Physical Principles in Biology
 Biology 3550

Spring 2024
Lecture 28
Chemical Thermodynamics Continued:
Bimolecular Reactions and Metabolism
Monday, 25 March 2024
©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Problem Set 4:
- Due Monday, 1 April at 11:59 PM
- Submit pdf file on Gradescope

■ Quiz 4:

- Friday, 29 March
- 25 min , second half of class
- Will cover thermodynamics
- 50 min

■ Review Session:

- 5:15 PM, Thursday, 28 March
- HEB 2002
- Come with questions!

■ No class on Monday, 8 April

A Hypothetical Example of a Chemical Reaction

■ What happens if a chemical reaction takes place in a perfectly insulated chamber?

- $q=0$ and $w=0$, so ΔE must be zero.

■ Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.

The Relationship Between Free Energy and the Equilibrium Constant

$$
A \rightleftharpoons B
$$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}}
$$

- ΔG depends on concentrations of A and B .
- If $\frac{[B]}{[A]}<K_{\text {eq }}$, the reaction will try to shift towards $B, \Delta G<0$
- If $\frac{[\mathrm{B}]}{[\mathrm{A}]}>K_{\text {eq }}$, the reaction will try to shift back to $\mathrm{A}, \Delta G>0$
- Define standard concentrations to specify ΔG :
- Concentrations of all species are 1 M for solutions or 1 atm for gasses.
- Free energy change at these concentrations is called ΔG°.

The Relationship Between Free Energy and the Equilibrium Constant

- If reactants and products are at equilibrium concentrations:

$$
\Delta G=0
$$

- If reactants and products are at standard state concentrations (1 M):

$$
\begin{aligned}
& \Delta G \equiv \Delta G^{\circ} \\
& \Delta G^{\circ}=-R T \ln \frac{[\mathrm{~B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}}=-R T \ln K_{\text {eq }}
\end{aligned}
$$

ΔG° and $K_{\text {eq }}$ convey essentially the same information.

- For other concentrations:

$$
\Delta G=\Delta G^{\circ}+R T \ln \frac{[\mathrm{~B}]}{[\mathrm{A}]}
$$

The Relationship Between the Standard Free Energy Change and the Equilibrium Constant

$$
\begin{aligned}
\Delta G^{\circ}=-R T & \ln K_{\mathrm{eq}} \quad \mathrm{~A} \rightleftharpoons \mathrm{~B} \quad K_{\mathrm{eq}}=\frac{[\mathrm{B}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}} \\
\square & \text { If } K_{\mathrm{eq}}>1 \text { : } \\
& \bullet \text { Reaction favors } \mathrm{B} \text { over } \mathrm{A} . \\
& \bullet \Delta G^{\circ}<0 \\
\square & \text { If } K_{\mathrm{eq}}<1 \text { : } \\
& \bullet \text { Reaction favors } \mathrm{A} \text { over } \mathrm{B} . \\
& \bullet \Delta G^{\circ}>0 \\
\square & \text { If } K_{\mathrm{eq}}=1 \text { : } \\
& \bullet \mathrm{A} \text { and } \mathrm{B} \text { have equal free energies. } \\
& \bullet \Delta G^{\circ}=0
\end{aligned}
$$

Clicker Question \#1

For the reaction, $A \rightleftharpoons B$, the standard free energy change, ΔG°, is $-18 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$.

What is the free energy change when the concentrations of A and B are 10 mM and 200 mM , respectively?
A) $-18 \mathrm{~kJ} / \mathrm{mol}$
B) $-11 \mathrm{~kJ} / \mathrm{mol}$
C) $-7 \mathrm{~kJ} / \mathrm{mol}$
D) $7 \mathrm{~kJ} / \mathrm{mol}$
E) $18 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
\Delta G & =\Delta G^{\circ}+R T \ln \frac{[\mathrm{~B}]}{[\mathrm{A}]}=-18,000 \mathrm{~J} / \mathrm{mol}+8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K} \times \ln \frac{200 \mathrm{mM}}{10 \mathrm{mM}} \\
& =11,000 \mathrm{~J} / \mathrm{mol}=-11 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Reactions with More than One Reactant or Product

- A reaction with two reactants and two products: $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$ $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d represent stoichiometry
- The equilibrium constant:

$$
K_{\text {eq }}=\frac{[C]_{\mathrm{eq}}^{c}[D]_{\mathrm{eq}}^{d}}{[A]_{\mathrm{eq}}^{d}[B]_{\mathrm{eq}}^{b}}
$$

Products over reactants! (Mrs. Freeman)

- The reaction quotient:

$$
Q=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
$$

When concentrations are not necessarily at equilibrium.

