Physical Principles in Biology
 Biology 3550
 Spring 2024
 Lecture 27
 Enthalpy, the Gibbs Free Energy and Equilibrium Constants

Friday, 22 March 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Problem Set 4:
- Due Monday, 1 April at 11:59 PM
- Submit pdf file on Gradescope

■ Quiz 4:

- Friday, 29 March
- 25 min , second half of class
- Will cover thermodynamics
- 50 min

■ Review Session:

- 5:15 PM, Thursday, 28 March
- HEB 2002
- Come with questions!

■ No class on Monday, 8 April

A Hypothetical Example of a Chemical Reaction

■ What happens if a chemical reaction takes place in a perfectly insulated chamber?

■ $q=0$ and $w=0$, so ΔE must be zero.
■ Can the temperature change?
■ Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.

Potential Energy of Molecules

■ When atoms or molecules react chemically, their energies often change.

- Forming a chemical bond usually reduces potential energy of molecules.
- Breaking a chemical bond usually increases potential energy of molecules.

■ If the potential energy decreases, where can that energy go?

- Kinetic energy (temperature) increases.
- Heat flows out of the system. $(q<0)$
- Work is done by the system. $(w<0)$
- Some combination of the above.

■ Exactly what happens depends on pathways available for heat flow or work.
■ Using the second law directly, with $\Delta S_{\text {sys }}$ and $\Delta S_{\text {surr }}$, gets awkward.

J. Willard Gibbs

■ Arguably the first great American theoretical scientist.

■ Consolidated thermodynamics into a consistent theory.

■ Applied thermodynamics to chemistry.
■ Also made important contributions in math and optics.

A New State Function: Enthalpy (H)

- Enthalpy, H, is closely related to the internal energy, E.

$$
H=E+P V
$$

The product $P V$ has the units of energy or work.
■ For a process at constant pressure:

$$
\Delta H=\Delta E+P \Delta V
$$

$P \Delta V$ is work due to a change in volume at constant pressure.

- Two new quantities:
- $w_{\mathrm{p}}=-P \Delta V=$ work done on system in constant pressure process
- $q_{p}=$ heat absorbed by system in constant pressure process
- From the first law:

$$
\begin{aligned}
& \Delta E=q_{\mathrm{p}}+w_{\mathrm{p}}=q_{\mathrm{p}}-P \Delta V \\
& P \Delta V=q_{\mathrm{p}}-\Delta E \\
& \Delta H=\Delta E+P \Delta V=\Delta E+\left(q_{\mathrm{p}}-\Delta E\right)=q_{\mathrm{p}}
\end{aligned}
$$

A New State Function: Enthalpy (H)

Two consistent definitions for ΔH at constant pressure:
■ ΔE plus work done on the system due to volume change

$$
\Delta H=\Delta E+P \Delta V
$$

If there is no volume change, then $P \Delta V=0$, and $\Delta H=\Delta E$.
■ The heat absorbed during the constant pressure process:

$$
\Delta H=q_{p}
$$

Chemical and biochemical reactions are usually studied under conditions of constant (or nearly constant) pressure, and ΔV is usually very small.
ΔH can be experimentally measured.

Measuring ΔH with a Calorimeter

■ The water bath represents the "surroundings".
■ If $\Delta H<0$, heat flows from the reaction vessel and warms the water.
■ If $\Delta H>0$, heat flows into the reaction vessel, and water temperature decreases.

$$
\Delta H=-\frac{\Delta T_{\text {water }}}{\text { mass of water }(\mathrm{g})} \quad \text { (in calories) }
$$

The Gibbs Free Energy, a State Function

- $G=H-T S_{\text {sys }}$
- For a process at constant temperature:

$$
\Delta G=\Delta H-T \Delta S_{\mathrm{sys}}
$$

■ Since $\Delta S_{\text {surr }}=-q / T$, at constant temperature:

$$
\begin{aligned}
& \Delta S_{\text {surr }}=-q_{\mathrm{p}} / T \\
& T \Delta S_{\text {surr }}=-q_{\mathrm{p}}=-\Delta H \\
& \Delta H=-T \Delta S_{\text {surr }} \\
& \Delta G=-T \Delta S_{\text {surr }}-T \Delta S_{\text {sys }}=-T\left(\Delta S_{\text {surr }}+\Delta S_{\text {sys }}\right) \\
& \Delta G=-T \Delta S_{\text {univ }}
\end{aligned}
$$

$■$ Or, $\Delta S_{\text {univ }}=-\Delta G / T$

The Gibbs Free Energy is Used to Apply the Second Law

■ From the previous slide:

$$
\Delta S_{\text {univ }}=-\Delta G / T
$$

■ If $\Delta G<0$

- $\Delta S_{\text {univ }}>0$, and the process will be spontaneous.

