Physical Principles in Biology Biology 3550 Spring 2024

Lecture 34

Protein Folding Thermodynamics and Mechanisms, and

Structure Prediction

Monday, 8 April 2024

©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu

Announcements

- Problem Set 5:
 - Due Monday, 15 April at 11:59 PM
 - Submit pdf file on Gradescope
- Quiz 5:
 - Friday, 12 April
 - 25 min, second half of class
- Review Session:
 - 5:15 PM, Thursday, 11 April
 - HEB 2002
 - Come with questions!

Protein Unfolding/Refolding: A Simplified Summary

Free energy profile for unfolding and refolding:

■ What determines the overall equilibrium between native and unfolded states?

Conformational Entropy Change for Protein Unfolding

From the previous lecture:

$$\Delta S_{\rm conf} = k \ln 10^n$$

n is the number of amino acid residues. Assumes 1 conformation for the native state and 10 conformations for each residue in the unfolded state.

• On a molar basis for n = 100

$$\Delta S_{\mathsf{conf}} = R \ln 10^{100} = 8.314 \, \mathsf{J/(mol \cdot K)} \times \ln 10^{100}$$

$$= 2 \times 10^3 \, \mathsf{J/(mol \cdot K)}$$

■ Corresponding free energy change at 298 K:

$$-T\Delta S_{\rm conf} = -5.7 \times 10^5 \, \mathrm{J/mol} = -570 \, \mathrm{kJ/mol}$$

 Compare with the overall free energy change for unfolding, on the order of 30 kJ/mol

Observed Thermodynamics for Protein Folding

For a typical small protein at room temperature (300 K):

Measured experimentally for unfolding:

$$\Delta G_{\mathrm{u}} = 30\,\mathrm{kJ/mol}$$
 $\Delta H_{\mathrm{u}} = 100\,\mathrm{kJ/mol}$ $\Delta S_{\mathrm{u}} = 230\,\mathrm{J/(mol\cdot K)}$

Estimated change in conformational entropy:

$$\Delta S_{
m conf} = 2 imes 10^3 \, {
m J/(mol \cdot K)}$$
 $- T \Delta S_{
m conf} = -570 \, {
m kJ/mol}$

- What we need to explain:
 - Why is $\Delta S_{\rm H} \ll \Delta S_{\rm conf}$?
 - Why is $\Delta G_{\rm u} \gg -T\Delta S_{\rm conf}$?

Thermodynamics of Transfer of a Non-polar Molecule to Water

- $\Delta G_{\rm tr} = \Delta H_{\rm tr} T \Delta S_{\rm tr}$
- ΔG_{tr} is positive because ΔS_{tr} is negative! (an "entropically driven" process).
- Water molecules become more ordered when a non-polar molecule is introduced.
- Non-polar groups buried in the interior of folded proteins become exposed to water on unfolding.

Solvent-accessible Surface of a Small Protein: Ribonuclease A

Solvent-accessible Surface of Unfolded Ribonuclease A (one representative conformation)

Change in Accessible Surface Area for Unfolding for a Protein of About 100 Residues

	Folded (Å ²)	Unfolded (Å ²)	Difference (Å ²)
Total	7,000	14,700	7,700
Non-polar	3,800	8,800	5,000
Polar	3,200	5,900	2,700

Thermodynamic Consequence of Non-polar Surface Area Exposed Upon Unfolding (Hydrophobic Effect)

For $5000 \, \text{Å}^2$ at $300 \, \text{K}$

$$\Delta H_{\text{hyd}} = 35 \,\text{kJ/mol}$$

$$\Delta S_{\mathsf{hyd}} = -1,500\,\mathsf{J/(mol\cdot K)}$$

$$\Delta G_{\text{hvd}} = 480 \,\text{kJ/mol}$$

Contributions to Protein Unfolding Thermodynamics

■ For protein of 100 amino-acid residues at 300 K:

	∆ <i>H</i> kJ/mol	Δ <i>S</i> J/(mol · K)	ΔG k J/mol
Conformational entropy	,	2,000	-570
Hydrophobic effect	35	-1,500	480
Other	65	-270	120
Overall, experimental	100	230	30

- Increase in conformational entropy is largely compensated for by decrease in water entropy associated with hydrophobic effect.
- What might "other" contributions to ΔH be?
 - Breaking protein hydrogen bonds.
 - Exposure of polar surface area to water.

