
Getting Started with MaximaGetting Started with Maxima

1 Introduction1 Introduction

 1.1 About these Maxima files 1.1 About these Maxima files

These files are intended as electronic supplements to the book Principles of NMR Spectroscopy: An Illustrated Guide, David P. Goldenberg, University
Science Books, (c) 2016. Their primary purpose is to aid in carrying out quantum-mechanical calculations of the type presented in the second half of the book,
Chapters 11-18. This type of calculation can very quickly become very laborious and error prone if carried out by hand and are greatly aided by computer
algebra programs such as Maxima, Mathematica and Maple. Although the relative virtues of these programs can be, and have been, discussed at length,
Maxima has been chosen here because it is available as open source software in versions for the current major operating systems, Linux, OS X and
Windows. There are even versions for Android and iOS (through the SAGE interface)! Although it lacks some of the polish found in the user interfaces of
commercial products, Maxima is a very capable program and well suited for the type of calculations presented in the book.
The Maxima files provided as supplements to Principles of NMR Spectroscopy include:
gettingStarted.wxm: This file, a wxMaxima workbook, with background information and a tutorial on some of the elementary Maxima functions used in the
other workbooks.
1spin.mac: A macro file containing special functions for quantum-mechanical calculations for a single spin-1/2 particle
2spin.mac: A macro file containing special functions for quantum-mechanical calculations for a scalar-coupled pair of spin-1/2 particles
chapter11.wxmx: A wxMaxima workbook file with calculations following Chapter 11 of the text, for a single spin-1/2.
chapter12.wxmx: A wxMaxima workbook following Chapter 12, on the time dependence of a single spin-1/2 and the effects of pulses.
chapter13.wxmx: A wxMaxima workbook following Chapter 13, on scalar-coupled spin-1/2 pairs.
chapter14.wxmx: A wxMaxima workbook following Chapter 14, the effects of pulses and time evolution on scalar-coupled spin-1/2 pairs
chapter15.wxmx: A wxMaxima workbook following Chapter 15, on heteronuclear and homonuclear COSY experiments
chapter16.wxmx: A wxMaxima workbook following Chapter 16, on heteronuclear experiments
chapter17_1.wxmx: A wxMaxima workbook following Chapter 17, Section 2, on the density matrix for populations of isolated spin-1/2 particles.
chapter17_2.wxmx: A wxMaxima workbook following Chapter 17, Section 2, on the density matrix for populations of scalar-coupled spin pairs.
chapter18_1.wxmx: A wxMaxima workbook following Chapter 18, Section 1 of the text, on the operator basis representation of the density matrix for a
population of single spins.
chapter18_2.wxmx: A wxMaxima workbook following Chapter 18, Section 1 of the text, on the operator basis representation of the density matrix for a
population of scalar-coupled spin pairs.
These and other files related to the book are available for download through links at: http://uscibooks.com/goldenberg.htm
This software is distributed under the conditions of the BSD license and without any guarantees or warranties. (c) 2016 by David P. Goldenberg
Please send comments, including bug reports, to this address:
 David P. Goldenberg
 Department of Biology
 University of Utah
 257 South 1400 East
 Salt Lake City, UT 84112-0840
 goldenberg@biology.utah.edu

 1.2 About Maxima and wxMaxima 1.2 About Maxima and wxMaxima

The program Maxima is an example of a computer algebra system, or CAS, a program that carries out symbolic mathematical manipulations, as well as the
more common numerical calculations that are provided in other programs and programming languages. Although not the first CAS, Maxima is probably the
longest surviving program of this type, dating back to the late 1960s. It is derived from Macsyma, which was developed by the artificial intelligence group at
MIT as part of Project MAC, a project initially supported by the US Defense Advanced Research Project Agency (DARPA). The acronym MAC is said to have
originally stood for "Mathematics and Computation", but was later associated with "Machine Aided Cognition", "Multiple Access Computer" or "Man and
Computer".
After the initial development work at MIT, Macsyma underwent a rather complicated and controversial history of commercial development and eventual release
as an open source project, renamed Maxima (a rather unfortunate choice for the age of web searches). Although the commercialization of Macsyma was
unsuccessful, the program was clearly the inspiration for the very successful Maple and Mathematica programs. Much more detailed histories can be found in:
de Souza, P. N., Fateman, R. J., Moses, E. & Yann, C. (2004). The Maxima Book.
http://maxima.sourceforge.net/docs/maximabook/maximabook-19-Sept-2004.pdf
Moses, J. (2012). Macsyma: A personal history. J. Symb. Comp., 47, 123–130.
http://dx.doi.org/10.1016/j.jsc.2010.08.018
Maxima is now maintained as an open-source project: http://maxima.sourceforge.net/ Maxima also serves as a component of the much larger SAGE open-
source mathematics system: http://www.sagemath.org/ Between, these two projects, there is considerable active development, which promises continued
availability and usefulness of Maxima.
Macsyma was written using the computer language Lisp, which was invented in 1958 by the computer and artificial- intelligence pioneer John McCarthy at
MIT. The core functionality of Maxima continues to be coded in Lisp (specifically Common Lisp), and this strongly influences its behavior. The name "Lisp"
stands for "List processing", and lists (of numbers, symbols, functions and other objects, including other lists) are the core data structure of the Lisp language
and of Maxima's own language. Lists are used to input multiple parameters in Maxima commands, and enclose multiple outputs. The elements of Maxima lists
are enclosed by square brackets, [], and it is very important not to confuse these symbols with parentheses, as discussed further below.
The basic Maxima program uses a simple command-line interface, in which commands are typed into a terminal window and results are output as simple text.
Commands and results can also be read into the program and output as text files. Although functional, this kind of interface now feels rather old fashioned,
and many users prefer a graphical interface with windows and menus controlled with a mouse. Fortunately, "front ends" with graphical interfaces to Maxima
have been developed as open software. In addition, SAGE offers a graphical interface to Maxima. Of these, wxMaxima appears to be undergoing the most
active development currently and has been used for this project. Versions for Windows, OS X and Linux can be downloaded from the wxMaxima project page:
http://andrejv.github.io/wxmaxima/
Installation of wxMaxima requires a version of Maxima as well, along with the graphing program GnuPlot if the plotting functions are to be used. Configuration

requires some care, and the installation instructions should be followed carefully.
The wxMaxima interface provides a notebook type environment, similar to that used in Mathematica, Maple and Matlab, in which individual commands are
typed into "cells", and the output appears below each input. The output is nicely formatted in standard mathematical notation (rather than simple text), but the
output elements can be copied and pasted into new input cells.
As an alternative to typing, many Maxima commands can be executed from menus or buttons in window panes. (The panes can optionally be displayed using
commands in the Maxima menu. These graphical interface elements generate the text form of the commands, automatically enter them into a cell and execute
the commands. In some cases, the graphical commands automatically apply the command to the output of the last command executed. In others, the
command opens a dialog box into which the the user is prompted to enter parameters for the command. Upon closing the dialog box, the command is
generated and executed. The user is free to use the text entry method, the menus or the panel buttons interchangeably during a session. With experience,
users are likely to choose increasingly to use direct text entry, but the graphical methods provide a very effective way to find and explore new commands.
Another useful feature of the wxMaxima interface is the ability to use special cells to add text (as in this cell) or headers to organize a notebook into sections
and subsections. Commands to add these special sections are found in the "Cell" menu.

 1.3 File formats 1.3 File formats

The work a user does in wxMaxima can be saved in three file formats:
Maxima macro files, with the extension .mac
The original wxMaxima file format, with extension .wxm
A newer XTML-based wxMaxima format, with extension .wxmx
All of these are simple text files, ensuring that they can be easily read without the Maxima or wxMaxima programs.
Maxima macro files created with wxMaxima contain only the commands entered in cells and text comments. These files cannot be opened from the graphical
interface, but can be opened using a typed load command. Upon loading a .mac file, wxMaxima will not usually display any output, but will execute the
commands in the file.
Macro files are typically used to store commands defining variables and functions that can then be used again in another session. Two macro files are
provided for spin calculations, 1spinLib.mac and 2spinLib.mac.
When a work session is saved in a .wxm file and then reopened in wxMaxima, the session cells are recreated, including text section and subsection cells.
 However, the output is not saved in this file format. The output can be recreated using the "Evaluate All Cells" command in the "Cell" menu. Be aware,
however, that the cells will be executed from the top of the document to the bottom, which may not have been the order in which the cells were executed
during the previous session, which may lead to a different state.
The .wxmx file format has the advantage of saving both the input and output of cells, including images generated by the plotting commands, and is the format
used to save these workbooks. When a .wxmx file is opened, everything from the previous session will appear. However, the commands in the file will not be
executed, so that variable and functions are not yet defined.
The "File" menu of wxMaxima includes an "Export" command, which provides options to save a session in the form of of a a web page (.html together with
image files for all of the output cells) or a LaTeX file. LaTeX is a sophisticated document preparation system, and the files generated in this way can be used
to generate a high-quality pdf files representing a wxMaxima workbook, but some tweaking of the LaTeX file is likely to be necessary in order for it to be used.
On a Macintosh computer, a pdf file representing a workbook can also be created using the "Print" command in the "File" menu and the save as pdf option in
the print dialog box.

