Physical Principles in Biology Biology 3550 Spring 2024

Lecture 33

Protein Folding Thermodynamics

Friday, 5 April 2024

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Class WILL be held on Monday, 8 April!
- Problem Set 5:
 - Due Monday, 15 April at 11:59 PM
 - Submit pdf file on Gradescope
- Quiz 5:
 - Friday, 12 April
 - 25 min, second half of class
 - Will cover thermodynamics
 - 50 min
- Review Session:
 - 5:15 PM, Thursday, 11 April
 - HEB 2002
 - Come with questions!

Protein Unfolding/Refolding: A Simplified Summary

Free energy profile for unfolding and refolding:

- What determines the overall equilibrium between native and unfolded states?
- What determines which three-dimensional structure a particular sequence will form?

Conformational Entropy Change for Protein Unfolding

For now, focus only on the polypeptide chain itself:

- The native protein is a (relatively) unique structure.
- The unfolded state is an ensemble of rapidly interconverting structures.
- From Boltzmann: $S = k \ln \Omega$ (for a single molecule)
- For the native state, assume $\Omega_N = 1$, $S_N = 0$.

(A questionable assumption, but it turns out to not be so bad.)

What about the unfolded state?

Rotatable Bonds in an Amino Acid Residue

Amino acid residue: Part of amino acid left in a polypeptide.

Assume that each residue can take on 10 conformations in the unfolded state.

Why This isn't an Absurd Way to Estimate the Entropy Change

Rotational isomers (rotamers)

- In both native and unfolded states, dihedral angles fluctuate around energy minima.
- In native state, most bonds are restricted to one minima.
- In unfolded state, bonds can sample two or three minima.
- The "rotational isomeric state approximation"

Conformational Entropy Change for Protein Unfolding

- From Boltzmann: $S = k \ln \Omega$
- For the native state, assume $\Omega_N = 1$, $S_N = 0$.
- For the unfolded state assume that each residue can take on 10 possible conformations.
 - For two residues, $\Omega_U = 10^2$
 - For three residues, $\Omega_U = 10^3$
 - For *n* residues, $\Omega_U = 10^n$
- ΔS_{conf} for unfolding

$$\Delta S_{
m conf} = S_{
m U} - S_{
m N} = k \ln \Omega_{
m U} - k \ln \Omega_{
m N}$$

$$k \ln \frac{\Omega_{\rm U}}{\Omega_{\rm N}} = k \ln 10^n$$

Clicker Question #1

Estimate ΔS_{conf} for a protein 100 amino-acid residues long.

A)
$$3 \times 10^{-20}$$
 J/K
B) 3×10^{-21} J/K
C) 3×10^{-22} J/K
D) 3×10^{-23} J/K

■ *k* = 1.3806 × 10⁻²³ J/K

Conformational Entropy Change for Unfolding

$$\Delta S_{
m conf} = k \ln 10^n$$

= 1.3806 × 10⁻²³ J/K × ln 10¹⁰⁰

 $\ln 10^{100} = 100 \times \ln 10$

$$\Delta S_{
m conf} = 1.3806 imes 10^{-23} \, {
m J/K} imes 100 imes {
m In} \, 10 \ pprox 3 imes 10^{-21} \, {
m J/K}$$

Conformational Entropy Change for Protein Unfolding

From the previous slides:

 $\Delta S_{
m conf} = k \ln 10^n$

n is the number of amino acid residues. Assumes 1 conformation for the native state and 10 conformations for each residue in the unfolded state.

• On a molar basis for n = 100

$$\Delta S_{\mathsf{conf}} = R \ln 10^{100} = 8.314 \, \mathsf{J}/(\mathsf{mol} \cdot \mathsf{K}) imes \mathsf{ln} \, 10^{100}$$

$$= 2 \times 10^3 \, \text{J/(mol} \cdot \text{K})$$

Corresponding free energy change at 298 K:

$$- T\Delta S_{
m conf} = -5.7 imes 10^5
m J/mol = -570
m kJ/mol$$

 Compare with the overall free energy change for unfolding, on the order of 30 kJ/mol

Could We Measure the Conformational Entropy Change for Unfolding a Protein?

Recall reversible isothermal compression of a gas:

- To measure entropy change:
 - Measure work required for reversible process, w_{rev}.
 - Since $\Delta E = 0$ and $\Delta E = q + w$, $q_{rev} = -w_{rev}$
 - $\Delta S_{\rm sys} = q_{\rm rev}/T = -w_{\rm rev}/T.$
- For a protein, measure the work to go from the unfolded ensemble to a single conformation (at constant temperature).

Stretching an Unfolded Protein

- Entropically, the single stretched-out conformation is approximately equivalent to the single folded conformation.
- This transition (probably) doesn't involve net change in hydrogen bonds, the hydrophobic effect or or other interactions.
- Have to stretch very slowly, to ensure reversibility.