Hydrogen Bonds in Folded Ribonuclease A

Red dashes indicate hydrogen bonds.

Breaking a Hydrogen Bond in vacuo

lacksquare $\Delta H pprox 50 \, kJ/mol$

Breaking a Hydrogen Bond in Water

$$\Delta S = ?$$

$$\Delta G = ?$$

Contributions to Protein Unfolding Thermodynamics

For protein of 100 amino-acid residues at 300 K:

	ΔH	ΔS	ΔG
	kJ/mol	J/(mol·K)	kJ/mol
Conformational entropy		2,000	-570
Hydrophobic effect	35	-1,500	480
Other	65	-270	120
Overall	100	230	30

- Increase in conformational entropy is largely compensated for by decrease in water entropy associated with hydrophobic effect.
- Breaking hydrogen bonds likely represents much of the "other" contributions.

Warning!

Direction Change

HOW does the folded structure form?

Clicker Question #1

For a protein of 100 amino-acid residues, how long would it take for the chain to randomly sample all of the possible conformations to find the native structure?

- A) Less than 1 second
- **B)** ≈ 1 minute
- C) $\approx 1 \, \text{hour}$
- D) $\approx 1 \, \mathrm{day}$
- E) More than 1 year

All answers count for now.

The Levinthal paradox:

- Consider a polypeptide of 100 amino-acid residues.
- If conformations of individual residues are independent: 10¹⁰⁰ possible conformations.
- Assume that only 1 in 10¹⁰ of these conformations is actually possible, because of steric conflicts, leaving 10⁹⁰ conformations.
- The fastest interconversions between conformations is on the order of 10^{-13} s.

time =
$$10^{90}$$
 conformations \times 10^{-13} s/conformation = 10^{77} s = 10^{77} s \div 3600 s/hr \div 24 h/day \div 365 days/year $\approx 10^{70}$ years

How does a polypeptide find it's folded conformation in seconds or minutes?

Protein Folding as a Pathway

- Folding begins with a "nucleus" of local structure.
- Additional structure adds and increases stability.
- Rate-limiting step (transition state) might occur early or late in the pathway.

Protein Folding as a Funnel

- Folding is viewed as a convergence of many possible starting conformations.
- Top of funnel represents unfolded state.
- Bottom of funnel represents native state.
- Width of funnel represents number of conformations (S_{conf}).
- Distance from top to bottom represents number of stabilizing interactions.

A Plausible Picture of the Transition State for Protein Folding

Protein Folding in vivo

- Polypeptides are synthesized on ribosomes, starting with the N-terminus.
- Folding may begin on ribosomes.
- Molecular chaperones (Hsp70 and Hsp40) may limit folding before synthesis is complete.
- Other chaperones (GrpE and GroE) facilitate correct folding after synthesis.
- Chaperones have a largely negative role: preventing improper interactions.
- Some chaperones are ATP-driven machines that modify structures.

Good Pathways and Bad

- Proteins are inherently "sticky".
- Many folded proteins assemble into functional oligomers and fibers.
- Unfolded or partially folded proteins are especially sticky.
- Unfolded or partially folded proteins tend to form aggregates or abnormal fibers (amyloids).
- Many diseases are associated with amyloid fibers. (Parkinson's disease, Alzheimer's disease, prion diseases).

Chiti, F. & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. *Annu. Rev. Biochem.*, 75, 333–366. http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901

Some Approaches to Predicting Protein Structures

Hierarchical approach:

- Determine propensities of different amino acids to form α -helices and β -strands.
- Use propensities to predict segments of polypeptide chain that will form α -helices and β -strands.
- Assemble secondary-structure elements into overall fold.
- Doesn't really work!

■ Template-based modeling:

- Identify a protein with a sequence very similar to the protein of interest, and with a known three-dimensional structure.
- Adjust the known structure to accommodate the sequence of the protein of interest.
- Works pretty well when the template structure is 50% or more identical to the unknown structure, but accuracy is limited.

Some Approaches to Predicting Protein Structures

- Physics-based modeling:
 - Build a computer model of the polypeptide chain, in arbitrary conformation.
 - Apply mathematical functions that describe all of the forces acting on individual atoms.
 - Simulate process of sampling conformations to find those with minimum energies.
 - Provides information about the folding mechanism AND predicts structure!
 - Now feasible with very small proteins, but with high computational cost.