 1.4 A few notes on syntax 1.4 A few notes on syntax

There are often many correct ways to write out a given mathematical expression, sometimes using different symbols to represent the same thing. However,
computer programs are still not nearly as good as humans at recognizing expressions written in different ways, and they generally demand strict adherence to
syntactic rules.
In Maxima, the symbols for the basic arithmetic operations are:
addition: +
subtraction: -
multiplication: *
division: /
exponentiation: ^
Particular care must be taken in using parenthesis, (), and square brackets, []. The two major uses of parentheses are: 1. To enclose expressions that
should be evaluated before operations outside of the parentheses. For instance (5+2)*3 is evaluated as 7*3=21, rather than as 5+2*3=11 2. To enclose the
arguments of a function, such as sin(x) Square brackets are used in very different way, to enclose the elements of lists. As noted earlier, the core functionality
of Maxima is written in the computer language Lisp, and lists serve as the basic data structure of both Lisp and Maxima. When commands can accept variable
numbers of arguments, the arguments are generally input as lists, enclosed by brackets, and commands that output multiple elements use lists to enclose
them.
Two other special symbols are of note, and are discussed further as examples are introduced. These are the assignment operator symbols ":" and ":=". In
many other computer languages, the equals sign, "=", is used as an assignment operator, but it is important to distinguish the difference between an
assignment operator and the usual meaning of equality in mathematics. In mathematics, the equals sign is used to state a relationship, that the two things on
each side of it are equal to one another. In programming languages, an assignment operator *establishes* a relationship between two objects. In languages
that use the equals sign as the assignment operator (such as Fortran, C, Perl, Python and many others), statements such as a=5 are interpreted to mean,
"Take the value 5 and associate it with a variable called 'a'." When the variable "a" appears later, it is replaced with the stored value.
Because Maxima is often called on to work with expressions that include the equals sign in its mathematical meaning, "=" is not used as an assignment
operator. The symbol ":" is used to assign values to symbols. For instance, the expression a:5 is equivalent to "a=5" in the languages mentioned above. But,
symbols can be assigned many other kinds of objects than just numerical values. Symbols can represent other symbols, expressions and lists of other
objects.
The other assignment operator, ":=", is used for defining mathematical functions, such as the definition: f(x):=x^2
Two small points:
1. When entering expressions in Maxima, the end of the expression must be followed by a semicolon, before pressing the enter key. In wxMaxima, however,
the interface does this for you automatically. Having been spoiled in this fashion, it can be bewildering and frustruting when trying to use the standard terminal
interface.
2. Usually, we want to see the result of a calculation after entering an expression. In some cases, however, the output may be very long and ugly, and all that
we are trying to do is assigning this result to a variable. Adding the dollar sign, "$" at the end of an expression after evaluating it will suppress the output.

 1.5 Maxima documentation 1.5 Maxima documentation

One of the significant weaknesses of Maxima as a user-friendly software product, especially in comparison to commercial products such as Mathematica and
Maple, is the rather limited and scattered documentation available for it. So far as I am aware, for instance, there are no published books about Maxima
(except for a self-published book described below) such as there are for many other commercial and open-source programs.
There is, however, a standard reference manual that is provided in different electronic forms. These include a version embedded in wxMaxima and available
using the "Maxima Help" command in the "Help" menu. The manual is also available online, as html and as a pdf document at:
http://maxima.sourceforge.net/docs/manual/maxima.html
In addition, there are a large number of tutorials and other documents that have been written to introduce users to Maxima. Many of these are, like this one,
targeted to specific audiences or applications. Links to many of them can be found at: http://maxima.sourceforge.net/documentation.html
Some tutorials specific to wxMaxima can be found at: http://andrejv.github.io/wxmaxima/help.html
Among the various Maxima tutorials available on the internet, a collection of special note is by Gilberto E. Urroz of Utah State University:
http://www.neng.usu.edu/cee/faculty/gurro/Maxima.html These include both pdf files and some wxMaxima worksheets. The pdf files are also available as a
printed book, through a link on the web page.

Information about a Maxima function or command can be obtained by typing "?" followed by the function.

(%i1) ? log;

2 Simple calculations with numbers and symbols2 Simple calculations with numbers and symbols

 2.1 Arithmetic 2.1 Arithmetic

Maxima can be used for a wide range of mathematics, from the very simple to the very complicated. At its most basic, the program can serve as a simple
calculator. Expressions to be evaluated are entered at a prompt and then evaluated by pressing the Enter key:

(%i2) 2+2;

 -- Function: log (<x>)
 Represents the natural (base e) logarithm of <x>.
 Maxima does not have a built-in function for the base 10 logarithm
 or other bases. 'log10(x) := log(x) / log(10)' is a useful
 definition.
 Simplification and evaluation of logarithms is governed by several
 global flags:
 'logexpand'
 causes 'log(a\textasciicircumb)' to become 'b*log(a)'. If it is set to
 'all', 'log(a*b)' will also simplify to 'log(a)+log(b)'. If
 it is set to 'super', then 'log(a/b)' will also simplify to
 'log(a)-log(b)' for rational numbers 'a/b', 'a\#1'.
 ('log(1/b)', for 'b' integer, always simplifies.) If it is
 set to 'false', all of these simplifications will be turned
 off.
 'logsimp'
 if 'false' then no simplification of '\%e' to a power
 containing 'log''s is done.
 'lognegint'
 if 'true' implements the rule 'log(-n)' -> 'log(n)+\%i*\%pi' for
 'n' a positive integer.
 '\%e_to_numlog'
 when 'true', 'r' some rational number, and 'x' some
 expression, the expression '\%e\textasciicircum(r*log(x))' will be simplified
 into 'x\textasciicircumr'. It should be noted that the 'radcan' command also
 does this transformation, and more complicated transformations
 of this as well. The 'logcontract' command "contracts"
 expressions containing 'log'.
 There are also some inexact matches for `log'.
 Try `?? log' to see them.

(%𝚘𝟷) true

(%𝚘𝟸) 4

When using the wxMaxima interface, each entered expression and any output generated is placed within a "cell", as indicated by the braces to the left of the
input and output. Cells can also contain text, like this one, or headings to help organize the worksheet.

(%i3) 4-3;

Division is written with a forward slash

(%i4) 4/2;

Multiplication is indicated by an asterisk

(%i5) 3*4;

Exponents are indicated by the ^ character

(%i6) 3^2;

When, as in the examples above, the result is an integer, the expression is evaluated and output. However, if the result is not an integer, integers are retained
in the output.

(%i7) 2/3;

Evaluation of a non-integer result can be forced by writing one or more of the terms in decimal form.

(%i8) 2/3.0;

(%i9) 2.0/3;

Evaluation of a non-integer result can also be forced by using the float function.

(%i10) float(2/3);

Often, it is useful to be able to use the previous result in the next calculation. The % character will return the previous result.

(%i11) 4+16;

(%i12) %;

(%i13) %/3;

 2.2 Assigning values to symbols 2.2 Assigning values to symbols

(%𝚘𝟸) 4

(%𝚘𝟹) 1

(%𝚘𝟺) 2

(%𝚘𝟻) 12

(%𝚘𝟼) 9

(%𝚘𝟽)
2
3

(%𝚘𝟾) 0.6666666666666666

(%𝚘𝟿) 0.6666666666666666

(%𝚘𝟷𝟶) 0.6666666666666666

(%𝚘𝟷𝟷) 20

(%𝚘𝟷𝟸) 20

(%𝚘𝟷𝟹)
20
3

As in other computer languages, numerical values can be assigned to variables represented as symbols. For instance:

(%i14) a:5;

In the expression above, the ":" serves as an assignment operator, assigning the value to its right to the symbol on its left. In many computer languages, the
equals sign, "=", is used as the assignment operator. But, in Maxima the equals sign has a different use, more closely related to its traditional mathematical
meaning, discussed further below.
After being assigned to a value, the symbol can be used in other expressions:

(%i15) a;

(%i16) a+10;

After having one value assigned to it, a symbol can be reassigned:

(%i17) a:7;

(%i18) a;

(%i19) a+10;

And, assignments can be nullified with the kill command:

(%i20) kill(values);

(%i21) a;

Symbols can also be assigned to other symbols

(%i22) a:c;

(%i23) a;

(%i24) b+a;

The wxMaxima interface recognizes Greek letters and will display them in its output lines.

