzmann’s constant, with
correct units for entropy (J/K).

What is Ω?

For a given state, Ω is the number of
equally probable ways to arrange the
components making up that state.

The different arrangements are called
microstates.

There is no proof! We believe it
because it works.



Calculating Ω For Gas Molecules in a Container

The state of the system at any instant is defined by the positions and velocities
of each of the molecules.

For a gas, there are a vast number of different microstates with different
positions and velocities for each molecule.

But, if the temperature isn’t going to change, we can focus just on the positions.



Calculating Ω For Gas Molecules in a Container

Divide volume of gas into small cubes: No. of molecules: N

Total volume: V

Volume of little cubes: Vc

No. of little cubes: Nc = V =Vc ≫ N

It is very unlikely that any of the little
cubes will have more than one
molecule in it, and most will have
none.



Calculating Ω For Gas Molecules in a Container

N is the number of molecules, and Nc is the number of little cubes that contain a
molecule. Nc ≫ N.

How many ways can we place N molecules in Nc positions?

There are Nc ways to place the first molecule.

There are Nc − 1 ways to place the second molecule. But, Nc − 1 ≈ Nc

The number of ways to place all N molecules is

≈ Nc · Nc · Nc · · ·Nc · Nc · Nc = NN
c

But, all of the molecules are identical, so we have to divide this number by the
number of ways of choosing the molecules, N!

Ω =
NN

c

N!



Calculating the Entropy of Gas Molecules in a Container

From Boltzmann:

S = k ln Ω = k ln

„
NN

c

N!

«

What if we divided the volume up into smaller cubes?
Would the the entropy change?

It’s OK, if we limit ourselves to changes in entropy.



Calculating ∆S for a Change in Gas Volume

Define starting and ending volumes in terms of the number of little cubes they
contain, Nc;1 and Nc;2.

The volumes of the individual little cubes is the same, Vc.

Change in entropy for changing the volume:

∆S = S2 − S1 = k ln Ω2 − k ln Ω1

= k ln

„
NN

c;2

N!

«
− k ln

„
NN

c;1

N!

«



Quick Review of Some Rules for Logarithms

ln(a · b) = ln(a) + ln(b)

ln

„
1

a

«
= − ln(a)

ln
“a
b

”
= ln(a)− ln(b)

ln(ab) = b ln(a)



Calculating ∆S for a Change in Gas Volume

Change in entropy for changing the volume:

∆S = S2 − S1 = k ln Ω2 − k ln Ω1

= k ln

„
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c;2

N!

«
− k ln

„
NN

c;1
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«
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„
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«
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„
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«

∆S = k ln

„
NN

c;2

N!
· N!
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«
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„
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c;2

NN
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«
= k ln

„
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Nc;1

«N

= Nk ln

„
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«



Calculating ∆S for a Change in Gas Volume

From the previous slide:

∆S = Nk ln

„
Nc;2

Nc;1

«
Nc;2 and Nc;1 (the number of little cubes in the two volumes) are related to the
volumes according to:

Nc;2

Nc;1

=
V2
V1

∆S = Nk ln

„
V2
V1

«



Calculating ∆S for a Change in Gas Volume

From the previous slide:

∆S = Nk ln

„
V2
V1

«
N is the number of molecules. If n is the number of moles, N = nNA

∆S = nNAk ln

„
V2
V1

«
k is the gas constant, R, divided by NA. So, kNA = R, and:

∆S = nR ln

„
V2
V1

«
Exactly the same as the result from the classical definition!



What About the Size of the Little Cubes?

Suppose that we divide each of the original cubes into 8 smaller cubes.

If Nc;1 and Nc;2 are the numbers of the original cubes making up V1 and V2, for
the smaller cubes, we have:

V1 = (8× Nc;1)× Vc;s

V2 = (8× Nc;2)× Vc;s

where Vc;s is the volume of the new, smaller cubes.



What About the Size of the Little Cubes?

Change in entropy for changing the volume:

∆S = S2 − S1 = k ln Ω2 − k ln Ω1

= k ln

„
(8× Nc;2)

N

N!

«
− k ln

„
(8× Nc;1)

N

N!

«

∆S = k ln

„
(8× Nc;2)

N

N!
· N!

(8× Nc;1)N

«
= k ln

„
Nc;2

Nc;1

«N

= Nk ln

„
Nc;2

Nc;1

«
The size factor (8) cancels out!



The Second Law of Thermodynamics

For a spontaneous process, the total entropy of the universe
(the system and its surroundings) will increase.

∆Suniv = ∆Ssys +∆Ssurr > 0

What does spontaneous mean?

Process occurs without an input of work to the system: w ≤ 0.

If w < 0, the process produces work.

∆Ssys is the quantity we have been working with so far.

What is ∆Ssurr?

∆Ssurr = − q

T

q is the heat absorbed by the system during the specific process being
considered. −q is the heat released to the surroundings.



The Second Law of Thermodynamics

For a spontaneous process at constant temperature:

∆Suniv = ∆Ssys +∆Ssurr > 0

=
qrev
T

− q

T
> 0

Ssurr is not a state function!

∆Ssurr depends on the path of the change in the system.

Flow of heat to surroundings represents an increase in entropy of the
surroundings.

Heat flows spontaneously to surroundings only if the system is warmer than the
surroundings: Another statement of the second law.

Entropy of the system can decrease in a spontaneous process, if there is a flow
of heat to the surroundings.



Clicker Question #1

Adiabatic expansion of a gas
without work:

Perfect

insulation

What is ∆Suniv?

A) 0

B) nR ln
V2
V1

C) nR ln V1
V2

D) nRT ln V2
V1

E) nRT ln V1
V2



Adiabatic Expansion of a Gas Without Work

Perfect

insulation

q = 0

w = 0

∆Ssys = qrev=T = nR ln
“

V2
V1

”
∆Ssurr = −q=T = 0

∆Suniv = ∆Ssys +∆Ssurr = nR ln
“

V2
V1

”
If V2 > V1, ∆Suniv > 0

The process is spontaneous.



Clicker Question #2

Reversible isothermal
expansion of a gas:

Weight

Thermal Reservoir

(Constant T)

Weight

Thermal Reservoir

(Constant T)

What is ∆Suniv?

A) 0

B) nR ln V2
V1

C) nR ln V1
V2

D) nRT ln V2
V1

E) nRT ln V1
V2



Reversible Isothermal Expansion of a Gas

Weight

Thermal Reservoir

(Constant T)

Weight

Thermal Reservoir

(Constant T)

w = wrev = −nRT ln
“

V2
V1

”
q = qrev = nRT ln

“
V2
V1

”
∆Ssys = qrev=T = nR ln

“
V2
V1

”
∆Ssurr = −q=T = −nR ln

“
V2
V1

”
∆Suniv = ∆Ssys +∆Ssurr = 0

The process is on the edge of being
spontaneous, because all of the available work
has been obtained.



Another Pathway for Gas Expansion
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Weight

Thermal Reservoir

(Constant T)

Adiabatic

 

expansion

Thermal 

equilibration


