Physical Principles in Biology Biology 3550 Spring 2025

Lecture 28

Chemical Thermodynamics Continued: Bimolecular Reactions and Metabolism

Monday, 24 March 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

Quiz 4:

- Friday, 28 March
- 25 min, second half of class
- Will cover material on thermodynamics
- Problem set 4
 - Due Friday, 28 March, 11:59 PM

A New State Function: Enthalpy (H)

Two consistent definitions for ΔH at constant pressure:

• ΔE plus work done by the system due to volume change

 $\Delta H = \Delta E + P \Delta V$

If there is no volume change, then $P\Delta V = 0$, and $\Delta H = \Delta E$.

The heat absorbed during the constant pressure process:

$$\Delta H = q_{\rm p}$$

Chemical and biochemical reactions are often studied under conditions of constant (or nearly constant) pressure, and ΔV is usually very small.

- If $\Delta H \approx \Delta E$, ΔH represents change in internal energy.
- ΔH can be experimentally measured.

The Gibbs Free Energy, Another State Function

$$\bullet \ G = H - TS_{\rm sys}$$

For a process at constant temperature:

$$\Delta G = \Delta H - T \Delta S_{sys}$$

Since $\Delta S_{surr} = -q_p/T$, at constant pressure and temperature:

$$T\Delta S_{surr} = -q_{p} = -\Delta H$$

$$\Delta H = -T\Delta S_{surr}$$

$$\Delta G = -T\Delta S_{surr} - T\Delta S_{sys} = -T(\Delta S_{surr} + \Delta S_{sys})$$

$$\Delta G = -T\Delta S_{univ}$$

• Or, $\Delta S_{univ} = -\Delta G/T$

The Gibbs Free Energy is Used to Apply the Second Law

From the previous slide:

$$\Delta S_{
m univ} = -\Delta G/T$$

- If $\Delta G < 0$
 - $\Delta S_{univ} > 0$, and the process will be spontaneous.
- If $\Delta G > 0$
 - $\Delta S_{univ} < 0$, and the <u>reverse</u> process will be spontaneous.
- If $\Delta G = 0$
 - $\Delta S_{univ} = 0$, and the process is reversible. (Can be pushed in either direction.)
 - $\Delta G = 0$ defines a system at equilibrium.
- All based on state functions of the system! (at constant pressure) Don't have to worry (explicitly) about the surroundings.

The Relationship Between Free Energy and the Equilibrium Constant for a Chemical Reaction

$$A \rightleftharpoons B \qquad \qquad \mathcal{K}_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

• ΔG depends on concentrations of A and B.

• If
$$\frac{[B]}{[A]} < K_{eq}$$
, the reaction will try to shift towards B, $\Delta G < 0$

• If
$$\frac{[\mathsf{B}]}{[\mathsf{A}]} > \mathcal{K}_{\mathsf{eq}}$$
, the reaction will try to shift back to A, $\Delta G > 0$

- Define standard concentrations to specify ΔG :
 - Concentrations of all species are 1 M for solutions or 1 atm for gasses.
 - Free energy change at these concentrations is called ΔG° .

The Relationship Between Free Energy and the Equilibrium Constant

If reactants and products are at standard state concentrations (1 M):

 $\Delta G \equiv \Delta G^{\circ}$

For other concentrations:

$$\Delta G = \Delta G^{\circ} + RT \ln rac{[B]}{[A]}$$

If reactants and products are at equilibrium concentrations:

$$\Delta G = 0$$

 $\Delta G^{\circ} = -RT \ln rac{[B]_{eq}}{[A]_{eq}} = -RT \ln K_{eq}$

 ΔG° and K_{eq} convey essentially the same information.

