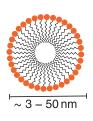
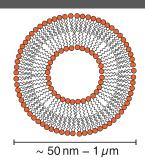
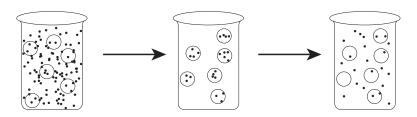
Physical Principles in Biology Biology 3550 Spring 2024


Lecture 32


Membrane Permeability and Introduction to Protein Folding

Wednesday, 3 April 2024

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu


Micelles and Vesicles

- Micelles are formed by detergents and soaps; vesicles are formed by phospholipids.
- Micelles are made up of a single shell of detergent or soap molecules; vesicles are made up of lipid bilayers.
- Micelles are generally much smaller than vesicles.
- Different shapes and sizes of the micelles and vesicles reflect the different shapes of detergents and soaps (~conical) and phospholipids (~cylindrical).

Using Vesicles to Measure Permeability of Bilayers

- Form vesicles in presence of molecules of interest.
- Separate vesicles from external molecules.
- Allow molecules to diffuse across bilayers for a period of time.
- Separate vesicles from external molecules and measure concentrations.
- What determines rate of escape? Fick's first law!

Diffusion Across Vesicle Bilayer

Fick's first law: $J = -D \frac{dC}{dx}$

Concentration gradient:
$$\frac{dC}{dx} \approx \frac{C_{\text{in}} - C_{\text{out}}}{\text{Bilayer thickness}}$$

A parameter commonly used in this and other contexts: permeability coefficient, P (not to be confused with pressure!).

Represents combination of diffusion coefficient and membrane thickness:

$$P = \frac{D}{\Delta x}$$

Units:

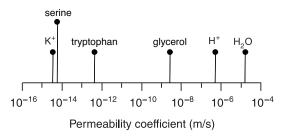
$$m^2/s \div m = m/s$$

Fick's First Law Expressed Using the Permeation Coefficient

$$J = -D\frac{dC}{dx} \approx -D\frac{\Delta C}{\Delta x} = -P\Delta C$$

■ In practice: Measure flux and calculate P

$$P = -\frac{J}{\Delta C}$$


- What do we need to know?
 - Concentration of molecules inside vesicle and out.
 - Rate of molecules diffusing (moles/time).
 - Surface area of vesicles (J has units of mol \cdot m⁻²s⁻¹).
 - Don't need to know membrane thickness!
- *P* reflects both molecule and bilayer (or other kind of membrane)

Clicker Question #1

What kind of ions or molecules would you expect to have the **smallest** permeability coefficients for phospholipid bilayers?

- A) Sugars
- B) Amino acids
- C) Water
- D) Nucleotides
- E) Small ions like Na⁺, K⁺ or Cl⁻
 All answers count for now!

Measured Permeability Coefficients

- Range of permeabilities is extremely wide: 9 orders of magnitude.
- Charged ions have very low permeability.
- Polar small molecules have low to medium permeabilities.
- Permeabilities of water and H⁺ are actually quite high!

Comparing Permeability Across Bilayers with Diffusion Coefficients in Water

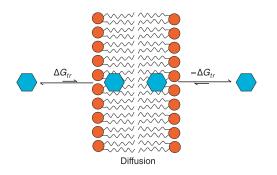
$$P = D/\Delta x$$

■ Can calculate an "effective diffusion coefficient" by assuming a value for Δx .

$$D = P\Delta x$$

Assume $\Delta x = 4 \text{ nm}$

For ions (other than H⁺):


$$D = P\Delta x = 10^{-14} \text{ m/s} \times 4 \times 10^{-9} \text{ m}$$

= $4 \times 10^{-23} \text{ m}^2/\text{s}$

For small polar molecules:

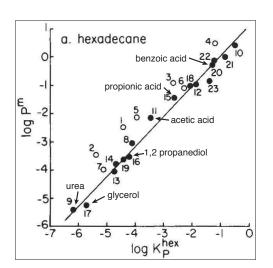
$$D = P\Delta x = 10^{-10} \text{ m/s} \times 4 \times 10^{-9} \text{ m}$$

= $4 \times 10^{-19} \text{ m}^2/\text{s}$

Compare to $D = 10^{-10} \,\mathrm{m^2/s}$ for small molecules in water.

