Physical Principles in Biology Biology 3550 Spring 2025

Lecture 2:

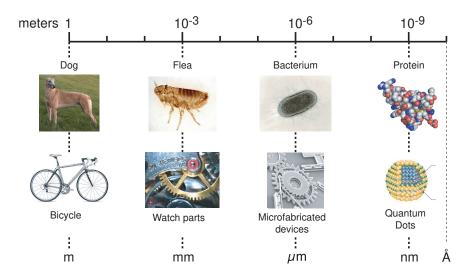
Introduction to Measurement and Units

Wednesday, 8 January 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Why are you taking this class? (Choose one.)

- A) To broaden my background in science
- **B)** To satisfy a requirement for my major
- C) To satisfy the QI (quantitative intensive) requirement
- D) Other graduation requirement


When do you expect to graduate?

- A) Spring 2025
- B) Fall 2025
- C) Spring 2026
- D) Fall 2026
- E) Someday

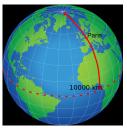
What do you hope to do after graduating?

- A) Work in a science-related area
- B) Work in an area unrelated to science
- C) Go to graduate school
- D) Go to medical school or other professional school.
- E) Something else entirely!

Length Scales for Biological and Human-manufactured Objects

A Classic Movie About the Range of Length Scales

 Created by Charles and Ray Eames in 1977 for IBM


https: //www.eamesoffice.com/the-work/ powers-of-ten-brochure/

https://www.youtube.com/watch?v= OfKBhvDjuy0

Original Metric System – France, 1795

Defined two basic units:

meter (*mètre*): One ten-millionth of the distance from the Equator to the North Pole along the meridian passing through Paris.

gram (gramme): Mass of one cm³ of pure water at the melting temperature of ice.

Original Reference Objects for Meter and Kilogram

Métre des Archives (1799)

- Platinum bar based on measurement of the meridian and placed in the French National Archives.
- Actually short of the definition based on the meridian, by 0.2 mm, but used anyway.
- Subsequently replaced by other metal bars.
- Eventually (1988) replaced by a definition based on the speed of light: Distance travelled by light in vacuum in 1/299,792,458 of a second.

Kilogramme des Archives (1799)

- Cylinder of platinum based on the mass of water and placed in the French National Archives.
- Replaced in 1889 by the international prototype kilogram (IPK), made of platinum-iridium alloy.
- IPK was the standard definition of the kilogram until 2019!

International Prototypes for kg and meter (British versions)

A Certificate of Traceability

		Certin	icate (n Cui	ibration	et IIa	ceabi	nty	Grade:	No: 81PC	AS-0
SHA	ne				Gage E	lock					
OHL	IKS				Jage L	noun	,		Date of Ma	nutacture	Jan 15. 2015
te certify the	it the accur	acy of these ga	ge blocks has	been deter	nined by compare	son to Master	standards	which are direct	tly traceable	to the Nat	ional institut
Standards and	Technology					r exceed the		is stipulated in		ifications	ASME 889.1.9-2
_	_	NIS	T Test NO: 1		-07		Date	e: Jan 15. 2015			
Nominal Size	Serial No	Deviation(+ in)	Numinal Size	Serial Na	Deviation(a in)	Nominal Size	Serial No	Deviation(a in)	Numinal Stre	Serial No	Destation(2 in)
.050"	13137	0	.111	12200	+1	.132	11269	+4	.300	13834	+3
.100	12293	0	.112	12160	+2	.133	11251	-2	.350	14537	+1
.1001	13427	0	.113	12956	+2	.134	11598	0	.400	11773	+3
.1002	11351	+4	.114	12079	+3	.135	11691	+3	.450	14808	+4
.1003	14243	+4	.115	14187	+2	.136	12847	0	.500	12619	+4
.1004	13535	0	.116	08763	+1	.137	14450	+1	.550	13287	+2
.1005	12346	+4	.117	12066	+3	.138	09349	- 1	.600	12446	+2
.1006	12301	0	.118	12898	+3	.139	09340	0	.650	11362	+3
.1007	12300	0	.119	12533	+2	.140	11217	+4	.700	12004	0
.1008	14117	+2	.120	12219	0	.141	13363	+2	.750	14395	+3
.1009	06342	+4	.121	12813	+1	.142	12100	+1	.800	14520	0
.101	09140	0	.122	08282	0	.143	08524	0	.850	14819	+1
.102	12815	-2	.123	12736	+2	.144	09759	+3	.900	14557	-2
.103	12747	+2	.124	12170	+1	.145	09052	0	.950	14010	+3
.104	12147	0	.125	14475	+2	.146	14779	+1	1.000	14330	+3
.105	12913	+4	.126	12708	-1	.147	12271	+3	2.000	12005	+5
.106	11484	+4	.127	14885	+2	.148	14935	-1	3.000	12252	-4
.107	11278	+4	.128	13273	+3	.149	12244	+1	4.000	12932	+6
.108	11195	+1	.129	14225	+3	.150	12403	+4			
.109	14259	+1	.130	14638	+3	.200	11634	+4			
.110	13408	+3	.131	08004	+2	.250	14108	+2			
		ron Marked Size									MkoRa

