
Biology 3550: Physical Principles in Biology
Fall Semester - 2017

Important Equations for the Final Exam

The following are important equations that have been introduced during the semester and might
(or might not) be useful for the final exam. You are encouraged to review these equations, their
meaning and applications as you study for the exam. These equations will also be provided on the
exam, but without all of the explanations and variable definitions given here.

This list does not include every possible relationship that you might be expected to know. You
should know, for instance, equations for calculating the areas or volumes of simple shapes; for
calculating concentrations; and the basic rules of probability, such as when to add or multiply
probabilities, how to calculate expected values and how to interpret continuous probability distri-
bution functions.

Spend your time thinking and solving problems, not memorizing!

Derived SI units

• Force (newton or N)

1 N = 1 kg ·m · s−2

• Energy or work (joule or J)

1 J = 1 N ·m = 1 kg ·m2 · s−2

Conversion factors

• L to cubic meters

1 L = 10−3 m3

Constants

• Avogadro’s number, NA = 6.02×1023

• Gas constant: R = 8.314 L · kPa ·K−1mol−1 = 8.314 J ·K−1mol−1

• Boltzmann constant: k = 1.38×10−23 J ·K−1

Probability

• Binomial coefficients (the number of ways to choose either k unlabeled items or k labeled items
in a unique order), from a collection of n.(

n

k

)
=

n!

k!(n− k!)
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• The Gaussian (normal) probability distribution function for a random variable x with mean µ
and standard deviation σ

p(x) =
1√

2πσ2
e−(x−µ)2/(2σ2)

Random walks in one, two or three dimensions

• Parameters:

δ = fixed step length or root-mean-square length of random step lengths

n = number of steps

• End-to-end distance, r

〈r2〉 = nδ2

RMS(r) =
√
〈r2〉

• Mean-square net displacement along the x-axis in a two-dimensional random walk

〈x2〉 = nδ2/2

• Mean-square net displacement along the x-axis in a three-dimensional random walk

〈x2〉 = nδ2/3

Diffusion

• The diffusion coefficient, D

D =
δ2x
2τ

where τ is the average time interval between direction changes of the diffusing molecule, and
δx is the root-mean-square displacement along the x-direction between direction changes.

• Fick’s first law:

J = −DdC
dx

where J is the flux (in moles or molecules per unit time per unit area), and dC/dx is the
derivative of concentration with respect to x.

• Fick’s second law:

dC

dt
= D

d2C

dx2

where dC/dt is the derivative of concentration with respect to time and d2C/dx2 is the second
derivative of concentration with respect to x.

• Mean-square displacement along one direction due to diffusion:

〈x2〉 = nδ2x = (t/τ)δ2x

= 2Dt

where n is the number of random walk steps, t is the time and τ is the time interval between
direction changes.
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Kinetic energy and molecular motion

• Kinetic energy, in the x-direction, of an object with mass m and velocity v

Ek,x = mv2/2

• Root-mean-square thermal kinetic energy, in the x-direction, of molecules of mass m at tem-
perature T

RMS(Ek,x) = kT/2

• RMS velocity of molecules of mass m at temperature T

v =
√
kT/m

• The Stokes-Einstein equation for calculating the diffusion coefficient for a spherical particle:

D =
kT

6πηr

where η is the viscosity, in units of N · s ·m−3, and r is the sphere radius.

Thermodynamics

• ∆s:

By convention, the change in a state function, f , for a process converting state 1 to state 2 is
defined as the value of the state function for state 2 minus the value for state 1:

∆f = f2 − f1

• The first law of thermodynamics:

∆E = q + w

where ∆E is the change in internal energy of the system, q is is the heat absorbed by the system
and w is the work done on the system during a defined process or reaction.

• The classical definition for the change in the entropy of a system during a process at constant
temperature:

∆Ssys =
qrev
T

where qrev is the heat absorbed by the system for the reversible process connecting the beginning
and ending states, and T is the absolute temperature.