(%i25) alpha;

(%i26) beta;

(%i27) gamma;

(%𝚘𝟷𝟺) 5

(%𝚘𝟷𝟻) 5

(%𝚘𝟷𝟼) 15

(%𝚘𝟷𝟽) 7

(%𝚘𝟷𝟾) 7

(%𝚘𝟷𝟿) 17

(%𝚘𝟸𝟶) done

(%𝚘𝟸𝟷) a

(%𝚘𝟸𝟸) c

(%𝚘𝟸𝟹) c

(%𝚘𝟸𝟺) c + b

(%𝚘𝟸𝟻) α

(%𝚘𝟸𝟼) β

(%𝚘𝟸𝟽) γ

(%i28) delta;

(%i29) Delta;

The Greek letters can be assigned to values

If entered just as "pi", pi has no special value

(%i30) float(pi);

However, if preceded with %, pi is recognized as the irrational number approximately equal to 3.141592653589793

(%i31) %pi;

(%i32) float(%);

Similarly, the special numbers e and i are entered as %e and %i

(%i33) float(%e);

(%i34) %i*%i;

 2.3 Imaginary and complex numbers 2.3 Imaginary and complex numbers

Imaginary and complex numbers are specified, using %i to represent the unit imaginary number.

(%i35) %i^2;

(%i36) sqrt(-1);

A complex number

(%i37) c:3+%i*5;

The command conjugate return the conjugate of a complex number

(%i38) conjugate(c);

The real and imaginary parts of a complex number are returned by the commands realpart and imagpart

(%i39) realpart(c);

(%𝚘𝟸𝟽) γ

(%𝚘𝟸𝟾) δ

(%𝚘𝟸𝟿) Δ

(%𝚘𝟹𝟶) π

(%𝚘𝟹𝟷) π

(%𝚘𝟹𝟸) 3.141592653589793

(%𝚘𝟹𝟹) 2.718281828459045

(%𝚘𝟹𝟺) − 1

(%𝚘𝟹𝟻) − 1

(%𝚘𝟹𝟼) i

(%𝚘𝟹𝟽) 5 ⋅ i + 3

(%𝚘𝟹𝟾) 3 − 5 ⋅ i

(%𝚘𝟹𝟿) 3

(%i40) imagpart(c);

(%i41) imagpart(conjugate(c));

By default, variables in Maxima are assumed to be real valued, a fact that can be demonstrated using the conjugate command

(%i42) kill(a);

(%i43) a;

(%i44) conjugate(a);

(%i45) realpart(a);

(%i46) imagpart(a);

However, a variable can be declared to be complex, without actually assigning a value to it.

(%i47) declare(a,complex);

(%i48) conjugate(a);

(%i49) realpart(a);

(%i50) imagpart(a);

Even though Maxima does not know the value of a, it does not assume that the imaginary part is zero, as it would for a variable that had not been declared to
be complex.

Before proceeding, we kill all of the previous assignments

(%i51) kill(values, functions);

This also returns a to is default properties as a real number

(%i52) conjugate(a);

3 Algebra3 Algebra

What makes Maxima and other computer algebra programs, such as Mathematica and Maple, special is their ability to carry out mathematical manipulations
with symbols, rather than just numerical values.

(%𝚘𝟺𝟶) 5

(%𝚘𝟺𝟷) − 5

(%𝚘𝟺𝟸) done

(%𝚘𝟺𝟹) a

(%𝚘𝟺𝟺) a

(%𝚘𝟺𝟻) a

(%𝚘𝟺𝟼) 0

(%𝚘𝟺𝟽) done

(%𝚘𝟺𝟾) a⎯ ⎯⎯

(%𝚘𝟺𝟿) realpart (a)

(%𝚘𝟻𝟶) imagpart (a)

(%𝚘𝟻𝟷) done

(%𝚘𝟻𝟸) a⎯ ⎯⎯

In most standard computer languages (like Fortran, C, Perl, Python, etc), the following expressions would result in an error, because the computer doesn't
know what to do with an unassigned variable.

(%i53) a+b;

(%i54) (a+b)/c;

(%i55) (a+b)*(c+d);

The form of an expression can be manipulated by various Maxima commands, many of which are directly available in the wxMaxima menu bar. For instance
we can expand the expression above:

(%i56) %;

(%i57) expand(%);

This command is found as "Expand Expression" in the "Simplify" menu. When called from the menu bar, commands generally act on the result of the last
command, designated %. The previous result can then be factored

(%i58) factor(%);

or simplified (according the program's definition of simplification)

(%i59) ratsimp(%);

The "Simplify" menu and its submenus includes a variety of functions for rearranging algebraic and trigonometric functions. Choosing the right command to
generate a desired form can sometimes be challenging, and often requires a trial and error approach.

 3.1 Solving equations 3.1 Solving equations

Maxima can also solve many kinds of equations or systems of equations, using purely symbolic manipulations. First, as a simple example, we define the
standard quadratic equation.

(%i60) quadEq:(a*x^2+b*x+c=0);

There are subtle, but important, features to this operation, centered around the symbols ":" and "=". As noted before, in Maxima, ":" is an assignment operator,
that is, it is used to assign a value to a symbol.
Thus, the symbol quadEq now represents the equation that it was assigned to:

(%i61) quadEq;

In many computer languages, the equals sign, "=", is used as the assignment operator. But, in Maxima equations are a class of objects that can be
manipulated, and the equals sign is used in its more traditional mathematical sense. As a consequence, an expression like a=5, which might look like an
assignment, doesn't actually do anything on its own.

(%i62) a=5;

(%𝚘𝟻𝟹) b + a

(%𝚘𝟻𝟺)
a + b

c

(%𝚘𝟻𝟻) (b + a) ⋅ (d + c)

(%𝚘𝟻𝟼) (b + a) ⋅ (d + c)

(%𝚘𝟻𝟽) b ⋅ d + a ⋅ d + b ⋅ c + a ⋅ c

(%𝚘𝟻𝟾) (b + a) ⋅ (d + c)

(%𝚘𝟻𝟿) (a + b) ⋅ d + (a + b) ⋅ c

(%𝚘𝟼𝟶) a ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟼𝟷) a ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟼𝟸) a = 5

(%i63) a;

Having defined an equation, we can then apply the solve command to it:

(%i64) solve(quadEq,x);

Note, that the solve command requires two arguments, the equation and the variable that is to be solved for. In this case, we get the 2 familiar solutions for a
quadratic equation.
We can also solve for values of a, b or c that satisfy the equation, in terms of x and the other two variables:

(%i65) solve(quadEq,a);

(%i66) solve(quadEq,b);

(%i67) solve(quadEq,c);

The solve command, and related commands, can be accessed in the "Equations" menu of wxMaxima. The commands in this menu generally open a dialog
box into which the equations and variables are specified.

 3.2 Substituions 3.2 Substituions

Another useful technique is substitution. In the example with the quadratic equation, the symbols a, b and c were left unassigned, so that we obtained a
general result:

(%i68) solve(quadEq,x);

But, we might want to solve the equation with specific values of a, b and c. We could do this by redefining the equation with the specific values, or defining a
new equation

(%i69) quadEq2:(5*x^2-13*x+2=0);

(%i70) solve(quadEq2,x);

But, we can also do this with the general form of the equation and substitutions, using the subst function.
The subst function can be used with two syntaxes. In the first, the function takes 3 arguments: The numerical value or symbol to be introduced. The
symbol to be replaced. The expression to be altered by the substituion. To replace the symbol a in the quadratic equation defined earlier with the numerical
value of 5, we type

(%i71) subst(5,a,quadEq);

When the other syntax for the subst function is used, the function accepts two arguments, an equation defining the substitution and the expression. Using this
syntax, the same substitution shown above is written as:

(%𝚘𝟼𝟹) a

(%𝚘𝟼𝟺) [x = − , x =]
b + − 4 ⋅ a ⋅ cb2‾ ‾‾‾‾‾‾‾‾‾‾‾√

2 ⋅ a
− b− 4 ⋅ a ⋅ cb2‾ ‾‾‾‾‾‾‾‾‾‾‾√

2 ⋅ a

(%𝚘𝟼𝟻) [a = −]
c + b ⋅ x

x2

(%𝚘𝟼𝟼) [b = −]
c + a ⋅ x2

x

(%𝚘𝟼𝟽) [c = −a ⋅ − b ⋅ x]x2

(%𝚘𝟼𝟾) [x = − , x =]
b + − 4 ⋅ a ⋅ cb2‾ ‾‾‾‾‾‾‾‾‾‾‾√

2 ⋅ a
− b− 4 ⋅ a ⋅ cb2‾ ‾‾‾‾‾‾‾‾‾‾‾√

2 ⋅ a

(%𝚘𝟼𝟿) 5 ⋅ − 13 ⋅ x + 2 = 0x2

(%𝚘𝟽𝟶) [x = − , x =]
− 13129‾ ‾‾‾√

10
13 + 129‾ ‾‾‾√

10

(%𝚘𝟽𝟷) 5 ⋅ + b ⋅ x + c = 0x2

(%i72) subst(a=5,quadEq);

Importantly, the subst function does not alter the definition of the expression. Only the output of the subst function is affected. Thus, the expression
associated with quadEq is still:

(%i73) quadEq;

Multiple substitutions can be made at once using the syntax with only two arguments. In this case, the individual equations defining the substitutions are
enclosed in brackets to designate a list

(%i74) subst([a=5,b=-13,c=2],quadEq);

To solve the equation with these substitutions, we can apply the substitution command to the previous result:

(%i75) solve(%,x);

Or we can include the substitution operation in the first argument of the solve command

(%i76) solve(subst([a=5,b=-13,c=2],quadEq),x);

 3.3 Parts of expressions 3.3 Parts of expressions

Using the subs function is sometimes trickier than it looks. For instance, suppose that we try to substitute a new variable, d, for b*x+c

(%i77) subst(d, b*x+c,quadEq);

This also doesn't work using the alternative syntax:

(%i78) subst(b*x+c=d, quadEq);

The reason for this failure can be found in the fine print of the documentation:
? subst; -- Function: subst (<a>, , <c>) Substitutes <a> for in <c>. must be an atom or a complete subexpression of <c>.
Expressions in Maxima have a distinct structure, made up of parts, parts of parts and the smallest units, called atoms.
As an example, we can define an expression composed of the terms in the quadratic equation

(%i79) expr:a*x^2+b*x+c;

The structure of an expression can be dissected using the part function, which requires at least two arguments, an expression and an integer identifying a
part.

(%i80) part(expr,0);

(%i81) part(expr,1);

(%𝚘𝟽𝟸) 5 ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟽𝟹) a ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟽𝟺) 5 ⋅ − 13 ⋅ x + 2 = 0x2

(%𝚘𝟽𝟻) [x = − , x =]
− 13129‾ ‾‾‾√

10
13 + 129‾ ‾‾‾√

10

(%𝚘𝟽𝟼) [x = − , x =]
− 13129‾ ‾‾‾√

10
13 + 129‾ ‾‾‾√

10

(%𝚘𝟽𝟽) a ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟽𝟾) a ⋅ + b ⋅ x + c = 0x2

(%𝚘𝟽𝟿) a ⋅ + b ⋅ x + cx2

(%𝚘𝟾𝟶) +

(%𝚘𝟾𝟷) a ⋅ x2

(%i82) part(expr,2);

(%i83) part(expr,3);

part 1 is, in turn made up of parts, and the part function can be applied sequentially

(%i84) part(part(expr,1),0);

A simpler way to type this is to provide additional arguments to indicate sub parts.

(%i85) part(expr,1,1);

(%i86) part(expr,1,2);

(%i87) part(expr,1,3);

This means that x^2 cannot be divided into smaller parts.
Similarly, part 2 of the express, can be divided further

--> part(expr,2,0);

--> part(expr,2,1);

--> part(expr,2,2);

Any of the parts in an expression, including the operators can be substituted with the subst function

--> subst("+","*",expr);

In this example, each of the multiplication operators, "*", has been substituted with an addition operator, "+".
a, b, and c can all be replaced with substituions

--> subst(d,a, expr);

--> subst(d,b,expr);

--> subst(d,c,expr);

And x can be replaced

--> subst(y, x, expr);

(%𝚘𝟾𝟸) b ⋅ x

(%𝚘𝟾𝟹) c

(%𝚘𝟾𝟺) ∗

(%𝚘𝟾𝟻) a

(%𝚘𝟾𝟼) x2

part: fell off the end. -- an error. To debug this try: debugmode(true);

(%𝚘𝟸𝟷𝟾) ∗

(%𝚘𝟸𝟷𝟿) b

(%𝚘𝟸𝟸𝟶) x

(%𝚘𝟸𝟸𝟷) + x + c + b + ax2

(%𝚘𝟸𝟸𝟸) d ⋅ + b ⋅ x + cx2

(%𝚘𝟸𝟸𝟹) a ⋅ + d ⋅ x + cx2

(%𝚘𝟸𝟸𝟺) a ⋅ + b ⋅ x + dx2

(%𝚘𝟸𝟸𝟻) a ⋅ + b ⋅ y + c2

Also, the product b*x can be replaced with a number, with a symbol, or even another expression

--> subst(4,b*x,expr);

--> subst(d, b*x, expr);

--> subst(d*5,b*x,expr);

However, because the term b*x + c is not an identifiable part in the expression, it is not recognized by the subst command and cannot be replaced.

--> subst(4,b*x+c, expr);

There is another, related, function called ratsubst. This function knows a bit more about algebra than does subst, and can recognize terms that consist of
more than one atom, or part, of an expression.
For instance, the following command with ratsub behaves as we might expect

--> ratsubst(a,x+y,x+y+z);

The same example with subst fails, for the reason explained above.

--> subst(a,x+y,x+y+z);

Another example, using the expression defined above

--> expr;

--> ratsubst(d,a*x^2+b*x,expr);

But, the following doesn't work with ratsubst, though it seems it should:

--> ratsubst(d,b*x+c,expr);

Sometimes Maxima can be rather inscrutable!

4 Built-in Functions4 Built-in Functions

Maxima contains a large number of built-in functions. Two functions have already been introduced: float(x) and sqrt(x).

--> float(1/3);

--> sqrt(9);

(%𝚘𝟸𝟸𝟻) a ⋅ + b ⋅ y + cy2

(%𝚘𝟸𝟸𝟽) a ⋅ + c + 4x2

(%𝚘𝟸𝟸𝟿) a ⋅ + d + cx2

(%𝚘𝟸𝟸𝟾) a ⋅ + 5 ⋅ d + cx2

(%𝚘𝟸𝟹𝟶) a ⋅ + b ⋅ x + cx2

(%𝚘𝟸𝟺𝟼) z + a

(%𝚘𝟸𝟺𝟺) z + y + x

(%𝚘𝟸𝟺𝟽) a ⋅ + b ⋅ x + cx2

(%𝚘𝟸𝟺𝟾) d + c

(%𝚘𝟸𝟼𝟼) a ⋅ + b ⋅ x + cx2

(%𝚘𝟽𝟻) 0.3333333333333333

(%𝚘𝟽𝟼) 3

Other built-in functions include the trigonometric functions and their inverses, and logarithmic and exponential functions.

--> sin(0);

--> sin(%pi/2);

--> sin(%pi/4);

--> cos(0);

--> cos(%pi/2);

--> cos(%pi/4);

--> tan(0);

--> tan(%pi/4);

--> tan(%pi/2);

--> acos(1);

--> asin(1);

--> atan(1);

The function log(x) is the natural logarithm (base e), not the common logarithm (base 10)

--> log(1);

--> log(10);

--> log(10.0);

--> log(%e);

(%𝚘𝟽𝟽) 0

(%𝚘𝟽𝟾) 1

(%𝚘𝟽𝟿)
1
2‾√

(%𝚘𝟾𝟶) 1

(%𝚘𝟾𝟷) 0

(%𝚘𝟾𝟸)
1
2‾√

(%𝚘𝟾𝟹) 0

(%𝚘𝟾𝟺) 1

tan: isn't in the domain of tan. -- an error. To debug this try: debugmode(true);
π
2

(%𝚘𝟾𝟼) 0

(%𝚘𝟾𝟽)
π
2

(%𝚘𝟾𝟾)
π
4

(%𝚘𝟾𝟿) 0

(%𝚘𝟿𝟶) log (10)

(%𝚘𝟿𝟷) 2.302585092994046

However, the common logarithm is available in a shared library included in the wxMaxima distribution and can be loaded into a session

--> load(log10);

--> log10(10);

Exponentials of the Euler number, e, can be written either as %e^x or as exp(x)

--> %e^1;

--> float(%);

--> exp(1);

--> exp(0);

5 Trigonometric identities and simplification5 Trigonometric identities and simplification

The trigonometric functions arise frequently in NMR, and it is often desirable to convert an expression into another form.
There are several Maxima functions for manipulating expressions that contain trigonometric functions, including the following, which can be accessed in the
wxMaxima Simplify>Trigonometric Simplification submenu:
Command Simplify Trigonometric trigreduce() Reduce Trigonometric trigexpand() Expand Trigonometric trigrat() Cannonical form
The commands trigreduce and trigexpand interconvert trigonometric expressions containing sums of angles and products of trig functions. For instance, the
cosine of a sum of angles is converted into an expression containing products of trig functions with simplified arguments

--> trigexpand(cos(a+b));

This is reversed with trigreduce

--> trigreduce(%);

A product of two trig functions can be converted into a form made up of trig functions of sums.

