Physical Principles in Biology Biology 3550 Spring 2024

Lecture 28

Chemical Thermodynamics Continued:

Bimolecular Reactions and Metabolism

Monday, 25 March 2024

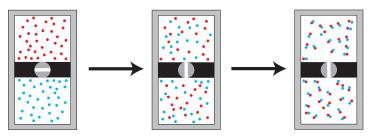
©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Problem Set 4:
 - Due Monday, 1 April at 11:59 PM
 - Submit pdf file on Gradescope
- Quiz 4:
 - Friday, 29 March
 - 25 min, second half of class
 - Will cover thermodynamics
 - 50 min
- Review Session:
 - 5:15 PM, Thursday, 28 March
 - HEB 2002
 - Come with questions!
- No class on Monday, 8 April

A Hypothetical Example of a Chemical Reaction

What happens if a chemical reaction takes place in a perfectly insulated chamber?



- \blacksquare q = 0 and w = 0, so $\triangle E$ must be zero.
- Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.

The Relationship Between Free Energy and the Equilibrium Constant

$$A \rightleftharpoons B$$
 $K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$

- lacksquare ΔG depends on concentrations of A and B.
 - If $\frac{[B]}{[A]} < K_{eq}$, the reaction will try to shift towards B, $\Delta G < 0$
 - If $\frac{[B]}{[A]} > K_{eq}$, the reaction will try to shift back to A, $\Delta G > 0$
- Define standard concentrations to specify ΔG :
 - Concentrations of all species are 1 M for solutions or 1 atm for gasses.
 - Free energy change at these concentrations is called ΔG° .

The Relationship Between Free Energy and the Equilibrium Constant

If reactants and products are at equilibrium concentrations:

$$\Delta G = 0$$

If reactants and products are at standard state concentrations (1 M):

$$\Delta G \equiv \Delta G^{\circ}$$

$$\Delta G^{\circ} = -RT \ln \frac{[\mathsf{B}]_{\mathsf{eq}}}{[\mathsf{A}]_{\mathsf{eq}}} = -RT \ln K_{\mathsf{eq}}$$

 ΔG° and K_{eq} convey essentially the same information.

For other concentrations:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[\mathsf{B}]}{[\mathsf{A}]}$$

The Relationship Between the Standard Free Energy Change and the Equilibrium Constant

$$\Delta G^{\circ} = -RT \ln K_{eq}$$
 $A \Longrightarrow B$ $K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$

- If $K_{eq} > 1$:
 - Reaction favors B over A.
 - $\Delta G^{\circ} < 0$
- If $K_{eq} < 1$:
 - Reaction favors A over B.
 - $\Delta G^{\circ} > 0$
- \blacksquare If $K_{eq} = 1$:
 - A and B have equal free energies.
 - $\Delta G^{\circ} = 0$

Clicker Question #1

For the reaction, A \Longrightarrow B, the standard free energy change, ΔG° , is -18 kJ/mol at 25°C.

What is the free energy change when the concentrations of A and B are 10 mM and 200 mM, respectively?

- A) -18 kJ/mol
- **B)** -11 kJ/mol
- C) -7 kJ/mol
- D) 7 kJ/mol
- **E)** 18 kJ/mol

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[\mathrm{B}]}{[\mathrm{A}]} = -18,000 \, \mathrm{J/mol} + 8.314 \, \mathrm{JK^{-1}mol^{-1}} \times 298 \, \mathrm{K} \times \ln \frac{200 \, \mathrm{mM}}{10 \, \mathrm{mM}} = 11,000 \, \mathrm{J/mol} = -11 \, \mathrm{kJ/mol}$$

Reactions with More than One Reactant or Product

- A reaction with two reactants and two products: aA + bB === cC + dD a, b, c and d represent stoichiometry
- The equilibrium constant:

$$K_{\text{eq}} = \frac{\left[\mathsf{C}\right]_{\text{eq}}^{c} \left[\mathsf{D}\right]_{\text{eq}}^{d}}{\left[\mathsf{A}\right]_{\text{eq}}^{a} \left[\mathsf{B}\right]_{\text{eq}}^{b}}$$

Products over reactants! (Mrs. Freeman)

■ The reaction quotient:

$$Q = \frac{\left[\mathsf{C}\right]^{c} \left[\mathsf{D}\right]^{d}}{\left[\mathsf{A}\right]^{a} \left[\mathsf{B}\right]^{b}}$$

When concentrations are not necessarily at equilibrium.

$$lacksquare \Delta G = \Delta G^{\circ} + RT \ln Q$$

From Two Molecules to One

- \blacksquare A reaction with two reactants and one products: A + B \Longrightarrow C
- The equilibrium constant:

$$\mathcal{K}_{\mathsf{eq}} = \frac{[\mathsf{C}]_{\mathsf{eq}}}{[\mathsf{A}]_{\mathsf{eq}}[\mathsf{B}]_{\mathsf{eq}}}$$

- Some problems:
 - The equilibrium constant has units of inverse concentration.
 - The numerical value of K_{eq} will depend on the units that we use for concentration
 - What happens when we try to calculate ΔG° ?

$$\Delta G^{\circ} = RT \ln K_{eq}$$

Logarithms are functions of pure numbers. How do we take a logarithm of a value with units?

