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1 Introduction1 Introduction

This wxMaxima workbook is an electronic supplement to to the book Principles of NMR Spectroscopy: An Illustrated Guide, David P. Goldenberg, University
Science Books, (c) 2016. 
This and related files are available for download through links at: http://uscibooks.com/goldenberg.htm 
wxMaxima is a graphical user interface to the computer algebra system (CAS) Maxima.  General information about Maxima and wxMaxima, along with free
versions of the programs, can be found at: http://maxima.sourceforge.net/ and http://andrejv.github.io/wxmaxima/ 
Before attempting to use this workbook, users are strongly encouraged to read and experiment with the introductory workbook, gettingStarted.wxmx 
This software is distributed under the conditions of the BSD license and without any guarantees or warranties. (c) 2015 by David P. Goldenberg 
Please send comments, including bug reports, to this address: 
   David P. Goldenberg 
   Department of Biology 
   University of Utah 
   257 South 1400 East 
   Salt Lake City, UT  84112-0840 
   goldenberg@biology.utah.edu

Chapter 11 covers, in addition to a general introduction to the formalism of quantum mechanics, the treatment of isolated spin-1/2 particles, including the
wavefunction and magnetization operators.  This workbook includes the various calculations presented in that chapter and can be used to carry out additional
calculations.

This workbook uses definitions in 1spinLib.mac for quantum mechanics of a single spin 1/2 particle. The calculations are carried out using matrix
representations of the wavefunctions and operators, as explained in Appendix E. 
The 1spinLib.mac file can be stored in any location accessible to the user, but it is recommended that it and the accompanying file, 2spinLib.mac, be stored in
the .maxima subdirectory of the users home directory. This facilitate loading the macro files without specifying a directory path. 
Before, using the definitions in 1spinLib.mac, however, the next section introduces the representation of wavefunctions and operators as matrices and vectors,
starting from scratch.

2 Wavefunctions and operators represented as vectors and matrices.2 Wavefunctions and operators represented as vectors and matrices.

The wavefunction for an arbitrary, isolated spin-1/2 particle can be represented as a superposition of two mutually orthogonal wavefunctions.  For many
purposes, the most convenient basis functions are the eigenfunctions if the Iz-magnetization operator, which we will write here in Dirac form as |alpha> and
|beta>.  A superposition state is written as psi = ca*|alpha> + cb*|beta> where ca and cb are complex-valued coefficients. 
In the vector representation, only the coefficients are explicitly written, and they are placed in a column vector. To ensure that ca and cb are recognized as
complex variables, we explicitly declare them as such

(%i1) declare(ca,complex);

(%i2) declare(cb,complex);

We then define the variable k_psi as the 2x1 matrix, or column vector

(%i3) k_psi:matrix([ca],[cb]);

(%i4) k_psi;

Note that this matrix is distinct from both the list containing ca and cb, [ca,cb] and the 1x2 matrix that would be specified by matrix([ca,cb])

(%𝚘𝟷) done

(%𝚘𝟸) done

(%𝚘𝟹) ( )ca
cb

(%𝚘𝟺) ( )ca
cb



(%i5) [ca,cb];

(%i6) matrix([ca,cb]);

The column vector represents a ket in Dirac notation, and the bra is represented by the corresponding row vector containing the complex conjugates of the
coefficients.

(%i7) b_psi:transpose(conjugate(k_psi));

In versions 15.04 and later (presumably) of wxMaxima, complex conjugates are represented by the overstrike

Operators are represented as 2x2 matrices, and the action of the operator is represented as a matrix multiplication. For the Iz operator, the matrix is:

(%i8) Iz:matrix([1/2,0],[0,−1/2]);

(%i9) Iz.k_psi;

To calculate the average outcome of a measurement of Iz for an arbitrary wavefunction, we multiply the product Iz.k_psi by b_psi, being careful with the order
of operation

(%i10) b_psi.Iz.k_psi;

We can use Maxima to find the normalized eigenfunctions of Iz, expressed as vectors. (See the examples in gettingStarted.wxmx for more details) But, first,
we must load the eigen package.