--> trigreduce(cos(a)*cos(b));

This is reversed, with trigexpand, followed by simplification with ratsimp

--> trigexpand(%);

--> ratsimp(%);

(%𝚘𝟿𝟸) 1

(%𝚘𝟿𝟹) /usr/local/Cellar/maxima/5.36.1/share/maxima/5.36.1/share/contrib/log10.mac

(%𝚘𝟿𝟺) 1

(%𝚘𝟿𝟻) e

(%𝚘𝟿𝟼) 2.718281828459045

(%𝚘𝟿𝟽) e

(%𝚘𝟿𝟾) 1

(%𝚘𝟸𝟽𝟹) cos (a) ⋅ cos (b) − sin (a) ⋅ sin (b)

(%𝚘𝟸𝟽𝟺) cos (b + a)

(%𝚘𝟸𝟽𝟻) +
cos (b + a)

2
cos (b − a)

2

(%𝚘𝟸𝟽𝟼) +
sin (a) ⋅ sin (b) + cos (a) ⋅ cos (b)

2
cos (a) ⋅ cos (b) − sin (a) ⋅ sin (b)

2

(%𝚘𝟸𝟽𝟽) cos (a) ⋅ cos (b)

another example

--> trigreduce(cos(a)*sin(b));

--> trigexpand(%);

--> ratsimp(%);

expansion of an angular product

--> trigexpand(sin(3*b));

--> trigreduce(%);

--> ratsimp(%);

Expansion of a trigonometric function of the sum of three angles

--> trigexpand(cos(a+b+c));

--> trigrat(%);

--> trigsimp(%);

--> trigrat(%);

Sometimes it is useful to separate out one term in a sum making up the argument of a trigonometric function, while leaving others alone. Here is one way to
do that, beginning, again, with the sum of three angles.

--> trigexpand(cos(a+b+c));

Suppose that we want to treat a separately from b and c. We make substitutions for cos(a) and sin(a)

--> subst([cos(a)=x,sin(a)=y],%);

Then, convert the terms for a and b back into sums of angles

--> trigreduce(%);

(%𝚘𝟸𝟿𝟻) +
sin (b + a)

2
sin (b − a)

2

(%𝚘𝟸𝟿𝟼) +
cos (a) ⋅ sin (b) + sin (a) ⋅ cos (b)

2
cos (a) ⋅ sin (b) − sin (a) ⋅ cos (b)

2

(%𝚘𝟸𝟿𝟽) cos (a) ⋅ sin (b)

(%𝚘𝟹𝟶𝟶) 3 ⋅ ⋅ sin (b) −cos (b)2 sin (b)3

(%𝚘𝟹𝟶𝟷) + −
3 ⋅ sin (3 ⋅ b) + 3 ⋅ sin (b)

4
sin (3 ⋅ b)

4
3 ⋅ sin (b)

4

(%𝚘𝟹𝟶𝟸) sin (3 ⋅ b)

(%𝚘𝟸𝟿𝟶) − cos (a) ⋅ sin (b) ⋅ sin (c) − sin (a) ⋅ cos (b) ⋅ sin (c) − sin (a) ⋅ sin (b) ⋅ cos (c) + cos (a) ⋅ cos (b) ⋅ cos (c)

(%𝚘𝟸𝟿𝟷) cos (c + b + a)

(%𝚘𝟸𝟾𝟺) (−cos (a) ⋅ sin (b) − sin (a) ⋅ cos (b)) ⋅ sin (c) + (cos (a) ⋅ cos (b) − sin (a) ⋅ sin (b)) ⋅ cos (c)

(%𝚘𝟸𝟾𝟻) cos (c + b + a)

(%𝚘𝟷𝟺𝟶) − cos (a) ⋅ sin (b) ⋅ sin (c) − sin (a) ⋅ cos (b) ⋅ sin (c) − sin (a) ⋅ sin (b) ⋅ cos (c) + cos (a) ⋅ cos (b) ⋅ cos (c)

(%𝚘𝟷𝟺𝟷) − cos (b) ⋅ sin (c) ⋅ y − sin (b) ⋅ cos (c) ⋅ y − sin (b) ⋅ sin (c) ⋅ x + cos (b) ⋅ cos (c) ⋅ x

(%𝚘𝟷𝟺𝟸) cos (c + b) ⋅ x − sin (c + b) ⋅ y

Finally, substitute the terms cos(a) and sin(b) back.

--> subst([x=cos(a),y=sin(a)],%);

More details about the trigsimp, trigexpand and trigrat Maxima functions can be obtained by from the builtin helpl system, by typing "?" followed by the
function.

--> ? trigsimp;

--> ? trigexpand;

--> ? trigrat;

6 User defined functions6 User defined functions

Functions of one or more variables are easily defined. Functions are defined using the assignment operator, :=, which is distinguished from the assignment
operator for symbols, : For instance

--> f(x):=x^2;

--> f(2);

--> f(9);

A function of two variables

--> g(x,y):=cos(x)+sin(y);

--> g(0,0);

--> g(%pi,%pi);

--> g(0,%pi/2);

User-defined functions can be used within other functions

--> h(x):=f(x)+2*x;

(%𝚘𝟷𝟺𝟹) cos (a) ⋅ cos (c + b) − sin (a) ⋅ sin (c + b)

 -- Function: trigsimp (<expr>) Employs the identities sin(x)\textasciicircum2 + cos(x)\textasciicircum2 = 1 and cosh(x)\textasciicircum2 - sinh(x)\textasciicircum2 = 1 to simplify expressions containing 'tan', 'sec',

(%𝚘𝟸𝟾𝟾) true

 -- Function: trigexpand (<expr>) Expands trigonometric and hyperbolic functions of sums of angles and of multiple angles occurring in <expr>.

(%𝚘𝟸𝟾𝟽) true

 -- Function: trigrat (<expr>) Gives a canonical simplified quasilinear form of a trigonometrical expression; <expr> is a rational fraction of several 'sin', 'cos'

(%𝚘𝟸𝟾𝟼) true

(%𝚘𝟿𝟿) f (x) := x2

(%𝚘𝟷𝟶𝟶) 4

(%𝚘𝟷𝟶𝟷) 81

(%𝚘𝟷𝟶𝟸) g (x, y) := cos (x) + sin (y)

(%𝚘𝟷𝟶𝟹) 1

(%𝚘𝟷𝟶𝟺) − 1

(%𝚘𝟷𝟶𝟻) 2

(%𝚘𝟷𝟶𝟼) h (x) := f (x) + 2 ⋅ x

--> h(1);

--> h(3);

7 Plotting functions7 Plotting functions

wxMaxima provides a simple mechanism to plot functions or data, using the graphing program GnuPlot. Using this feature requires that a special version of
GnuPlot be installed alongside wxMaxima and that the programs be properly linked to each other. Details are found in the wxMaxima installation instructions.
The plot functions are most easily accessed using the commands in the wxMaxima Plot menu. These menu commands open dialog boxes in which the
function to be plotted is specified, along with various plotting parameters. From these parameters, a plotting command is generated and evaluated.
The example below plots sin(x) versus x for x between -5 and 5.