■ If $\Delta G>0$

- $\Delta S_{\text {univ }}<0$, and the reverse process will be spontaneous.

■ If $\Delta G=0$

- $\Delta S_{\text {univ }}=0$, and the process is reversible. (Can be pushed in either direction.)
- $\Delta G=0$ defines a system at equilibrium.
- All based on state functions of the system! (at constant pressure)

Don't have to worry about the surroundings.

What About Free Energy as Energy Available to do Work?

■ The change in Helmholtz free energy, as previously defined:

$$
\Delta F=w_{\mathrm{rev}}
$$

$-w_{\text {rev }}$ is the maximum work available from a spontaneous process.

- From the first law:

$$
\begin{aligned}
& \Delta E=q_{\mathrm{rev}}+w_{\mathrm{rev}} \\
& w_{\mathrm{rev}}=\Delta E-q_{\mathrm{rev}} \\
& \Delta F=\Delta E-q_{\mathrm{rev}}
\end{aligned}
$$

- For a constant-temperature process:

$$
\begin{aligned}
& \Delta S_{\mathrm{sys}}=\frac{q_{\mathrm{rev}}}{T} \\
& q_{\mathrm{rev}}=T \Delta S_{\mathrm{sys}} \\
& \Delta F=\Delta E-T \Delta S_{\mathrm{sys}}
\end{aligned}
$$

The Helmholtz and Gibbs Free Energy Functions

■ For a constant temperature process:

$$
\Delta F=\Delta E-T \Delta S_{\mathrm{sys}}
$$

■ The standard definition of the Helmholz free energy:

$$
F=E-T S_{\mathrm{sys}}
$$

- Compare to:

$$
\Delta G=\Delta H-T \Delta S_{\mathrm{sys}}
$$

■ Since $\Delta H=\Delta E-w_{p}$:

$$
\Delta G=\Delta F-w_{\mathrm{p}}
$$

$-\Delta G$ is the maximum work available from a process $(-\Delta F)$ minus the work due to volume change at constant pressure.

The Helmholtz Free Energy

■ From previous slide:

$$
\Delta G=\Delta F-w_{p}
$$

■ If volume change is small, and w_{p} can be ignored:

- $\Delta G \approx \Delta F$
- If $\Delta G<0$: Process is favorable, and the maximum work available from the process is: $-\Delta F=-\Delta G-w_{p} \approx-\Delta G$
- If $\Delta G>0$: Process is unfavorable, and the minimum work required to drive the process is: $\Delta F=\Delta G+w_{\mathrm{p}} \approx \Delta G$

■ Commonly made assumptions for chemical reactions in dilute solutions:

- $P \Delta V=-w_{\mathrm{p}} \approx 0$
- $\Delta H \approx \Delta E: \Delta H$ Represents change in internal energy.
- $\Delta G \approx \Delta F:-\Delta G$ Represents maximum work from a spontaneous process.

Warning!

Direction Change

Equilibrium Constants

The Equilibrium Constant for a Chemical Reaction

$A \rightleftharpoons B$

- The reaction can occur in either direction. (at least in principle)
- The probability that any molecule of A will be converted to a molecule of B is the same as for any other molecule of A.
- The total rate of conversion of A to B is proportional to the concentration of A.
- Similarly, the total rate of conversion of B to A is proportional to the concentration of B.
- A differential equation:

$$
\frac{d[\mathrm{~A}]}{d t}=-k_{f}[\mathrm{~A}]+k_{\mathrm{r}}[\mathrm{~B}]
$$

The constants k_{f} and k_{r} are called rate constants.

The Equilibrium Constant for a Chemical Reaction

$$
\mathrm{A} \underset{k_{\mathrm{r}}}{\stackrel{k_{\mathrm{f}}}{\rightleftharpoons}} \mathrm{~B}
$$

■ From the previous slide:

$$
\frac{d[\mathrm{~A}]}{d t}=-k_{\mathrm{f}}[\mathrm{~A}]+k_{\mathrm{r}}[\mathrm{~B}]
$$

■ Whatever the starting concentrations, $[A]$ and $[B]$ will eventually adjust so that they no longer change.

■ At equilibrium:

$$
\frac{d[\mathrm{~A}]}{d t}=-\frac{d[\mathrm{~B}]}{d t}=0
$$

The Equilibrium Constant for a Chemical Reaction

$$
\mathrm{A} \underset{k_{r}}{\stackrel{k_{f}}{\rightleftharpoons}} \mathrm{~B}
$$

■ At equilibrium:

$$
\frac{d[\mathrm{~A}]}{d t}=-\frac{d[\mathrm{~B}]}{d t}=-k_{\mathrm{f}}[\mathrm{~A}]_{\mathrm{eq}}+k_{\mathrm{r}}[\mathrm{~B}]_{\mathrm{eq}}=0
$$

$[A]_{e q}$ and $[B]_{e q}$ are the concentrations of A and B at equilibrium.