The Relationship Between the Standard Free Energy Change

and the Equilibrium Constant

$$\Delta G^{\circ} = -RT \ln K_{eq} \qquad A \rightleftharpoons B \qquad K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

If $K_{eq} > 1$:

- Reaction favors B over A.
- $\Delta G^{\circ} < 0$
- If $K_{eq} < 1$:
 - Reaction favors A over B.
 - $\Delta G^{\circ} > 0$
- If $K_{eq} = 1$:
 - A and B have equal free energies.
 - $\Delta G^\circ = 0$

Reactions with More than One Reactant or Product

- A reaction with two reactants and two products: $aA + bB \rightleftharpoons cC + dD$
 - a, b, c and d represent stoichiometry
- The equilibrium constant:

$$\mathcal{K}_{\mathsf{eq}} = rac{\left[\mathsf{C}
ight]_{\mathsf{eq}}^{c}\left[\mathsf{D}
ight]_{\mathsf{eq}}^{d}}{\left[\mathsf{A}
ight]_{\mathsf{eq}}^{a}\left[\mathsf{B}
ight]_{\mathsf{eq}}^{b}}$$

Products over reactants! (Mrs. Freeman)

The reaction quotient:

$$Q = \frac{\left[\mathsf{C}\right]^{c}\left[\mathsf{D}\right]^{d}}{\left[\mathsf{A}\right]^{a}\left[\mathsf{B}\right]^{b}}$$

When concentrations are not necessarily at equilibrium.

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

From Two Molecules to One

- A reaction with two reactants and one products: $A + B \rightleftharpoons C$
- The equilibrium constant:

$$\mathcal{K}_{\mathsf{eq}} = rac{[\mathsf{C}]_{\mathsf{eq}}}{[\mathsf{A}]_{\mathsf{eq}}[\mathsf{B}]_{\mathsf{eq}}}$$

Some problems:

- The equilibrium constant has units of inverse concentration.
- The numerical value of K_{eq} will depend on the units that we use for concentration
- What happens when we try to calculate ΔG°?

 $\Delta G^{\circ} = -RT \ln K_{eq}$

Logarithms are functions of pure numbers. How do we take a logarithm of a value with units?

From Two Molecules to One

$$A + B \rightleftharpoons C$$

- Defining standard states is important!
 - Standard state concentration is usually defined as 1 M
 - For calculating the standard free energy change, refine the definition of the equilibrium constant:

$$\mathcal{K}_{eq} = \frac{\left([C]_{eq}/1\,M\right)}{\left([A]_{eq}/1\,M\right)\left([B]_{eq}/1\,M\right)}$$

- Now, *K*_{eq} is dimensionless, and we don't have to feel guilty about taking the logarithm.
- But, value of ΔG depends on choice of standard state concentrations. Why?

A Hypothetical Example of a Chemical Reaction

• q = 0 and w = 0, so ΔE must be zero.

- Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.
- What else changes?
- How much does the entropy change?

The Entropy Change for a Bimolecular Reaction

 $\blacksquare \mathsf{A} + \mathsf{B} \rightleftharpoons \mathsf{C}$

- Assume a volume made up of *N*_c little cubes:
 - The number of ways to place a molecule of A and a molecule of B in the volume:

 $\Omega_{A,B} = \textit{N}_c^2$

• The number of ways to place a molecule of C in the volume:

$$\Omega_{C}=\textit{N}_{c}$$

The entropy change

$$\Delta S = k \ln(\Omega_{\rm C}) - k \ln(\Omega_{\rm A,B}) = k \ln(N_{\rm c}) - k \ln(N_{\rm c}^2)$$
$$= k \ln\left(\frac{N_{\rm c}}{N_{\rm c}^2}\right) = -k \ln(N_{\rm c})$$

The entropy decreases!

The Entropy Change for a Bimolecular Reaction

From previous slide:

 $\Delta S = -k \ln(N_{\rm c})$

- In this case, the number of little cubes doesn't cancel out, and the size of the cubes matters!
- A plausible estimate:
 - Make the cubes about the right size to hold one or two small molecules,

$$V_{\rm c} = (1\,{\rm nm})^3 = 1\,{\rm nm}^3$$

• For a volume of 1 L:

$$N_{\rm c} = \frac{1 \, {\rm L}}{1 \, {\rm nm}^3} imes rac{10^{-3} \, {\rm m}^3}{L} imes \left(rac{10^9 \, {\rm nm}}{{
m m}}
ight)^3 = 10^{24}$$

The Entropy Change for a Bimolecular Reaction

For one molecule of A and B converted to C in a volume of 1 L:

$$\Delta S = -k \ln(N_{\rm c}) = -k \ln(10^{24})$$

For one mole each of A and B converted to C, in 1 L:

$$\Delta S = -N_{\rm A}k\ln(10^{24})$$

= $-R\ln(10^{24})$

For reactants and products at 1 M concentration:

$$\Delta S = -R \ln(10^{24}) = -8.31 \, {
m J/K} imes 53 = -460 \, {
m J/K}$$

Clicker Question #1

If the reaction volume is doubled for the reaction $A + B \rightleftharpoons C$, How will the entropy change be affected?