--> wxplot2d([sin(x)], [x,-5,5]);

Two functions plotted on the same graph

--> wxplot2d([sin(x),cos(x)], [x,-5,5]);

(%𝚘𝟷𝟶𝟽) 3

(%𝚘𝟷𝟶𝟾) 15

(%𝚝𝟽)

(%𝚘𝟽)

(%𝚝𝟷𝟷𝟶)

(%𝚘𝟷𝟷𝟶)

A graph of one of the functions defined above, h(x):=f(x)+2*x; where f(x) was previously defined as f(x):=x^2;

--> wxplot2d([h(x)], [x,-5,5]);

Three-dimensional plots are created with the wxplot3d command

--> wxplot3d(sin(x)*cos(y), [x,-5,5], [y,-5,5])$

8 Vectors and matrices8 Vectors and matrices

 8.1 Vectors 8.1 Vectors

Maxima does not actually have a specific representation for vectors, but they can be represented as either lists, enclosed in brackets, or as 1xN or Nx1
matrices. The simplest way is to use lists to represent vectors, though this is less rigorous and may lead to difficulties The preferred alternative, representing
vectors as matrices, is discussed in the next subsection.
Here we define two lists of three symbolic elements, which we will treat as vectors,

--> A:[A1,A2,A3];

(%𝚝𝟷𝟷𝟷)

(%𝚘𝟷𝟷𝟷)

(%𝚝𝟾)

(%𝚘𝟸𝟼𝟹) [A1, A2, A3]

--> B:[B1,B2,B3];

Addition of two vectors represents the addition of the corresponding elements to generate a new vector of the same dimensionality.

--> A+B;

Vector subtraction is similarly defined

--> A-B;

Multiplying a vector by a number (scalar multiplication)

--> 3.1*A;

The dot product (or inner product) of two vectors is written using a period (.) between the arguments and results in a scalar

--> A.B;

Additional operations on vectors are described below, with the vectors defined as matrices.

The elements of lists, including those representing vectors, and be accessed individually by index. In Maxima, unlike some other programming languages, the
indices begin with 1

--> A[1];

--> A[2];

--> A[3];

The elements of a list can be changed individually

--> A[3]:0;

--> A;

 8.2 Matrices 8.2 Matrices

Matrices are generated with the matrix command, for which the argument is a list of lists, separated by commas each representing one row of the matrix.

--> C:matrix([C11,C12,C13],[C21,C22,C23],[C31,C32,C33]);

--> D:matrix([D11,D12,D13],[D21,D22,D23],[D31,D32,D33]);

(%𝚘𝟸𝟼𝟺) [B1, B2, B3]

(%𝚘𝟷𝟷𝟻) [B1 + A1, B2 + A2, B3 + A3]

(%𝚘𝟷𝟷𝟼) [A1 − B1, A2 − B2, A3 − B3]

(%𝚘𝟷𝟷𝟽) [3.1 ⋅ A1, 3.1 ⋅ A2, 3.1 ⋅ A3]

(%𝚘𝟷𝟷𝟾) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟸𝟼𝟼) A1

(%𝚘𝟸𝟼𝟽) A2

(%𝚘𝟸𝟼𝟾) A3

(%𝚘𝟸𝟽𝟸) 0

(%𝚘𝟸𝟽𝟹) [A1, A2, 0]

(%𝚘𝟸𝟽𝟶)
⎛

⎝
⎜⎜

C11
C21
C31

C12
C22
C32

C13
C23
C33

⎞

⎠
⎟⎟

(%𝚘𝟸𝟽𝟷)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The elements of matrices are accessed by pairs of indices, with the first index specifying the row and the second the column

--> C[1,1];

--> C[1,2];

--> C[2,1];

The dimensions of matrices are specified in the form nxm, where n is the number of rows and m is the number of columns. Both A and B are 3x3 matrices.
E is defined below as a 2x3 matrix

--> E:matrix([E11,E12],[E21,E22],[E31,E32]);

Matrix addition and subtraction are defined only when the two matrices have both the same number of rows and the same number of columns.

--> C+D;

--> C-D;

--> C+E;

Multiplication by a scalar

--> 2*C;

Multiplication of two matrices is represented by a period, as for the dot product of vectors.

--> C.D;

Matrix multiplication is not commutative

(%𝚘𝟸𝟽𝟷)
⎛

⎝
⎜⎜

D11
D21
D31

D12
D22
D32

D13
D23
D33

⎞

⎠
⎟⎟

(%𝚘𝟸𝟽𝟺) C11

(%𝚘𝟸𝟽𝟻) C12

(%𝚘𝟸𝟽𝟼) C21

(%𝚘𝟷𝟸𝟷)
⎛

⎝
⎜⎜

E11
E21
E31

E12
E22
E32

⎞

⎠
⎟⎟

(%𝚘𝟷𝟸𝟸)
⎛

⎝
⎜⎜

D11 + C11
D21 + C21
D31 + C31

D12 + C12
D22 + C22
D32 + C32

D13 + C13
D23 + C23
D33 + C33

⎞

⎠
⎟⎟

(%𝚘𝟷𝟸𝟹)
⎛

⎝
⎜⎜

C11 − D11
C21 − D21
C31 − D31

C12 − D12
C22 − D22
C32 − D32

C13 − D13
C23 − D23
C33 − D33

⎞

⎠
⎟⎟

fullmap: arguments must have same formal structure. -- an error. To debug this try: debugmode(true);

(%𝚘𝟷𝟸𝟻)
⎛

⎝
⎜⎜

2 ⋅ C11
2 ⋅ C21
2 ⋅ C31

2 ⋅ C12
2 ⋅ C22
2 ⋅ C32

2 ⋅ C13
2 ⋅ C23
2 ⋅ C33

⎞

⎠
⎟⎟

(%𝚘𝟷𝟸𝟼)
⎛

⎝
⎜⎜

C13 ⋅ D31 + C12 ⋅ D21 + C11 ⋅ D11
C23 ⋅ D31 + C22 ⋅ D21 + C21 ⋅ D11
C33 ⋅ D31 + C32 ⋅ D21 + C31 ⋅ D11

C13 ⋅ D32 + C12 ⋅ D22 + C11 ⋅ D12
C23 ⋅ D32 + C22 ⋅ D22 + C21 ⋅ D12
C33 ⋅ D32 + C32 ⋅ D22 + C31 ⋅ D12

C13 ⋅ D33 + C12 ⋅ D23 + C11 ⋅ D13
C23 ⋅ D33 + C22 ⋅ D23 + C21 ⋅ D13
C33 ⋅ D33 + C32 ⋅ D23 + C31 ⋅ D13

⎞

⎠
⎟⎟

--> D.C;

When two matrices are multiplied, the number of columns in the first matrix must be equal to the number of rows in the second.

--> E;

The product D.E is defined:

--> D.E;

But, E.D is not

--> E.D;

Matrix transposition is implemented with the transposition function.

--> D;

--> transpose(D);

--> E;

--> transpose(E);

Vectors can be thought of as special cases of matrices, with either one row and n columns or n rows and 1 column.
Here, we redefine A and B as 1x3 matrices.

--> A:matrix([A1, A2, A3]);

--> B:matrix([B1,B2,B3]);

(%𝚘𝟷𝟸𝟽)
⎛

⎝
⎜⎜

C31 ⋅ D13 + C21 ⋅ D12 + C11 ⋅ D11
C31 ⋅ D23 + C21 ⋅ D22 + C11 ⋅ D21
C31 ⋅ D33 + C21 ⋅ D32 + C11 ⋅ D31

C32 ⋅ D13 + C22 ⋅ D12 + C12 ⋅ D11
C32 ⋅ D23 + C22 ⋅ D22 + C12 ⋅ D21
C32 ⋅ D33 + C22 ⋅ D32 + C12 ⋅ D31

C33 ⋅ D13 + C23 ⋅ D12 + C13 ⋅ D11
C33 ⋅ D23 + C23 ⋅ D22 + C13 ⋅ D21
C33 ⋅ D33 + C23 ⋅ D32 + C13 ⋅ D31

⎞

⎠
⎟⎟

(%𝚘𝟷𝟸𝟾)
⎛

⎝
⎜⎜

E11
E21
E31

E12
E22
E32

⎞

⎠
⎟⎟

(%𝚘𝟷𝟸𝟿)
⎛

⎝
⎜⎜

D13 ⋅ E31 + D12 ⋅ E21 + D11 ⋅ E11
D23 ⋅ E31 + D22 ⋅ E21 + D21 ⋅ E11
D33 ⋅ E31 + D32 ⋅ E21 + D31 ⋅ E11

D13 ⋅ E32 + D12 ⋅ E22 + D11 ⋅ E12
D23 ⋅ E32 + D22 ⋅ E22 + D21 ⋅ E12
D33 ⋅ E32 + D32 ⋅ E22 + D31 ⋅ E12

⎞

⎠
⎟⎟

MULTIPLYMATRICES: attempt to multiply nonconformable matrices. -- an error. To debug this try: debugmode(true);