From Two Molecules to One

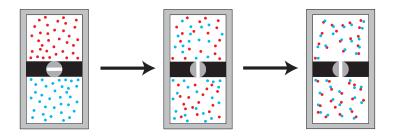
$$A + B \rightleftharpoons C$$

- Defining standard states is important!
 - Standard state concentration is usually defined as 1 M
 - For thermodynamic purposes, refine the definition of the equilibrium constant:

$$\mathcal{K}_{\mathsf{eq}} = \frac{\left(\left[\mathsf{C} \right]_{\mathsf{eq}} / 1 \, \mathsf{M} \right)}{\left(\left[\mathsf{A} \right]_{\mathsf{eq}} / 1 \, \mathsf{M} \right) \left(\left[\mathsf{B} \right]_{\mathsf{eq}} / 1 \, \mathsf{M} \right)}$$

- Now, $K_{\rm eq}$ is dimensionless, and we don't have to feel guilty about taking the logarithm.
- But, value of ΔG depends on choice of standard state concentrations. Why?

A Hypothetical Example of a Chemical Reaction



- \blacksquare q = 0 and w = 0, so $\triangle E$ must be zero.
- Potential energy of the molecules can be converted to kinetic energy (thermal energy), or vice versa.
- What else changes?

The Entropy Change for a Bimolecular Reaction

- $A + B \rightleftharpoons C$
- Assume a volume made up of N_c little cubes:
 - The number of ways to place a molecule of A and a molecule of B in the volume:

$$\Omega_{A,B} = N_c^2$$

• The number of ways to place a molecule of C in the volume:

$$\Omega_{C} = N_{c}$$

The entropy change

$$\begin{split} \Delta S &= k \ln(\Omega_{\rm C}) - k \ln(\Omega_{\rm A,B}) = k \ln(N_{\rm c}) - k \ln(N_{\rm c}^2) \\ &= k \ln\left(\frac{N_{\rm c}}{N_{\rm c}^2}\right) = -k \ln(N_{\rm c}) \end{split}$$

The entropy decreases!

The Entropy Change for a Bimolecular Reaction

From previous slide:

$$\Delta S = -k \ln(N_c)$$

- In this case, the number of little cubes doesn't cancel out, and the size of the cubes matters.
- A plausible estimate:
 - Make the cubes about the right size to hold one or two small molecules,

$$V_{\rm c} = (1 \, \rm nm)^3 = 1 \, \rm nm^3$$

For a volume of 1 L:

$$N_{\rm c} = \frac{1 \, \rm L}{1 \, \rm nm^3} \times \frac{10^{-3} \, \rm m^3}{L} \times \left(\frac{10^9 \, \rm nm}{\rm m}\right)^3 = 10^{24}$$

The Entropy Change for a Bimolecular Reaction

For one molecule of A and B converteted to C in a volume of 1 L:

$$\Delta S = -k \ln(N_c) = -k \ln(10^{24})$$

For one mole each of A and B converted to C, in 1 L:

$$\Delta S = -N_A k \ln(10^{24})$$

= $-R \ln(10^{24})$

For reactants and products at 1 M concentration:

$$\Delta S = -R \ln(10^{24}) = -8.31 \,\mathrm{J/K} \times 53 = -460 \,\mathrm{J/K}$$

Clicker Question #2

If the reaction volume is doubled for the reaction $A + B \rightleftharpoons C$, How will the entropy change be affected?

- A) ΔS will be unaffected.
- B) ΔS will become more negative.
- C) ΔS will become less negative.

$$\Delta S = -k \ln(N_{\rm c}) = -k \ln(V(L) \times 10^{24})$$

A Bimolecular Reaction

- $A + B \Longrightarrow C$
- An estimate of the entropy change for combining two molecules into one:

$$\Delta S = -460 \, \text{J/K}$$

■ Total free energy change for the reaction:

$$\Delta G = \Delta H - T \Delta S$$

■ The contribution of entropy change to the free energy change at 298 K:

$$-T\Delta S = 298 \text{ K} \times 460 \text{ J/K}$$
$$= 140 \text{ kJ/mol}$$

- This is a large, unfavorable contribution to ΔG .
- For the reaction to be favorable, there must be other factors that make the total free energy change negative.