• The classical definition for the change in the entropy of the surroundings during a process at
constant temperature:

∆Ssurr = − q
T

where q is the heat absorbed by the system during a specified process connecting the two states.
∆Ssurr, is not a state function and depends on the particular path taken between the two states.
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• The second law of thermodynamics:

The second law states that the total entropy of the universe, defined as

∆Suniv = ∆Ssurr + ∆Ssys

increases for a spontaneous (favorable) process.

• The statistical (Boltzmann) definition of the entropy of a system:

Ssys = k ln Ω

where k is Boltzmann’s constant and Ω is the total number of equal-energy microstates making
up the system. The entropy calculated using this equation corresponds to a single copy of the
defined system, and Ω represents the number of ways of arranging the various components of
the system, such as molecules in a gas or units within a single molecule (such as amino-acid
residues in a protein).

• The entropy change for the expansion or compression of an ideal gas:

∆Ssys = nR ln
V2
V1

where n is the number of moles, R is the gas constant, and V1 and V2 are the initial and final
volumes of the gas. The entropy change can also be expressed in terms of the concentration of
gas molecules and the beginning and end of the process:

∆Ssys = nR ln
C1

C2

This equation is also used as an approximation for calculating the entropy change due to a
change in concentration of molecules in solution.

• Enthalpy, a state function:

H = E + PV

where E is the internal energy, P is the pressure and V is the volume of the system. The
change in enthalpy for a process is the heat absorbed by the system in converting the system
from state 1 to state 2 at constant pressure.

∆H = qp

If there is no change in volume during the process at constant pressure, or other work performed
on or by the system, ∆H = ∆E.

• The Helmholtz free energy:

F = E − TSsys

For a process at constant temperature, the change in F is:

∆F = ∆E − T∆Ssys

∆F is also equal to the work done on the system during the reversible conversion of one state
to another. If the process is favorable in the absence of work, then ∆F is negative, and −∆F
represents the maximum amount of work that can be done by the process. If the process is
unfavorable, then ∆F is positive and represents the minimum amount of work required to drive
the process forward.
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• The Gibbs free energy:

G = H − TSsys

For a process at constant temperature, the change in G is:

∆G = ∆H − T∆Ssys

The Gibbs and Helmholtz free energy changes for a process are related to each other according
to:

∆G = ∆F − wp

= wrev − wp

where wp is the work absorbed by converting state 1 to state 2 at constant pressure. If the
process at constant pressure does not involve a volume change, then wp = 0 and ∆G = ∆F .
Because the volume changes for most biochemical processes are quite small, ∆G can be inter-
preted as the negative of the maximum work that can be obtained from a favorable process or,
for an unfavorable process, the minimum amount of work required to drive the process forward.

• Reaction quotient, Q:

For the chemical reaction of the form:

aA + bB −−⇀↽−− cC + dD

The reaction quotient, for a given set of reactant and product concentrations is defined as:

Q =
[C]c[D]d

[A]a[B]b

• Equilibrium constant:

When the the reaction defined above is at equilibrium, the concentrations of reactants and
products satisfy the expression:

Keq =
[C]eq

c[D]eq
d

[A]eq
a[B]eq

b

where Keq is the equilibrium constant for the reaction, which typically depends on temperature
and other solution conditions (sometimes including the concentrations of other molecules and
ions in the solution).

• Standard free energy change:

The free energy change for a reaction at standard state concentrations (usually 1 M concentra-
tion for solutes and 1 atm pressure for gasses) is defined as ∆G◦ and is related to the equilibrium
constant according to:

∆G◦ = −RT lnKeq

where R is the gas constant and T is the temperature. Note that the units of concentration
used to define the equilibrium constant must be the same as those defining the standard state
for ∆G◦.
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• Free energy change when the concentrations are different from the standard state:

For any set of reactant concentrations, the free energy change for the reaction is:

∆G = ∆G◦ +RT lnQ

Where Q is the reaction quotient defined above. Note that when the system is at equilibrium,
Q = Keq, and ∆G = 0, meaning that no work can be obtained by the system. When the
reactants and products are at their standard state concentrations ∆G = ∆G◦.

The value of ∆G at a given set of concentrations represents the free energy change for converting
a mole of reactants into products, assuming that the concentrations of reactants and products
don’t actually change. This idealized situation would prevail if the volume were infinitely large.
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