(%i11) load(eigen);

(%i12) uniteigenvectors(Iz);

This result indicates that the eigen values are -1/2 and 1/2. The eigenvectors are represented in the output as lists: [0,1] and [1,0] Although the vectors can be
used in this form, it is better and safer to explicitly define them as column vectors.

(%i13) k_a:matrix([1],[0]);

(%i14) k_b:matrix([0],[1]);

The bras corresponding to the kets are

(%𝚘𝟻) [ca, cb]

(%𝚘𝟼) ( )ca cb

(%𝚘𝟽) ( )ca⎯ ⎯⎯⎯⎯⎯ cb
⎯ ⎯⎯⎯⎯⎯

(%𝚘𝟾) ( )
1
2

0

0

− 1
2

(%𝚘𝟿) ( )
ca
2

− cb
2

(%𝚘𝟷𝟶) −
ca ⋅ ca⎯ ⎯⎯⎯⎯⎯

2
cb ⋅ cb

⎯ ⎯⎯⎯⎯⎯

2

(%𝚘𝟷𝟷) /usr/local/Cellar/maxima/5.37.2/share/maxima/5.37.2/share/matrix/eigen. mac

(%𝚘𝟷𝟸) [[[− , ], [1, 1]], [[[0, 1]], [[1, 0]]]]
1
2

1
2

(%𝚘𝟷𝟹) ( )1
0

(%𝚘𝟷𝟺) ( )0
1



(%i15) b_a:transpose(conjugate(k_a));

(%i16) b_b:transpose(conjugate(k_b));

We can then demonstrate that these vectors do, indeed, represent the eigenfunctions of the Iz operator

(%i17) k_a;

(%i18) Iz.k_a;

(%i19) k_b;

(%i20) Iz.k_b;

We can also demonstrate that the eigenfunctions of Iz are orthonormal.

(%i21) b_a.k_a;

(%i22) b_b.k_b;

(%i23) b_a.k_b;

(%i24) b_b.k_a;

The definitions shown above, along with others, are included in the 1spinLib.mac macro file. At this point, we will clear all of the definitions and start over with
the calculations in Chapter 11, using the macro file.

(%i25) kill(values);

Then, we load the macro file.  If this file has been placed in the users .maxima directory, it can be loaded without explicitly indicating the path

(%i26) load("1spinLib.mac")$

All of the defined variables and functions can be listed with the values and functions commands, respectively.

(%i27) values;

(%𝚘𝟷𝟻) ( )1 0

(%𝚘𝟷𝟼) ( )0 1

(%𝚘𝟷𝟽) ( )1
0

(%𝚘𝟷𝟾) ( )
1
2

0

(%𝚘𝟷𝟿) ( )0
1

(%𝚘𝟸𝟶) ( )0
− 1

2

(%𝚘𝟸𝟷) 1

(%𝚘𝟸𝟸) 1

(%𝚘𝟸𝟹) 0

(%𝚘𝟸𝟺) 0

(%𝚘𝟸𝟻) done

(%𝚘𝟸𝟽) [hermitianmatrix, nondiagonalizable, knowneigvals, knowneigvects, listeigvects, listeigvals, rightmatrix, leftmatrix, k_psi, k_a, k_b, b_



(%i28) functions;

Some of the variables and functions listed above are defined by the Maxima packages eigen and nchrpl, which are loaded by 1spinLib.mac

The assigned values of the variables can be displayed by simply evaluating the variables

(%i29) k_a;

(%i30) Ix;

The definition of functions is displayed using the fundef function, which can be accessed from the "Maxima" menu of wxMaxima.  For instance ket(a,b) is a
command for simplifying, slightly, the construction of a column vector from the complex coefficients.

(%i31) fundef(ket);

bra(k) creates a bra from an existing ket

(%i32) fundef(bra);

Some of the variables and functions defined 1spinLib.mac are described and used below, following the presentation and calculations in Chapter 11.  Others
will be introduced in subsequent chapters.

