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1 Introduction1 Introduction
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Science Books, (c) 2016 
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This software is distributed under the conditions of the BSD license and without any guarantees or warranties. (c) 2016 by David P. Goldenberg 
Please send comments, including bug reports, to this address: 
   David P. Goldeberg 
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   257 South 1400 East 
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This chapter covers the general description of the change of a wavefunction with time and the specific cases of a spin-1/2 particle in a stationary field and
during a pulse. 
The worksheet uses the definitions found in 1spinLib.mac

(%i1) load("1spinLib.mac")$

The list of functions defined in this macro file (and the packages it uses, can be generated with the functions command.

(%i2) functions;

2 12.2 Spin-1/2 particles in a magnetic field2 12.2 Spin-1/2 particles in a magnetic field
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3 12.2.1 Time dependence of the wave function3 12.2.1 Time dependence of the wave function

Here, we express the Hamiltonian operator as a matrix. The dependence on the external field strength and gyromagnetic ratio are expressed through the
Larmor frequency, nu  =-gamma*B/(2*pi)

(%i3) H(nu);

The general form of a wavefunction, or ket, for a spin-1/2 particle is written as a column vector:

(%i4) k_psi;

The complex conjugate, bra, of the wavefunction is written as a row vector:

(%i5) b_psi;

(%𝚘𝟸) [innerproduct (x, y) , unitvector (x) , columnvector (x) , gramschmidt (x, [myinnerproduct]) , eigenvalues (mat) , eigenvectors (mat) , sub
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The operation of the Hamiltonian on the wavefunction

(%i6) H(nu).k_psi;

The eigenvalues and eigenvectors of the Hamiltonian

(%i7) uniteigenvectors(H(nu));

The eignenvectors of H are the same as those of Iz and the eigenvalues are -h*nu/2 and h*nu/2. For a nucleus with a positive gyromagnetic ratio, the
frequency is negative and energy of the |beta> wavefunction (represented as a vector in Maxima list form as [0,1]) has a positive energy.

The time dependence of a wavefunction is calculated using the unitary matrix Uh, which includes terms for both the time period, t, and the Larmor frequency
nu

(%i8) Uh(t,nu);

The product of this matrix and the vector form of a wavefunction gives the wavefunction after time, t

(%i9) Uh(t,nu).k_psi;

We use as the starting wavefunction one of the eigenfunctions of Ix

(%i10) k_0:ket(1/sqrt(2),1/sqrt(2));

The complex conjugate of the wavefunction (i.e. the bra) is

(%i11) b_0:bra(k_0);

After time t, the wavefunction is

(%i12) Uh(t,nu).k_0;

An aside on complex numbers. If we define a complex number as:

(%i13) declare(c,complex);

(%i14) c:a + %i*b;
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(%i15) c;

The exponential form of the complex number can be found using the polarform command, found as the Convert to Polar Form command in the
Simplify>>Complex menu of wxMaxima

(%i16) cp:polarform(c);

(%i17) cp;

The term sqrt(b^2+a^2) represents the modulus, m, and atan2(b,a) is the angle theta. The function atan2 calculates the arc tangent (inverse tangent) of points
defined by their x and y coordinates.

(%i18) ? atan2;

Complex numbers in the exponential form can also be converted to the rectangular form (Convert to Rectangular Form in the Simplify>>Complex menu of
wxMaxima).

(%i19) rectform(cp);

4 12.2.2 Time dependence of the z-magnetization4 12.2.2 Time dependence of the z-magnetization
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We will call the evolving wavefunction, calculated above, k_t

(%i20) k_t:Uh(t,nu).k_0;

The corresponding bra is b_t and can be formed using the bra function in 1spinLib.mac

(%i21) b_t:bra(k_t);

The z-magnetization is calculated by multiplying the ket by the Iz operator matrix, and then multiplying the product by the bra

(%i22) Iz;

(%i23) b_t.Iz.k_t;

(%𝚘𝟷𝟺) i ⋅ b + a
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(%𝚘𝟷𝟽) ⋅+b2 a2‾ ‾‾‾‾‾‾√ ei⋅atan2(b,a)

 -- Function: atan2 (<y>, <x>)
 - yields the value of 'atan(<y>/<x>)' in the interval '-\%pi' to
 '\%pi'.
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For the more general case, we can use k_psi and b_psi defined in 1spinLib.mac

(%i24) k_psi;

(%i25) b_psi;

The over scores indicate the complex conjugates of ca and cb 
The initial z-magnetization is:

(%i26) b_psi.Iz.k_psi;

The time-dependent wavefunction and its complex conjugate are then:

(%i27) k_psit:Uh(t,nu).k_psi;

(%i28) b_psit:bra(k_psit);

The time-dependent z-magnetization is

(%i29) b_psit.Iz.k_psit;

Thus, the z-magnetization does not change with time, in the absence of relaxation or other perturbations.

The magnetization components can also be calculated using the meanPsi function in 1spinLib.mac.

(%i30) fundef(meanPsi);

The functions trigreduce, trigsimp and demoivre are included in this function definition to simplify the results and express them in trigonometric form.