(%𝚘𝟷𝟹𝟷)
⎛

⎝
⎜⎜

D11
D21
D31

D12
D22
D32

D13
D23
D33

⎞

⎠
⎟⎟

(%𝚘𝟷𝟹𝟸)
⎛

⎝
⎜⎜

D11
D12
D13

D21
D22
D23

D31
D32
D33

⎞

⎠
⎟⎟

(%𝚘𝟷𝟹𝟹)
⎛

⎝
⎜⎜

E11
E21
E31

E12
E22
E32

⎞

⎠
⎟⎟

(%𝚘𝟷𝟹𝟺) ()E11
E12

E21
E22

E31
E32

(%𝚘𝟸𝟽𝟽) ()A1 A2 A3

(%𝚘𝟸𝟽𝟾) ()

--> B.A;

--> c*A;

--> A.B;

--> B.A;

The elements of matrices with only one row or one column must still be accessed with two indices

--> A[1,1];

--> B[1,3];

When multiplying vectors and matrices, Maxima takes a rather relaxed attitude, whether the vector is represented as a list or a 1xn matrix. For instance, we
can multiply the previously defined vector A and the 3x3 matrix C in either order

--> A.C;

--> C.A;

In the product A.C, A is interpreted as a 1x3 matrix (sometimes called a row vector), and the product represents another row vector. If A were treated as a 3x1
matrix, the multiplication would not be defined.
But, in the product C.A, A is interpreted as a 3x1 matrix (a column vector), and the product is another column vector. Again, the multiplication is only defined
with this interpretation.
Note that the elements of the two products are not the same!

We can also specifically define a 3x1 matrix, or column vector

--> F:matrix([F1],[F2],[F3]);

--> G:matrix([G1],[G2],[G3]);

When two column vectors are multiplied, in either order, the result is the dot product

--> F.G;

(%𝚘𝟸𝟽𝟾) ()B1 B2 B3

(%𝚘𝟷𝟹𝟽) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟷𝟹𝟾) ()c ⋅ A1 c ⋅ A2 c ⋅ A3

(%𝚘𝟷𝟹𝟿) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟷𝟺𝟶) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟸𝟽𝟿) A1

(%𝚘𝟸𝟾𝟶) B3

(%𝚘𝟷𝟺𝟷) ()A3 ⋅ C31 + A2 ⋅ C21 + A1 ⋅ C11 A3 ⋅ C32 + A2 ⋅ C22 + A1 ⋅ C12 A3 ⋅ C33 + A2 ⋅ C23 + A1 ⋅ C13

(%𝚘𝟷𝟺𝟸)
⎛

⎝
⎜⎜

A3 ⋅ C13 + A2 ⋅ C12 + A1 ⋅ C11
A3 ⋅ C23 + A2 ⋅ C22 + A1 ⋅ C21
A3 ⋅ C33 + A2 ⋅ C32 + A1 ⋅ C31

⎞

⎠
⎟⎟

(%𝚘𝟷𝟺𝟹)
⎛

⎝
⎜⎜

F1
F2
F3

⎞

⎠
⎟⎟

(%𝚘𝟷𝟺𝟺)
⎛

⎝
⎜⎜

G1
G2
G3

⎞

⎠
⎟⎟

(%𝚘𝟷𝟺𝟻) F3 ⋅ G3 + F2 ⋅ G2 + F1 ⋅ G1

--> G.F;

The column vector, F, can also be multiplied by a 1xn matrix in either order, but with different results.

--> A.F;

--> F.A;

The behavior here may be a little bit confusing, but the important point is that in both cases A is treated as a row vector, and the order of multiplication
determines the result. Formally, the symbol "." is defined in Maxima as representing "non-commutative" multiplication.
In the product A.F, multiplication of a 1x3 matrix by a 3x1 matrix results in a 1x1 matrix. By default, Maxima returns a 1x1 matrix as a scalar value, but this
behavior can be modified.
In the product F.A, A is again treated as a row vector (a 3x1 matrix), and the result is a 3x3 matrix. This matrix corresponds to the outer product.
The logic behind this is not super clear, and one has to be careful!

 8.3 Additional vector and matrix functions 8.3 Additional vector and matrix functions

The basic vector and matrix functions above are provided in the standard packages that are loaded when the Maxima program is loaded. Additional functions
can be found in special packages that must be loaded manually.

The function for calculating the trace of a matrix is found in the package nchrpl

--> load("nchrpl");

--> C;

--> mattrace(C);

Other useful functions are found in the package eigen

--> load(eigen);

One small, but convenient, function in the eigen package is columnvector, which generates a column vector from a list of numbers or symbols.

--> columnvector([1,2,3]);

This is equivalent to:

--> transpose([1,2,3]);

(%𝚘𝟷𝟺𝟼) F3 ⋅ G3 + F2 ⋅ G2 + F1 ⋅ G1

(%𝚘𝟷𝟺𝟽) A3 ⋅ F3 + A2 ⋅ F2 + A1 ⋅ F1

(%𝚘𝟷𝟺𝟾)
⎛

⎝
⎜⎜

A1 ⋅ F1
A1 ⋅ F2
A1 ⋅ F3

A2 ⋅ F1
A2 ⋅ F2
A2 ⋅ F3

A3 ⋅ F1
A3 ⋅ F2
A3 ⋅ F3

⎞

⎠
⎟⎟

(%𝚘𝟷𝟺𝟿) /usr/local/Cellar/maxima/5.36.1/share/maxima/5.36.1/share/matrix/nchrpl. mac

(%𝚘𝟷𝟻𝟶)
⎛

⎝
⎜⎜

C11
C21
C31

C12
C22
C32

C13
C23
C33

⎞

⎠
⎟⎟

(%𝚘𝟷𝟻𝟷) C33 + C22 + C11

(%𝚘𝟷𝟻𝟸) /usr/local/Cellar/maxima/5.36.1/share/maxima/5.36.1/share/matrix/eigen. mac

(%𝚘𝟷𝟻𝟹)
⎛

⎝
⎜⎜

1
2
3

⎞

⎠
⎟⎟

(%𝚘𝟷𝟻𝟺)
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Another function in the eigen package calculates the inner product of two vectors.

--> A:matrix([A1,A2,A3]);

--> B:matrix([B1,B2,B3]);

--> innerproduct(A,B);

This can also be typed in a shorter form:

--> inprod(A,B);

This may appear to be the same as the non-commutative multiplication operation, and it is for real valued vectors. (Unless specifically defined otherwise,
Maxima assumes that all variables are real numbers).

--> A.B;

But, the two functions are different when applied to imaginary or complex values.

--> C:matrix([c1r+%i*c1i, c2r+%i*c2i, c3r+%i*c3i]);

The same results are obtained when A and C are multiplied using the "." operator in either order.

--> A.C;

--> C.A;

But, the inner product gives different results when complex numbers are involved

--> inprod(A,C);

--> inprod(C,A);

The inner product is defined so that inprod(A,B) = conjugate(A).B This definition ensures that when the inner product is formed between a complex vector and
itself, the result is real.

--> inprod(C,C);

In contrast, the dot product is:

(%𝚘𝟷𝟻𝟺)
⎛

⎝
⎜⎜

1
2
3

⎞

⎠
⎟⎟

(%𝚘𝟷𝟻𝟻) ()A1 A2 A3

(%𝚘𝟷𝟻𝟼) ()B1 B2 B3

(%𝚘𝟷𝟻𝟽) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟷𝟻𝟾) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟷𝟻𝟿) A3 ⋅ B3 + A2 ⋅ B2 + A1 ⋅ B1

(%𝚘𝟷𝟼𝟶) ()c1r + i ⋅ c1i c2r + i ⋅ c2i c3r + i ⋅ c3i

(%𝚘𝟷𝟼𝟷) (c3r + i ⋅ c3i) ⋅ A3 + (c2r + i ⋅ c2i) ⋅ A2 + (c1r + i ⋅ c1i) ⋅ A1

(%𝚘𝟷𝟼𝟸) (c3r + i ⋅ c3i) ⋅ A3 + (c2r + i ⋅ c2i) ⋅ A2 + (c1r + i ⋅ c1i) ⋅ A1

(%𝚘𝟷𝟼𝟹) (c3r + i ⋅ c3i) ⋅ A3 + (c2r + i ⋅ c2i) ⋅ A2 + (c1r + i ⋅ c1i) ⋅ A1

(%𝚘𝟷𝟼𝟺) (c3r − i ⋅ c3i) ⋅ A3 + (c2r − i ⋅ c2i) ⋅ A2 + (c1r − i ⋅ c1i) ⋅ A1

(%𝚘𝟷𝟼𝟻) + + + + +c3r2 c3i2 c2r2 c2i2 c1r2 c1i2

--> C.C;

--> expand(%);

But, this means that inprod(A,B) = conjugate(A).B is not equal to inprod(B.A) = conjugate(B).A, unless A and B both contain only real values.