- $\Delta G=\Delta G^{\circ}+R T \ln Q$

From Two Molecules to One

- A reaction with two reactants and one products: $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$
- The equilibrium constant:

$$
K_{\mathrm{eq}}=\frac{[\mathrm{C}]_{\mathrm{eq}}}{[\mathrm{~A}]_{\mathrm{eq}}[\mathrm{~B}]_{\mathrm{eq}}}
$$

- Some problems:
- The equilibrium constant has units of inverse concentration.
- The numerical value of $K_{\text {eq }}$ will depend on the units that we use for concentration
- What happens when we try to calculate ΔG° ?

$$
\Delta G^{\circ}=R T \ln K_{\text {eq }}
$$

Logarithms are functions of pure numbers. How do we take a logarithm of a value with units?

From Two Molecules to One

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}
$$

■ Defining standard states is important!

- Standard state concentration is usually defined as 1 M
- For thermodynamic purposes, refine the definition of the equilibrium constant:

$$
K_{\mathrm{eq}}=\frac{\left([\mathrm{C}]_{\mathrm{eq}} / 1 \mathrm{M}\right)}{\left([\mathrm{A}]_{\mathrm{eq}} / 1 \mathrm{M}\right)\left([\mathrm{B}]_{\mathrm{eq}} / 1 \mathrm{M}\right)}
$$

- Now, $K_{\text {eq }}$ is dimensionless, and we don't have to feel guilty about taking the logarithm.
- But, value of ΔG depends on choice of standard state concentrations. Why?

A Hypothetical Example of a Chemical Reaction

■ $q=0$ and $w=0$, so ΔE must be zero.

- Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.

■ What else changes?

The Entropy Change for a Bimolecular Reaction

$\square A+B \rightleftharpoons C$

- Assume a volume made up of N_{c} little cubes:
- The number of ways to place a molecule of A and a molecule of B in the volume:

$$
\Omega_{A, B}=N_{c}^{2}
$$

- The number of ways to place a molecule of C in the volume:

$$
\Omega_{\mathrm{C}}=N_{\mathrm{c}}
$$

- The entropy change

$$
\begin{aligned}
\Delta S & =k \ln \left(\Omega_{\mathrm{C}}\right)-k \ln \left(\Omega_{\mathrm{A}, \mathrm{~B}}\right)=k \ln \left(N_{\mathrm{c}}\right)-k \ln \left(N_{\mathrm{c}}^{2}\right) \\
& =k \ln \left(\frac{N_{\mathrm{c}}}{N_{\mathrm{c}}^{2}}\right)=-k \ln \left(N_{\mathrm{c}}\right)
\end{aligned}
$$

- The entropy decreases!

The Entropy Change for a Bimolecular Reaction

■ From previous slide:

$$
\Delta S=-k \ln \left(N_{c}\right)
$$

■ In this case, the number of little cubes doesn't cancel out, and the size of the cubes matters.

- A plausible estimate:
- Make the cubes about the right size to hold one or two small molecules,

$$
V_{c}=(1 \mathrm{~nm})^{3}=1 \mathrm{~nm}^{3}
$$

- For a volume of 1 L :

$$
N_{\mathrm{c}}=\frac{1 \mathrm{~L}}{1 \mathrm{~nm}^{3}} \times \frac{10^{-3} \mathrm{~m}^{3}}{L} \times\left(\frac{10^{9} \mathrm{~nm}}{\mathrm{~m}}\right)^{3}=10^{24}
$$

The Entropy Change for a Bimolecular Reaction

- For one molecule of A and B converteted to C in a volume of 1 L :

$$
\Delta S=-k \ln \left(N_{c}\right)=-k \ln \left(10^{24}\right)
$$

- For one mole each of A and B converted to C , in 1 L :

$$
\begin{aligned}
\Delta S & =-N_{\mathrm{A}} k \ln \left(10^{24}\right) \\
& =-R \ln \left(10^{24}\right)
\end{aligned}
$$

$■$ For reactants and products at 1 M concentration:

$$
\Delta S=-R \ln \left(10^{24}\right)=-8.31 \mathrm{~J} / \mathrm{K} \times 53=-460 \mathrm{~J} / \mathrm{K}
$$

Clicker Question \#2

If the reaction volume is doubled for the reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$, How will the entropy change be affected?
A) ΔS will be unaffected.
B) ΔS will become more negative.
C) ΔS will become less negative.

$$
\Delta S=-k \ln \left(N_{c}\right)=-k \ln \left(V(\mathrm{~L}) \times 10^{24}\right)
$$

A Bimolecular Reaction

$\square A+B \rightleftharpoons C$

- An estimate of the entropy change for combining two molecules into one:

$$
\Delta S=-460 \mathrm{~J} / \mathrm{K}
$$

- Total free energy change for the reaction:

$$
\Delta G=\Delta H-T \Delta S
$$

- The contribution of entropy change to the free energy change at 298 K :

$$
\begin{aligned}
-T \Delta S & =298 \mathrm{~K} \times 460 \mathrm{~J} / \mathrm{K} \\
& =140 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

- This is a large, unfavorable contribution to ΔG.
- For the reaction to be favorable, there must be other factors that make the total free energy change negative.