Single conformation Have to measure very small forces as a function of distance.

$$w_{\rm rev} = -\int F dx$$

An Atomic Force Microscope (AFM)

- Usual purpose is to make images of surfaces.
- Very fine tip (a few nm in radius) held on flexible cantilever.
- Sample is scanned below probe.
- Movement of cantilever is monitored optically.
- Image of surface is constructed from data.
- Cantilever can be calibrated to measure force as a function of displacement. (spring constant)

Stretching an Unfolded Protein with AFM

- Stage is moved downwards very slowly, as deflection of cantilever is monitored.
- Deflection represents force as a function of distance.
- Force integrated over distance gives *w*_{rev}.
- $\Delta S_{\rm conf} = -w_{\rm rev}/T$
- This experiment is "anti-trivial!"
- Results are consistent with calculation based on rotational isomers!

Thompson, J. B., Hansma, H. G., Hansma, P. K. & Plaxco, K. W. (2002). *J. Mol. Biol.*, 322, 645–652. http://dx.doi.org/10.1016/S0022-2836(02)00801-X

Observed Thermodynamics for Protein Folding

For a "typical" single-domain protein of 100 amino-acid residues at room temperature (300 K):

- ΔG_{u} : 5 kJ/mol to 50 kJ/mol
- $\Delta H_{\rm u}$: 0 kJ/mol to 200 kJ/mol
- $\blacksquare \Delta S_{u}$:

$$\begin{split} \Delta G_{\mathrm{u}} &= \Delta H_{\mathrm{u}} - T \Delta S_{\mathrm{u}} \\ \Delta S_{\mathrm{u}} &= \frac{\Delta H_{\mathrm{u}} - \Delta G_{\mathrm{u}}}{T} = \frac{100 \, \mathrm{kJ/mol} - 30 \, \mathrm{kJ/mol}}{300 \, \mathrm{K}} \\ \Delta S_{\mathrm{u}} &= 230 \, \mathrm{J/(mol \cdot K)} \end{split}$$

Observed Thermodynamics for Protein Folding

For our (hypothetical) example at room temperature (300 K): Measured experimentally for unfolding:

> $\Delta G_{
> m u} = 30 \,
> m kJ/mol$ $\Delta H_{
> m u} = 100 \,
> m kJ/mol$

 $\Delta S_{
m u} = 230 \, {
m J/(mol \cdot K)}$

Estimated change in conformational entropy:

$$\Delta S_{
m conf} = 2 \times 10^3 \, {
m J/(mol \cdot K)}$$

 $- T \Delta S_{
m conf} = -570 \, {
m kJ/mol}$

- What we need to explain:
 - Why is $\Delta S_{\rm u} \ll \Delta S_{\rm conf}$?
 - Why is $\Delta G_{\rm u} \gg -T\Delta S_{\rm conf}$?

Thermodynamics of Transfer of a Non-polar Molecule to Water

- ΔG_{tr} is positive because ΔS_{tr} is negative! (an "entropically driven" process).
- Water molecules become more ordered when a non-polar molecule is introduced.
- Non-polar groups buried in the interior of folded proteins become exposed to water on unfolding.

Transfer Free Energy versus Accessible Surface Area

Figure adapted from: F. M. Richards. Areas, volumes, packing and protein structure. *Annu. Rev. Biophys. Bioeng.*, 6:151–176, 1977. http://dx.doi.org/10.1146/annurev.bb.06.060177.001055

Thermodynamics of Non-polar Surface Transfer to Water

At 300 K

- $\Delta G_{\rm tr} = A_{\rm np} \times 97 \, {\rm J/mol/\AA^2}$
- $\Delta H_{\rm tr} = A_{\rm np} \times 7 \, {\rm J/mol/Å^2}$
- $\Delta S_{tr} = -A_{np} \times 0.3 \text{ J}/(\text{mol} \cdot \text{K})/\text{Å}^2$
- $-T\Delta S_{\rm tr} = A_{\rm np} \times 90 \, {\rm J/mol/Å^2}$
- A_{np}: Non-polar surface area (Å²) transferred from non-polar environment to water.
- How does the surface area exposed to water change when a protein unfolds?

Estimates are from transfer measurements summarized in:

Baldwin, R. L. (1986). *Proc. Natl. Acad. Sci., USA*, 83, 8069–8072. http://dx.doi.org/10.1073/pnas.83.21.8069 and

Spolar, R. S., Livingstone, J. R. & Record, T. M. (1992). *Biochemistry*, 31, 3947–3955. http://dx.doi.org/10.1021/bi00131a009

Folded Structure of a Small Protein: Ribonuclease A

Solvent-accessible Surface of Folded Ribonuclease A

Solvent-accessible Surface of Unfolded Ribonuclease A (one representative conformation)

Change in Accessible Surface Area for Unfolding for a Protein of About 100 Residues

	Folded (Å ²)	Unfolded (Å ²)	Difference (Å ²)
Total	7,000	14,700	7,700
Non-polar	3,800	8,800	5,000
Polar	3,200	5,900	2,700