- For a set of gauge blocks-metal blocks used as references in a machine shop.
- Traceable to standards at the National Institute of Standards and Technology (NIST).
- Specified deviations from the length standard are given in millionths of an inch.

Another Way to Establish a Standard for Mass

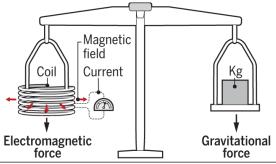


Illustration from Cho, A. (2017). Science, 356, 670-671. http://dx.doi.org/10.1126/science.356.6339.670

One of the ways used to redefine the kg in 2019, by reference to a defined physical constant, Planck's constant.

- Kibble balance, or "moving coil Watt balance"
- Electric current in coil, within a magnetic field, generates a force opposite to gravitational force on the other side.
- Current is adjusted to match the gravitational force of the unknown mass.
- Many electronic balances, or "scales" operate by same basic principle.
- Key is internal calibration of coil and magnet.

Basic Dimensions in the Current Metric System

International System of Units (SI)

Dimension	Symbol	SI Unit
Length	L	meter (m)
Mass	М	kilogram (kg)
Time	t	second (s)
Thermodynamic temperature	Т	kelvin (K)
Electric current	Ι	ampere (A)
Amount of substance	?	mole (mol)
Luminous intensity	I_{v}	candela (cd)

- Choice of some of the basic units is somewhat arbitrary.
- Are all of these necessary?

Examples of Derived SI Units

Dimension	Symbol	SI Unit
Area	$A = L^2$	m ²
Volume	$V = L^3$	m ³
Velocity	v = L/t	m/s
Acceleration	$a = v/t = L/t^2$	m/s ²
Force	$f = Ma = M \cdot L/t^2$	newton (N) = kg·m/s ²
Energy	$E = f \cdot L$	joule (J) = Nm = kg \cdot m ² /s ²

Standard Prefixes for SI Units

prefix	abbreviation	multiplier	examples
nano	n	10 ⁻⁹	nm, ng
micro	μ	10 ⁻⁶	μ m, μ g
milli	m	10 ⁻³	mm, mg
centi	С	10 ⁻²	cm, cg
deci	d	10^-1	dm, dg
kilo	k	10 ³	km, kg
mega	М	10 ⁶	Mm, Mg

You should know these!

Using Units in Calculations

Dimensional analysis:

Treat dimensions and units as symbols that can be manipulated by standard rules of algebra.

Conversion factors:

- As a rule: "To convert from kilometers to meters, multiply by 1,000."
- As an equation: 1 km = 1,000 m

Which of these equations does not make sense:

A)
$$1 \text{ mg} = 1 \text{ g}/1,000$$

B) 1 mile = 1.609344 km

C)
$$1 \, \text{kg} = 1 \, \text{liter}$$

D) 1 meter/s = 1,1969 feet/hour

To make sense, the **dimensions** on the two sides of the equations have to be consistent.

The **units** do not have to be the same or be part of the same system.

Why isn't "1 kg = 1 liter" a Valid Equation?

A true statement:

1 L of water has a mass of 1 kg (within about 0.01 g at 4° C).

Another (equivalent) true statement: The density of water, d_w, has a value of approximately 1 kg/L, or:

 $d_{
m w}=1\,{
m kg/L}$

A valid equation to calculate the mass of a given volume of liquid:

mass = volume \times density = 1 L \times 1 kg/L = 1 kg

- In mathematics, equality has a very specific meaning: Two things, after evaluation, are completely interchangeable.
- Mass and volume are not the same thing!