A Bimolecular Reaction

$\square \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}$

- $\Delta S=-460 \mathrm{~J} / \mathrm{K}$
- $-T \Delta S=140 \mathrm{~kJ} / \mathrm{mol}$
- Some caveats:
- This is a highly simplified treatment.
- Choice of V_{c} is not very well justified.
- Ignores rotational freedom of molecules.
- Ignores internal motions of molecules.
- This is a controversial subject!

But this estimate is within the bounds of the controversy! (at the lower end)

- ΔG°, defined with specific concentration units, contains within it the entropy change at the standard state concentration.
- If the concentrations change, ΔS changes!

Warning!

Direction Change

Chemical Energy and Metabolism

Chemical Energy

■ What does "chemical energy" mean?

An Energetic Chemical Reaction, Under Some Conditions

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightleftharpoons 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

■ Oxidation of glucose (or other hexose) by molecular oxygen.
■ Free energy change depends on concentrations.
■ Standard state conditions: 1 M glucose, $1 \mathrm{~atm} \mathrm{O}_{2}$ and CO_{2}

- $\Delta G^{\circ}=-2.7 \times 10^{6} \mathrm{~J} / \mathrm{mol}=-2,700 \mathrm{~kJ} / \mathrm{mol}$
- Equilibrium constant:

$$
K_{\mathrm{eq}}=\frac{\left[\mathrm{CO}_{2}\right]_{\mathrm{eq}}{ }^{6}}{\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]_{\mathrm{eq}}\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}{ }^{6}}=e^{-\Delta G^{\circ} /(R T)} \approx 10^{473} \mathrm{M}^{-1}
$$

(Water is ignored in equilibrium constant.)

- Extremely favorable!
- But, this assumes $1 \mathrm{~atm} \mathrm{O}_{2}$ and CO_{2}.

■ Reaction only became favorable about 2.5 billion years ago, when oxygen became abundant on earth.

Nutritional Calories

■ Measured as the heat for complete combustion with excess O_{2} at constant temperature and volume (no work).
"bomb calorimeter"
\square Since, $w=0, q=\Delta E=$ change in potential energy
■ For glucose, $\Delta E=-4 \mathrm{kcal} / \mathrm{g}=-175 \mathrm{~kJ} / \mathrm{mol}$, vs $\Delta G^{\circ}=-2,700 \mathrm{~kJ} / \mathrm{mol}$.
■ Why are these numbers so different?

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightleftharpoons 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

There is a large increase in entropy, 7 molecules are converted to 12.
■ Nutritionists estimate the amount of work required to offset the metabolism of a given number of nutritional calories.

Another "High-energy" Reaction

- $\Delta G^{\circ}=-30 \mathrm{~kJ} / \mathrm{mol}$

Clicker Question \#3

What is the equilibrium constant for the reaction?

$$
\mathrm{ATP} \rightleftharpoons \mathrm{ADP}+\mathrm{P}_{\mathrm{i}} \quad \Delta G^{\circ}=-30 \mathrm{~kJ} / \mathrm{mol}
$$

A) $\approx 10^{-5} \mathrm{M}$
B) $\approx 10^{-3} \mathrm{M}$
C) $\approx 10 \mathrm{M}$
D) $\approx 10^{3} \mathrm{M}$
E) $\approx 10^{5} \mathrm{M}$

$$
R=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \quad T=298 \mathrm{~K}
$$

Calculation of Equilibrium Constant from ΔG°

$$
\Delta G^{\circ}=-30 \mathrm{~kJ} / \mathrm{mol} \quad R=8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \quad T=298 \mathrm{~K}
$$

$$
\begin{aligned}
& \Delta G^{\circ}=-R T \ln K_{\text {eq }} \\
& \ln K_{\text {eq }}=-\Delta G^{\circ} /(R T) \\
& K_{\text {eq }}=e^{-\Delta G^{\circ} /(R T)} \\
& \begin{aligned}
-\Delta G^{\circ} /(R T) & =30 \mathrm{~kJ} / \mathrm{mol} /(8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol}) \cdot 298 \mathrm{~K}) \\
& =30 \times 10^{3} \mathrm{~J} / \mathrm{mol} / 2.48 \times 10^{3} \mathrm{~J} / \mathrm{mol}=12
\end{aligned} \\
& K_{\text {eq }}=e^{12}=1.8 \times 10^{5} \mathrm{M}
\end{aligned}
$$