Chapter 11Chapter 11

We begin here to follow the treatment of the spin-1/2 system in Section 11.4, repeating some of the material above

1 11.4 The spin-1/2 system1 11.4 The spin-1/2 system

 1.1 11.4.1 The Iz operator 1.1 11.4.1 The Iz operator
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The eigenfunctions of Iz, represented as vectors are:

(%i33) k_a;

(%i34) k_b;

(%i35) Iz.k_a;

(%𝚘𝟸𝟾) [innerproduct (x, y) , unitvector (x) , columnvector (x) , gramschmidt (x, [myinnerproduct]) , eigenvalues (mat) , eigenvectors (mat) , su

(%𝚘𝟸𝟿) ( )1
0

(%𝚘𝟹𝟶) ( )
0
1
2

1
2

0

(%𝚘𝟹𝟷) ket (a, b) := columnvector ([a, b])

(%𝚘𝟹𝟸) bra (k) := transpose ( )k
⎯⎯⎯

(%𝚘𝟹𝟹) ( )1
0

(%𝚘𝟹𝟺) ( )0
1

(%𝚘𝟹𝟻) ( )
1



(%i36) Iz.k_b;

The bras of the eigenfunctions are

(%i37) b_a;

(%i38) b_b;

The Four Rules

Rule 1.  The eigenvectors have unit length. Page 328

(%i39) b_a.k_a;

(%i40) b_b.k_b;

2. The eigenvectors are orthogonal Page 329

(%i41) b_a.k_b;

(%i42) b_b.k_a;

Rule 3. Any wavefunction for a spin-1/2 particle can be written as a linear combination of |alpha> and |beta> Page 32

In vector representation, the general form of a wavefunction for a single spin is:

(%i43) k_psi;

The general form of the complex conjugate, bra, of the wavefunction is:

(%i44) b_psi;

   The product of the bra and ket

(%i45) b_psi.k_psi;

   The operation of Iz on the general wavefunction

(%i46) Iz.k_psi;

(%𝚘𝟹𝟻) ( )
1
2

0

(%𝚘𝟹𝟼) ( )0
− 1

2

(%𝚘𝟹𝟽) ( )1 0

(%𝚘𝟹𝟾) ( )0 1

(%𝚘𝟹𝟿) 1

(%𝚘𝟺𝟶) 1

(%𝚘𝟺𝟷) 0

(%𝚘𝟺𝟸) 0

(%𝚘𝟺𝟹) ( )ca
cb

(%𝚘𝟺𝟺) ( )ca⎯ ⎯⎯⎯⎯⎯ cb
⎯ ⎯⎯⎯⎯⎯

(%𝚘𝟺𝟻) cb ⋅ + ca ⋅cb
⎯ ⎯⎯⎯⎯⎯

ca⎯ ⎯⎯⎯⎯⎯

(%𝚘𝟺𝟼) ( )



   Calculating the average outcome of a measurement of Iz on an arbitrary wavefunction

(%i47) b_psi.Iz.k_psi;

   The 1spinLib.mac library includes a function for calculating the average outcome from an operator and wavefunction.    The function takes two arguments,
the operator and the wavefunction

(%i48) meanPsi(Iz,k_psi);

Rule 4. The probability equation Page 331 
The probability of a measurement, applied to a wavefunction psi yielding a specific eigenvalue, lambda_i, corresponding to eigenfunction psi_i is given by 
P_i = |<psi_i|psi>|^2

The probability that an arbitrary wavefunction will give rise to the value 1/2, associated with eigenfunction |alpha>, when Iz is measured

(%i49) abs(b_a.k_psi)^2;

The probability that an arbitrary wavefunction will give rise to the value -1/2, associated with eigenfunction |beta>, when Iz is measured

(%i50) prob(b_b,k_psi);

 1.2 11.4.2 Other angular momentum operators 1.2 11.4.2 Other angular momentum operators
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The Ix operator The matrix form is:

(%i51) Ix;

When applied to an arbitrary wavefunction

(%i52) Ix.k_psi;

As shown above, Maxima can find the normalized eigenvectors and eigenvalues for a matrix.

