Physical Principles in Biology Biology 3550 Spring 2024

Lecture 29

Enzymatic Coupling and

Introduction to Water

Wednesday, 27 March

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Problem Set 4:
 - Due Monday, 1 April at 11:59 PM
 - Submit pdf file on Gradescope
- No office hours on Thursday, 28 March
- Review Session:
 - 5:15 PM, Thursday, 28 March
 - HEB 2002
- Quiz 4:
 - Friday, 29 March
 - 25 min, second half of class
 - Will cover thermodynamics
 - 50 min
- No class on Monday, 8 April

ATP Hydrolysis

- lacksquare $\Delta G^{\circ} = -30 \, \mathrm{kJ/mol}, \, K_{\mathrm{eq}} pprox 2 imes 10^5 \, \mathrm{M}$
- Why is the reaction so favorable?
 - High density of negative phosphate charges is reduced.
 - More resonance stabilization in ADP and P_i.
 - More favorable interaction with water by ADP and P_i.

Kinetics of ATP Hydrolysis

- Half-time is \approx 20 days at neutral pH and 60°C.
- Transition state is a high energy state with equal probability of breaking down in either direction.
- Reaction rate is proportional to probability of forming the transition state.
- See the lobby of the Henry Eyring Building!

Catalysis of ATP Hydrolysis

- Enzymes catalyze chemical reactions by lowering transition-state energy.
- Enzymes create micro-environments that favor forming the transition state.
- Simply catalyzing ATP hydrolysis is not useful!

Enzymatic Coupling

- Enzyme mechanistically couples reactions.
- ATP \longrightarrow ADP + P_i can't occur without A \longrightarrow B
- \blacksquare A \longrightarrow B can't occur without ATP \longrightarrow ADP + P_i
- Coupled "reaction" can be physical motion or transport across membranes.

Enzymatic Coupling: Creatine Kinase

Coupled reactions

$$CP \Longrightarrow C + P_{i}$$

$$ADP + P_{i} \Longrightarrow ATP$$

$$ADP + CP \Longrightarrow ATP + C$$

Hydrolysis of Creatine Phosphate

 $\Delta G^{\circ} = -43 \, \text{kJ/mol}$; more favorable than ATP hydrolysis.

Clicker Question #1

In which direction is the reaction favorable under standard-state conditions?

C) Neither direction is more favorable than the other.

Enzymatic Coupling: Creatine Kinase

Hydrolysis of creatine phosphate:

 $\Delta G^{\circ} = -43 \, \text{kJ/mol}$; more favorable than ATP hydrolysis.

Coupled reactions

$$\begin{array}{ccc} \mathsf{ADP} + \mathsf{P_i} & \longrightarrow \mathsf{ATP} & \qquad \Delta G^\circ = & 30\,\mathsf{kJ/mol} \\ \mathsf{CP} & \longleftarrow \mathsf{C} + \mathsf{P_i} & \qquad \Delta G^\circ = -43\,\mathsf{kJ/mol} \end{array}$$

$$ADP + CP \Longrightarrow ATP + C$$
 $\Delta G^{\circ} = -13 \, kJ/mol$

Phosphorylation of ADP by creatine phosphate is favored.

(at standard-state concentrations!)

Creatine Kinase in Muscle Cells

$$ADP + CP \Longrightarrow ATP + C \qquad \Delta G^{\circ} = -13 \text{ kJ/mol}$$

- Typical concentrations in resting muscle cells:
 - 4 mM ATP
 - 0.013 mM ADP
 - 25 mM creatine phosphate
 - 13 mM creatine
- \blacksquare Calculate $\triangle G$ for these concentrations:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\text{[ATP][C]}}{\text{[ADP][CP]}}$$

$$= -13 \text{ kJ/mol} + RT \ln \frac{0.004 \text{ M} \cdot 0.013 \text{ M}}{1.3 \times 10^{-5} \text{ M} \cdot 0.025 \text{ M}}$$

$$\Delta G \approx 0$$

■ Because enzyme keeps reaction at equilibrium!

Creatine Kinase in Muscle Cells

$$ADP + CP \Longrightarrow ATP + C \qquad \Delta G^{\circ} = -13 \text{ kJ/mol}$$

If 1 mM ATP is suddenly converted to ADP:

$$4 \text{ mM ATP} \rightarrow 3 \text{ mM ATP}$$
 0.013 mM ADP \rightarrow 1 mM ADP 25 mM creatine phosphate 13 mM creatine

 \blacksquare Calculate $\triangle G$ for these concentrations:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[\text{ATP}][\text{C}]}{[\text{ADP}][\text{CP}]}$$
$$= -13 \text{ kJ/mol} + RT \ln \frac{0.003 \text{ M} \cdot 0.013 \text{ M}}{0.001 \text{ M} \cdot 0.025 \text{ M}}$$

$$pprox -12\,\mathrm{kJ/mol}$$

Creatine phosphate provides emergency reserve of free energy.

Warning!

Direction Change

Water: What Makes it Special?

- Unusually high boiling temperature.
 - Boiling temperature is point where vapor pressure reaches atmospheric pressure.
 - Generally, boiling temperature reflects strength of interactions between molecules.
 - Generally, boiling temperature increases with size of molecules, because larger molecules have larger surfaces for interaction.
 - Boiling temperature of water is very high for its size.
- Melting temperature of solid (ice) is also relatively high for size.
- Does not mix well with many other liquids, especially hydrocarbons.

Water Molecules are Polar

- Chemical bonds represent "sharing" of electrons between atoms.
- In some bonds, sharing is quite even: C-C, O-O, C-H
- Some elements are "greedy" for electrons: Electronegative elements: Oxygen and Nitrogen
- Some elements are "generous" with electrons: Electropositive elements: H, metals
- Water is particularly polar:

Oxygen has partial negative charge, and hydrogens have partial positive charges.

Hydrogen Bonds

■ Form between a hydrogen atom covalently bonded to an electronegative atom and a second electronegative atom.

- Electronegative atoms are usually nitrogen or oxygen in biological molecules.
- Largely accounted for by electrostatic interaction between partial positive and negative charges, but there is probably also a small degree of covalent character to hydrogen bonds.
- Significant variability in geometry and strength of hydrogen bonds.

Hydrogen Bonds Between Water Molecules

- Each water molecule can act as a donor for two hydrogen bonds and an acceptor for two hydrogen bonds.
- In ice, each water molecule is hydrogen bonded to four others. Same geometry as carbon atoms in a diamond.
- What about in liquid water?

Clicker Question #2

How many hydrogen bonds does a water molecule form, on average, in liquid water at room temperature?

- **A)** 0
- **B**) 1
- **C)** 2
- **D**)(3)
- **E)** 4

All answers count for now.

Hydrogen Bonds in Liquid Water

- On average, each water molecule forms 3 hydrogen bonds at any instant.
- Explains high boiling point of water.
- Hydrogen bonds break and form constantly, giving water liquid properties.

Picture from simulation by Prof. Valeria Molinero U of U Chemistry Department.