A Bimolecular Reaction

- $A + B \rightleftharpoons C$
- $\Delta S = -460 \, \text{J/K}$
- $-T\Delta S = 140 \,\mathrm{kJ/mol}$
- Some caveats:
 - This is a highly simplified treatment.
 - Choice of V_c is not very well justified.
 - Ignores rotational freedom of molecules.
 - Ignores internal motions of molecules.
 - This is a controversial subject!
 But this estimate is within the bounds of the controversy! (at the lower end)
- ΔG° , defined with specific concentration units, contains within it the entropy change at the standard state concentration.
- If the concentrations change, ΔS changes!

Warning!

Direction Change

Chemical Energy and Metabolism

Chemical Energy

■ What does "chemical energy" mean?

An Energetic Chemical Reaction, Under Some Conditions

$$C_6H_{12}O_6 + 6O_2 \Longrightarrow 6CO_2 + 6H_2O$$

- Oxidation of glucose (or other hexose) by molecular oxygen.
- Free energy change depends on concentrations.
- Standard state conditions: 1 M glucose, 1 atm O₂ and CO₂
 - $\Delta G^{\circ} = -2.7 \times 10^6 \, \text{J/mol} = -2,700 \, \text{kJ/mol}$
 - Equilibrium constant:

$$K_{\rm eq} = rac{{
m [CO_2]_{eq}}^6}{{
m [C_6H_{12}O_6]_{eq}{
m [O_2]_{eq}}^6}} = e^{-\Delta G^{\circ}/(RT)} pprox 10^{473}\,{
m M}^{-1}$$

(Water is ignored in equilibrium constant.)

- Extremely favorable!
- But, this assumes 1 atm O₂ and CO₂.
- Reaction only became favorable about 2.5 billion years ago, when oxygen became abundant on earth.

Nutritional Calories

Measured as the heat for complete combustion with excess O₂ at constant temperature and volume (no work).

"bomb calorimeter"

- Since, w = 0, $q = \Delta E =$ change in potential energy
- For glucose, $\Delta E = -4 \text{ kcal/g} = -175 \text{ kJ/mol}$, vs $\Delta G^{\circ} = -2,700 \text{ kJ/mol}$.
- Why are these numbers so different?

$$\Delta G = \Delta H - T \Delta S$$

$$C_6H_{12}O_6 + 6O_2 \Longrightarrow 6CO_2 + 6H_2O$$

There is a large increase in entropy, 7 molecules are converted to 12.

Nutritionists estimate the amount of work required to offset the metabolism of a given number of nutritional calories.

Another "High-energy" Reaction

$$\begin{array}{c} \stackrel{\mathsf{NH}_2}{\overset{\mathsf{N}}{\overset{\mathsf{NH}_2}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{$$

 $\Delta G^{\circ} = -30 \,\mathrm{kJ/mol}$

Clicker Question #3

What is the equilibrium constant for the reaction?

$$\mathsf{ATP} \Longleftrightarrow \mathsf{ADP} + \mathsf{P_i} \qquad \quad \Delta \mathit{G}^{\circ} = -30\,\mathsf{kJ/mol}$$

- A) $\approx 10^{-5} \, \mathrm{M}$
- B) $\approx 10^{-3} \,\mathrm{M}$
- C) $\approx 10 \, \text{M}$
- D) $\approx 10^3 \, \text{M}$

E)
$$\approx 10^5$$
 M

$$R = 8.314 \,\mathrm{J/(K \cdot mol)}$$

Calculation of Equilibrium Constant from ΔG°

$$\Delta G^{\circ} = -30 \, \mathrm{kJ/mol}$$
 $R = 8.314 \, \mathrm{J/(K \cdot mol)}$ $T = 298 \, \mathrm{K}$ $\Delta G^{\circ} = -RT \, \mathrm{ln} \, K_{\mathrm{eq}}$ $\mathrm{ln} \, K_{\mathrm{eq}} = -\Delta G^{\circ}/(RT)$ $K_{\mathrm{eq}} = e^{-\Delta G^{\circ}/(RT)}$ $-\Delta G^{\circ}/(RT) = 30 \, \mathrm{kJ/mol/(8.314 \, J/(K \cdot mol) \cdot 298 \, K)}$ $= 30 \times 10^3 \, \mathrm{J/mol/2.48 \times 10^3 \, J/mol} = 12$ $K_{\mathrm{eq}} = e^{12} = 1.8 \times 10^5 \, \mathrm{M}$