 8.4 Eigenvectors and eigenvalues 8.4 Eigenvectors and eigenvalues

As suggested by its name, the eigen package has functions for calculating eigenvectors and eigenvalues for a square matrix.
For a square nxn matrix, eigenvectors are nx1 matrices (column vectors) have the the property that when they are multiplied by the matrix, the result is
another nx1 matrix that is the original vector multiplied by a constant, the eigenvalue.
M.X = lambda.X where M is the matrix, X is the eigen vector, and lambda is the eigenvalue.

The following examples are from the Maxima documentation.
A matrix which has just one eigenvector per eigenvalue.

--> M1 : matrix ([11, -1], [1, 7]);

--> eigenvectors(M1);

The output is rather difficult to parse, but it consists of two lists:
[[9−sqrt(3),sqrt(3)+9],[1,1]] and [[[1,sqrt(3)+2]],[[1,2−sqrt(3)]]]
The first list is, itself, a list of two lists: A list of the eigenvalues and a list of their multiplicities.
The eigenvalues are: 9−sqrt(3) and sqrt(3)+9 The multiplicities are both one, which means that each eigenvalue is associated with just one eigenvector. (More
properly, the multiplicities given by Maxima are the geometric multiplicities. There is also an algebraic multiplicity, with a different meaning.)
The second list contains the eigenvectors: [1,sqrt(3)+2] and [1,2−sqrt(3)]
To confirm that these are eigenvectors, we multiply the matrix by each of them and compare the results to those obtained by multiplying the eigenvectors by
the eigenvalues:

The first eigenvector

--> M1.[1,sqrt(3)+2];

--> ratsimp(%);

--> (9−sqrt(3))*columnvector([1,sqrt(3)+2]);

--> ratsimp(%);

The second eigenvector

--> M1.[1,2−sqrt(3)];

(%𝚘𝟷𝟼𝟼) + +(c3r + i ⋅ c3i)2 (c2r + i ⋅ c2i)2 (c1r + i ⋅ c1i)2

(%𝚘𝟷𝟼𝟽) + 2 ⋅ i ⋅ c3i ⋅ c3r − + + 2 ⋅ i ⋅ c2i ⋅ c2r − + + 2 ⋅ i ⋅ c1i ⋅ c1r −c3r2 c3i2 c2r2 c2i2 c1r2 c1i2

(%𝚘𝟷𝟼𝟾) ()11
1

−1
7

(%𝚘𝟷𝟼𝟿) [[[9 − , + 9], [1, 1]], [[[1, + 2]], [[1, 2 −]]]]3‾√ 3‾√ 3‾√ 3‾√

(%𝚘𝟷𝟽𝟶) ()9 − 3‾√
7 ⋅ (+ 2) + 13‾√

(%𝚘𝟷𝟽𝟷) ()9 − 3‾√
7 ⋅ + 153‾√

(%𝚘𝟷𝟽𝟸) ()9 − 3‾√

(9 −) ⋅ (+ 2)3‾√ 3‾√

(%𝚘𝟷𝟽𝟹) ()9 − 3‾√
7 ⋅ + 153‾√

(%𝚘𝟷𝟽𝟺) ()+ 9‾√

--> ratsimp(%);

--> (sqrt(3)+9)*columnvector([1,2−sqrt(3)]);

--> ratsimp(%);

The eigenvalues of the matrix can also be obtained, without the eigenvectors, with the eigenvalues command.

--> eigenvalues(M1);

Again, the first list contains the eigenvalues and the second list contains the (geometric) multiplicities.

The eigenvectors function does not generally return normalized eigenvectors, that is vectors with unit length. However, the normalized eigenvectors can be
obtained with the uniteigenvectors function.

--> uniteigenvectors(M1);

The output has the same form as that of the eigenvectors function, and the normalized eigenvectors are: [1/sqrt(4*sqrt(3)+8),(sqrt(3)+2)/sqrt(4*sqrt(3)+8)] and
[1/sqrt(8−4*sqrt(3)),-(sqrt(3)−2)/sqrt(8−4*sqrt(3))]
We can confirm that they are normalized by calculating the inner product of each of the vectors with itself

--> inprod([1/sqrt(4*sqrt(3)+8),(sqrt(3)+2)/sqrt(4*sqrt(3)+8)],[1/sqrt(4*sqrt(3)+8),(sqrt(3)+2)/sqrt(4*sqrt(3)+8)]);

--> inprod([1/sqrt(8−4*sqrt(3)),-(sqrt(3)−2)/sqrt(8−4*sqrt(3))],[1/sqrt(8−4*sqrt(3)),-
(sqrt(3)−2)/sqrt(8−4*sqrt(3))]);

The eigen package also includes a function to normalize any vector

--> A;

--> unitvector(A);

--> %.%;

--> ratsimp(%);

(%𝚘𝟷𝟽𝟺) ()+ 93‾√
7 ⋅ (2 −) + 13‾√

(%𝚘𝟷𝟽𝟻) ()+ 93‾√
15 − 7 ⋅ 3‾√

(%𝚘𝟷𝟽𝟼) ()+ 93‾√

(2 −) ⋅ (+ 9)3‾√ 3‾√

(%𝚘𝟷𝟽𝟽) ()+ 93‾√
15 − 7 ⋅ 3‾√

(%𝚘𝟷𝟽𝟾) [[9 − , + 9], [1, 1]]3‾√ 3‾√

(%𝚘𝟷𝟽𝟿) [[[9 − , + 9], [1, 1]], [[[,]], [[, −]]]]3‾√ 3‾√
1

4 ⋅ + 83‾√‾ ‾‾‾‾‾‾‾‾‾√
+ 23‾√

4 ⋅ + 83‾√‾ ‾‾‾‾‾‾‾‾‾√
1

8 − 4 ⋅ 3‾√‾ ‾‾‾‾‾‾‾‾‾√
− 23‾√

8 − 4 ⋅ 3‾√‾ ‾‾‾‾‾‾‾‾‾√

(%𝚘𝟷𝟾𝟶) 1

(%𝚘𝟷𝟾𝟷) 1

(%𝚘𝟷𝟾𝟸) ()A1 A2 A3

(%𝚘𝟷𝟾𝟹) ()A1
+ +A32 A22 A12√

A2
+ +A32 A22 A12√

A3
+ +A32 A22 A12√

(%𝚘𝟷𝟾𝟺) + +
A32

+ +A32 A22 A12
A22

+ +A32 A22 A12
A12

+ +A32 A22 A12

(%𝚘𝟷𝟾𝟻) 1

Here is another example from the documentation, a matrix with two eigenvectors and one eigenvalue

--> M2:matrix ([0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]);

--> eigenvectors(M2);

The eigenvalues are reported are 0 and 2, but an eigenvalue of zero is generally considered a trivial result. The eigenvalue 2 has a geometric multiplicity of 2
The two eigenvectors associated with the eigenvalue 2 are [0,0,1,0] and [0,0,0,1]

--> M2.matrix([0,0,1,0]);

--> M2.matrix([0,0,0,1]);

The trivial eigenvector

--> M2.matrix([1,0,0,0]);

Created with wxMaxima.

(%𝚘𝟷𝟾𝟻) 1

(%𝚘𝟷𝟾𝟼)

⎛

⎝

⎜⎜⎜⎜

0
0
0
0

1
0
0
0

0
0
2
0

0
0
0
2

⎞

⎠

⎟⎟⎟⎟

(%𝚘𝟷𝟾𝟽) [[[0, 2], [2, 2]], [[[1, 0, 0, 0]], [[0, 0, 1, 0], [0, 0, 0, 1]]]]

(%𝚘𝟷𝟾𝟾)

⎛

⎝

⎜⎜⎜⎜

0
0
2
0

⎞

⎠

⎟⎟⎟⎟

(%𝚘𝟷𝟾𝟿)

⎛

⎝

⎜⎜⎜⎜

0
0
0
2

⎞

⎠

⎟⎟⎟⎟

(%𝚘𝟷𝟿𝟶)

⎛

⎝

⎜⎜⎜⎜

0
0
0
0

⎞

⎠

⎟⎟⎟⎟

http://wxmaxima.sourceforge.net/