- Rearranging:

$$
\begin{aligned}
& k_{r}[\mathrm{~B}]_{\mathrm{eq}}=k_{\mathrm{f}}[\mathrm{~A}]_{\mathrm{eq}} \\
& \frac{[\mathrm{~B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}}=\frac{k_{\mathrm{f}}}{k_{\mathrm{r}}}=K_{\mathrm{eq}}
\end{aligned}
$$

$K_{\text {eq }}$ is defined as the equilibrium constant.

The Equilibrium Constant and Free Energy Change for a Chemical Reaction

$$
\mathrm{A} \rightleftharpoons \mathrm{~B} \quad K_{\text {eq }}=\frac{[\mathrm{B}]_{\text {eq }}}{[\mathrm{A}]_{\text {eq }}}
$$

■ At equilibrium, a little bit of work can push the reaction in either direction.
This defines the condition where $\Delta G=0$
No work can be done!
■ Definition of ΔG for a chemical reaction:
The free energy change for converting one mole of reactants to one mole of products, at specified concentrations, without significantly changing concentrations(!).

Implies a very, very large volume!
Or, a mechanism that restores concentrations continuously.

The Relationship Between Free Energy and the Equilibrium Constant

$$
A \rightleftharpoons B
$$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}}
$$

- ΔG depends on concentrations of A and B .
- If $\frac{[B]}{[A]}<K_{\text {eq }}$, the reaction will try to shift towards $B, \Delta G<0$
- If $\frac{[\mathrm{B}]}{[\mathrm{A}]}>K_{\text {eq }}$, the reaction will try to shift back to $\mathrm{A}, \Delta G>0$
- Define standard concentrations to specify ΔG :
- Concentrations of all species are 1 M for solutions or 1 atm for gasses.
- Free energy change at these concentrations is called ΔG°.

The Relationship Between Free Energy and the Equilibrium Constant

- If reactants and products are at equilibrium concentrations:

$$
\Delta G=0
$$

- If reactants and products are at standard state concentrations (1 M):

$$
\begin{aligned}
& \Delta G \equiv \Delta G^{\circ} \\
& \Delta G^{\circ}=-R T \ln \frac{[\mathrm{~B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}}=-R T \ln K_{\text {eq }}
\end{aligned}
$$

ΔG° and $K_{\text {eq }}$ convey essentially the same information.

- For other concentrations:

$$
\Delta G=\Delta G^{\circ}+R T \ln \frac{[\mathrm{~B}]}{[\mathrm{A}]}
$$

The Relationship Between the Standard Free Energy Change and the Equilibrium Constant

$$
\begin{aligned}
\Delta G^{\circ}=-R T & \ln K_{\mathrm{eq}} \quad \mathrm{~A} \rightleftharpoons \mathrm{~B} \quad K_{\mathrm{eq}}=\frac{[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}} \\
\square & \text { If } K_{\mathrm{eq}}>1 \text { : } \\
& \bullet \text { Reaction favors } \mathrm{B} \text { over } \mathrm{A} . \\
& \bullet \Delta G^{\circ}<0 \\
\square & \text { If } K_{\mathrm{eq}}<1 \text { : } \\
& \bullet \text { Reaction favors } \mathrm{A} \text { over } \mathrm{B} . \\
& \bullet \Delta G^{\circ}>0 \\
\square & \text { If } K_{\mathrm{eq}}=1 \text { : } \\
& \bullet \mathrm{A} \text { and } \mathrm{B} \text { have equal free energies. } \\
& \bullet \Delta G^{\circ}=0
\end{aligned}
$$

Clicker Question \#1

For a hypothetical reaction, $\mathrm{A} \rightleftharpoons \mathrm{B}, K_{\text {eq }}=1500$ at $25^{\circ} \mathrm{C}$.
What is the standard free energy change at this temperature?

$$
R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

A) $-8 \mathrm{~kJ} / \mathrm{mol}$
B) $-18 \mathrm{~kJ} / \mathrm{mol}$
C) $0 \mathrm{~kJ} / \mathrm{mol}$
D) $8 \mathrm{~kJ} / \mathrm{mol}$
E) $18 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K_{\text {eq }}=-8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K} \times \ln 1500 \\
& =-18,000 \mathrm{~J} / \mathrm{mol}=-18 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Clicker Question \#2

For a different hypothetical reaction, $\mathrm{C} \rightleftharpoons \mathrm{D}, \Delta G^{\circ}=5 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. What is the equilibrium constant at this temperature?
A) -1
B) -0.13
C) 0.13
D) 1
E) 7.5

$$
K_{\mathrm{eq}}=e^{-\Delta G^{\circ} /(R T)}=e^{-5,000 \mathrm{~J} / \mathrm{mol} /\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}\right)}=0.13
$$