(%i31) meanPsi(Iz,k_t);

(%i32) meanPsi(Iz,k_psi);

(%i33) meanPsi(Iz,k_psit);

5 12.2.3 Time dependence of the x- and y-magnetization components5 12.2.3 Time dependence of the x- and y-magnetization components
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The Ix operator matrix is:

(%i34) Ix;

Using the previous definitions of k_t and b_t

(%i35) k_t;

(%i36) b_t;

The initial x-magnetization is:

(%i37) b_0.Ix.k_0;

The time-dependent x-magnetization is:

(%i38) b_t.Ix.k_t;

This can be simplified and converted to a trigonometric form

(%i39) rectform(%);

The conversion is done automatically by the meanPsi function

(%i40) meanPsi(Ix,k_t);

For the y-magnetization

(%i41) Iy;

The initial y=magnetization

(%i42) meanPsi(Iy,k_0);

The time-dependent y-magnetization
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(%i43) b_t.Iy.k_t;

(%i44) meanPsi(Iy,k_t);

The 1spinLib.mac library also includes a function, allMagPsi, to calculate the x, y and z magnetization components in one command

(%i45) allMagPsi(k_psi);

(%i46) allMagPsi(k_0);

(%i47) allMagPsi(k_t);

(%i48) allMagPsi(k_psit);

The simplification rules included in the allMagPsi function don't always give the simplest results, but further manipulations can be applied to the results.  For
instance for the x-magnetization from k_psit

(%i49) meanPsi(Ix,k_psit);

(%i50) ratsimp(%);

This still looks pretty messy, but notice that the initial Ix and Iy components are:

(%i51) meanPsi(Ix,k_psi);

(%i52) meanPsi(Iy,k_psi);

If we call the initial values Ix0 and Iy0, we can substitute these values into the expression for the time-dependent Ix magnetization 
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First, let's assign the expression to a variable.

(%i53) IxTime:ratsimp(meanPsi(Ix,k_psit));

Then we can use the substitution command, which is available as Simplify>>Substitute in wxMaxima. We do this in two steps.

(%i54) subst(2*Iy0, (%i*ca*conjugate(cb)-%i*conjugate(ca)*cb), IxTime);

(%i55) subst(-2*Ix0, (-ca*conjugate(cb)-conjugate(ca)*cb), %);

Substitutions are rather tricky, and the form used in the substitution often has to match exactly the form that appears in the original expression.

6 12.3 When the Hamiltonian changes with time: The effect of radiation6 12.3 When the Hamiltonian changes with time: The effect of radiation
on the wavefunctionon the wavefunction
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 6.1 An x-pulse 6.1 An x-pulse
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The effects of pulses on the wavefunction are expressed in matrix form by rotation matrices containing the variable a, for the angle of rotation. 
For an x-pulse, the rotation matrix is (from 1spinLib.mac):

(%i56) Rx(a);

To obtain the new wavefunction, the existing wavefunction is multiplied by the rotation matrix. (Eq 12.6, page 359)

(%i57) Rx(a).k_psi;

1spinLib.mac also contains a function to calculate this result

(%i58) psiPulseX(k_psi,a);

Additional functions are provided for the specific cases of pi and pi/2 pulses along the x-axis
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(%i60) psiPi2X(k_psi);

For the case of a (pi/2)x pulse applied to |alpha>

(%i61) psiPi2X(k_a);

(%i62) allMagPsi(%);

 6.2 y-pulses 6.2 y-pulses
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The y-rotation matrix is:

(%i63) Ry(a);

(%i64) Ry(a).k_psi;

y-pulse functions

(%i65) psiPulseY(k_psi,a);

(%i66) psiPi2Y(k_psi);

(%i67) psiPiY(k_psi);

(%i68) psiPulseX(k_a,a);

A (pi/2)y pulse applied to |alpha>
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(%i69) psiPi2Y(k_a);

(%i70) allMagPsi(%);

To look at the effect of an x-pulse after aligning the magnetization with the y'-axis, first define the wavefunction following a pi/2 x-pulse to |alpha>

(%i71) k_y:psiPi2X(k_a);

(%i72) allMagPsi(k_y);

then apply a pi/2 y-pulse

(%i73) psiPi2Y(k_y);

(%i74) allMagPsi(%);

As expected, the second pulse has no effect.

 6.3 A 2*Pi-pulse 6.3 A 2*Pi-pulse
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A 2*pi pulse applied to |alpha>

(%i75) psiPulseX(k_a,2*%pi);

The sign of the wavefunction has been reversed, but the observable magnetization components are unchanged.

(%i76) allMagPsi(%);

7 12.3.5 Transition probabilities and the absorption of energy7 12.3.5 Transition probabilities and the absorption of energy
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The transition probability from |alpha> to |beta> is calculated as |<beta|Iminus|alpha>|^2, where Iminus is the lowering operator

(%i77) abs(b_b.Iminus.k_a)^2;

|beta> cannot be converted to |beta>

(%i78) abs(b_b.Iminus.k_b)^2;

The upward transition from an arbitrary wavefunction to |alpha>

(%i79) k_psi;

(%i80) abs(b_a.Iplus.k_psi)^2;

Because cb is a complex number, |cb| represents cb*conjugate(cb)
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