A) ΔS will be unaffected.

B) ΔS will become more negative.

C) ΔS will become less negative.

$$\Delta S = -k \ln(N_{
m c}) = -k \ln(V({
m L}) imes 10^{24})$$

A Bimolecular Reaction

 $\blacksquare \mathsf{A} + \mathsf{B} \rightleftharpoons \mathsf{C}$

An estimate of the entropy change for combining two molecules into one:

 $\Delta S = -460 \,\mathrm{J/K}$

Total free energy change for the reaction:

 $\Delta G = \Delta H - T \Delta S$

■ The contribution of entropy change to the free energy change at 298 K:

 $-T\Delta S = 298 \text{ K} \times 460 \text{ J/K}$ = 140 kJ/mol

- This is a large, unfavorable contribution to ΔG .
- For the reaction to be favorable, there must be other factors that make the total free energy change negative.

A Bimolecular Reaction

- $\blacksquare \mathsf{A} + \mathsf{B} \rightleftharpoons \mathsf{C}$
- $\Delta S = -460 \text{ J/K}$
- $-T\Delta S = 140 \, \text{kJ/mol}$
- Some caveats:
 - This is a highly simplified treatment.
 - Choice of V_c is not very well justified.
 - Ignores rotational freedom of molecules.
 - Ignores internal motions of molecules.
 - This is a controversial subject! But this estimate is within the bounds of the controversy! (at the lower end)
- ΔG° , defined with specific concentration units, contains within it the entropy change at the standard state concentration.
- If the concentrations change, ΔS changes!

Warning!

Direction Change

Chemical Energy and Metabolism

Chemical Energy

■ What does "chemical energy" mean?

http://www.caffeineinformer.com

http://www.philosophersguild.com

An Energetic Chemical Reaction, Under Some Conditions

 $\mathsf{C_6H_{12}O_6} + \mathsf{6O_2} \Longrightarrow \mathsf{6CO_2} + \mathsf{6H_2O}$

Oxidation of glucose (or other hexose) by molecular oxygen.

Free energy change depends on concentrations.

Standard state conditions: 1 M glucose, 1 atm O₂ and CO₂

•
$$\Delta G^\circ = -2.7 imes 10^6 \text{ J/mol} = -2$$
, 700 kJ/mol

Equilibrium constant:

$$K_{\rm eq} = \frac{[{\rm CO}_2]_{\rm eq}^6}{[{\rm C}_6{\rm H}_{12}{\rm O}_6]_{\rm eq}[{\rm O}_2]_{\rm eq}^6} = e^{-\Delta G^\circ/(RT)} \approx 10^{473} \,{\rm M}^{-1}$$

(Water is ignored in equilibrium constant.)

Extremely favorable!

- But, this assumes 1 atm O₂ and CO₂.
- Reaction only became favorable about 2.5 billion years ago, when oxygen became abundant on earth.

Nutritional Calories

Measured as the heat for complete combustion with excess O₂ at constant temperature and volume (no work).

"bomb calorimeter"

- Since, w = 0, $q = \Delta E$ = change in potential energy
- For glucose, $\Delta E = -4 \text{ kcal/g} = -175 \text{ kJ/mol}$, vs $\Delta G^{\circ} = -2$, 700 kJ/mol.

Why are these numbers so different?

 $\Delta G = \Delta H - T \Delta S$

 $C_6H_{12}O_6 + 6O_2 \Longrightarrow 6CO_2 + 6H_2O$

There is a large increase in entropy, 7 molecules are converted to 12.

Nutritionists estimate the amount of work required to offset the metabolism of a given number of nutritional calories.

Another "High-energy" Reaction

• $\Delta G^{\circ} = -30 \, \text{kJ/mol}$