Algebraic Rearrangement of a Conversion Factor

1 km = 1,000 m $\frac{1 \text{ km}}{1,000 \text{ m}} = 1$ $\frac{1,000 \text{ m}}{1 \text{ km}} = 1$

 $1\,{\rm m}=0.001\,{\rm km}$

- All of these equations are valid and equivalent.
- Any quantity can be multiplied (or divided) by 1 to give the same value.

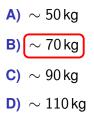
Conversion by Multiplication

Convert 37 miles to kilometers

 $1\,{\rm mi} = 1.609344\,{\rm km} \\ 1.609344\,{\rm km/mi} = 1$

 $\begin{array}{l} 37\,\textrm{mi}\times1.609344\,\textrm{km/mi}=59.6\,\textrm{mi}\cdot\textrm{km/mi}\\ =59.6\,\textrm{km} \end{array}$

What if we divide instead of multiply?


 $37 \text{ mi} \div 1.609344 \text{ km/mi} = 23 \text{ mi}^2/\text{km}$

This is correct algebraically, but it doesn't make much sense physically!

"English" units for mass:

- 1 lb = 16 oz (avoirdupois)
- 1 oz = 28.349523125 g
- 1 stone = 14 Lb

If someone weighs 11 stone, what is that person's mass in kg?

Stones to kg

 $11 \operatorname{stone} \times 14 \operatorname{lb/stone} = 154 \operatorname{lb}$

 $154 \text{ lb} \times 16 \text{ oz}/\text{lb} = 2.46 \times 10^3 \text{ oz}$

 $2.46 \times 10^3 \, \text{oz} \times 28.35 \, \text{g/oz} = 6.98 \times 10^4 \, \text{g}$

 $6.98\times10^4\,\text{g}\div1000\,\text{g/kg}\approx70\,\text{kg}$

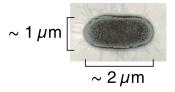
 $1 \, \text{kg} \approx 2.2 \, \text{lb}$

How many hydrogen ions (H⁺) are in a typical bacterium?

A) 1

B) 100

C) 1 thousand


D) 1 million (10⁶)

E) 1 billion (10⁹)

All answers count (for now)!

Scale and Dimensions of a Bacterial Cell

A typical bacterium found in the human gut: Escherichia coli

Approximate this as a cylinder

~ 1
$$\mu$$
m [μ m] ~ 2μ m

- Volume of cylinder = $L \times A$
 - L =length of cylinder
 - A = area of cap = $\pi \times R^2$

Volume of Cylinder Representing a Bacterium

• Using units of μ m:

$$V = L \times A = L \times \pi \times R^{2}$$

= 2 \mu m \times \pi \times (0.5 \mu m)^{2}
= 1.6 \mu m^{3}

Convert to m³

$$1\,\mu\text{m} = 10^{-6}\,\text{m}$$

 $1.6\,\mu\text{m}^3 imes \left(10^{-6}\,\text{m}/\mu\text{m}
ight)^3 = 1.6 imes 10^{-18}\,\text{m}^3$

What about liters or milliliters?

From Cubic Meters to Liters

An easy-to-remember factoid: 1 cm^3 ("cc") = $1 \text{ mL} = 10^{-3} \text{ L}$ And. $1 \text{ cm} = 10^{-2} \text{ m}$ $1\,{\rm cm}^3 imes \left(10^{-2}\,{\rm m/cm}
ight)^3 = 10^{-6}\,{\rm m}^3$ $1 \text{ ml} = 10^{-6} \text{ m}^3$ $1 L = 10^3 mL \times 10^{-6} m^3/mL = 10^{-3} m^3$, $1 m^3 = 10^3 L$ For our bacterium: $1.6\times 10^{-18}\,\text{m}^3\times 10^3\,\text{L/m}^3 = 1.6\times 10^{-15}\,\text{L}$ $1.6 \times 10^{-15} \,\text{L} \times 10^3 \,\text{mL/L} = 1.6 \times 10^{-12} \,\text{mL}$ • How many bacteria would fit into 1 mL? In one 1 μ L?