Quantitative Model for Permeability

- Molecule rapidly equilibrates between aqueous and lipid phases.
- Molecule diffuses across lipid phase.
- Diffusion is rate limiting, but overall rate depends on fraction of molecules in the lipid phase:


$$P = K_{\rm tr} D_{\rm l}/\Delta x$$

 K_{tr} is equilibrium constant between phases.

 D_1 is diffusion coefficient in lipid.

■ Model predicts a correlation between measured $\Delta G_{\rm tr}$ and P for molecules of similar size.

Correlation Between Permeability and Solubility in Non-polar Liquids

- Values are for small polar molecules.
- P^m: Bilayer permeability coefficient (cm/s).
- K_p^{hex}: Partition coefficient from water to hexadecane.
- Correlation supports "solubility diffusion" model.

Walter, A. & Gutknecht, J. (1986). Permeability of small nonelectrolytes through lipid bilayer membranes. *J. Membrane Biol.*, 90, 207–217.

http://dx.doi.org/10.1007/BF01870127

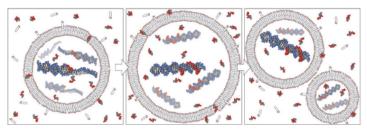
An Alternative Model

- Bilayers randomly form holes that quickly reseal.
- What would this model predict?
- Some sort of transient pore model likely explains high permeabilities of water and H.

Some Questions about the Origins of Life on Earth

What are some of the fundamental things that living organisms have to do?

- Collect nutrients from environment.
- Convert nutrients into other compounds and useful forms of energy.
- Build complicated macromolecules, including enzymes and genetic material.
- Create compartments bounded by membranes.
- Reproduce themselves.

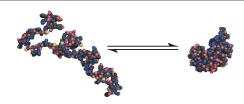

Which came first, proteins or nucleic acids?

- Genetic information is encoded by nucleic acids.
- Proteins are needed to synthesize nucleic acids.
- Now know that some RNA molecules have catalytic activities, suggesting that something like RNA may have come before proteins and DNA.

When Did Membranes Enter the Picture?

- Compartmentalization would favor local reactions and prevent competing reactions from stealing reagents.
- Without pores, bilayers prevent escape of molecules, but also their entry!
- Some fatty acids can form bilayers that small polar and charged molecules can cross, but that larger molecules can't.

A Model for Primitive Proto-cells

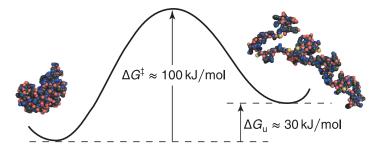

- Primitive reactions lead to formation of polymers, possibly RNA-like.
- Polymers become trapped in semi-permeable vesicles.
- Precursors to polymers diffuse into vesicles and add to the polymers, effectively trapping them.
- Polymers grow, forcing vesicles to grow, and eventually divide.

Warning!

Direction Change

Another Thermodynamic Process in Biology: Protein Folding and Unfolding

- Unfolded proteins:
 - Broad ensembles of rapidly interconverting conformations.
- Folded (native) proteins:
 - Compact, well-defined conformations.
 - Usually the functional state.
 - Motions are restricted, but can be essential for function.
- Three-dimensional structure forms after (or during) synthesis.
- Many proteins can unfold reversibly, and the process has been extensively studied in vitro.


Protein Unfolding: A Simplified Summary

For small, single-domain proteins (\approx 100 amino acids), unfolding is well described as a "two-state" process:

$$N \rightleftharpoons U$$

Partially folded molecules are rarely detected at equilibrium.

■ Free energy profile for unfolding and refolding:

Equilibrium Constant for Unfolding

■ Calculate K_u from ΔG_u° at 298 K

$$\begin{split} &\Delta G_{\rm u}^\circ = -RT \ln K_{\rm u} \\ &K_{\rm u} = e^{-\Delta G_{\rm u}^\circ/(RT)} = e^{-(30\times 10^3\,{\rm J/mol})/(8.314\,{\rm J/(mol\cdot K)}\times 298\,{\rm K})} \\ &K_{\rm u} = \frac{[{\rm U}]_{\rm eq}}{[{\rm N}]_{\rm eq}} \approx 6\times 10^{-6} \end{split}$$

- Only a very small fraction of molecules are unfolded at any instant.
- But, unfolding can be relatively fast, and individual molecules will sample the unfolded state at some point.
- What determines the overall equilibrium between native and unfolded states?
- What determines which three-dimensional structure a particular sequence will form?