(%i53) uniteigenvectors(Ix);

The eigenvector and uniteigenvector functions output the vectors in the form of lists.  In some contexts, it is preferable to form proper column vectors. The
1spinLib.mac file  includes a function for forming kets from the values of the complex coefficients. We will name the eigenvectors for Ix k_eIx1 and k_eIx2
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(%i54) k_eIx1:ket(1/sqrt(2),1/sqrt(2));

(%i55) k_eIx2:ket(1/sqrt(2),-1/sqrt(2));

The second eigenvector shown above is not exactly the same as the one shown in the book, but they are related by a factor of -1.  This does not actually
change any measurable results, but we will redefine it for consistency with the book.

(%i56) k_eIx2:ket(-1/sqrt(2),1/sqrt(2));

Another 1spinLib.mac function creates a bra from a ket

(%i57) fundef(bra);

(%i58) b_eIx1:bra(k_eIx1);

(%i59) b_eIx2:bra(k_eIx2);

To show that they are, indeed, normalized, we multiply each ket by its corresponding bra:

(%i60) b_eIx1.k_eIx1;

(%i61) b_eIx2.k_eIx2;

To show that they are orthogonal:

(%i62) b_eIx1.k_eIx2;

(%i63) b_eIx2.k_eIx1;

To show that they are eigenvectors of Ix

(%i64) Ix.k_eIx1;

In Maxima, we can divide the elements of one matrix by the corresponding elements of another using the ordinary division sign.  We can use this to show that
the result of the previous operation is, indeed, a simple multiple of k_eIx1
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(%i65) %/k_eIx1;

Similarly for the other eigenvector

(%i66) Ix.k_eIx2;

(%i67) %/k_eIx2;

We can calculate the average Ix magnetization for |alpha> and |beta>, or a general wavefunction

(%i68) b_a.Ix.k_a;

(%i69) b_b.Ix.k_b;

(%i70) b_psi.Ix.k_psi;

(%i71) meanPsi(Ix,k_psi);

The Iy operator

(%i72) Iy;

(%i73) Iy.k_psi;

The eigenvectors are found as before

(%i74) uniteigenvectors(Iy);

Expressed as column vectors, the eigenvectors are:

(%i75) k_eIy1:ket(1/sqrt(2),%i/sqrt(2));
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(%i76) k_eIy2:ket(1/sqrt(2),−%i/sqrt(2));

The corresponding bras are:

(%i77) b_eIy1:bra(k_eIy1);

(%i78) b_eIy2:bra(k_eIy2);

Demonstrating that they are eigenvectors of Iy

(%i79) Iy.k_eIy1;

(%i80) %/k_eIy1;

(%i81) Iy.k_eIy2;

(%i82) %/k_eIy2;

The eigenfunctions are orthonormal

(%i83) b_eIy1.k_eIy1;

(%i84) b_eIy2.k_eIy2;

(%i85) b_eIy1.k_eIy2;

(%i86) b_eIy2.k_eIy1;

Calculating the average outcome of measuring Iy for |alpha> and |beta>
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(%i87) b_a.Iy.k_a;

(%i88) b_b.Iy.k_b;

Calculating the average outcome of measuring Iy for the eigenfunctions of Ix

(%i89) b_eIx1.Iy.k_eIx1;

(%i90) b_eIx2.Iy.k_eIx2;

Calculating the average outcome of measuring Iy for the Iy eigenvectors

(%i91) b_eIy1.Iy.k_eIy1;

(%i92) b_eIy2.Iy.k_eIy2;

The equations for calculating each of the average orthogonal magnetization components for a general wavefunction

(%i93) meanPsi(Ix,k_psi);

(%i94) meanPsi(Iy,k_psi);

(%i95) meanPsi(Iz,k_psi);

2 11.5 A possible source of confusion2 11.5 A possible source of confusion
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The example used in this subsection is one of the eigenfunctions of Ix

(%i96) k_eIx1;

The result of applying the Iz operator to this function is

(%i97) Iz.k_eIx1;
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(%𝚘𝟾𝟾) 0

(%𝚘𝟾𝟿) 0
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Multiplying this with the bra of k_eIx1

(%i98) b_eIx1.%;

3 11.6 Application to the Stern-Gerlach experiments3 11.6 Application to the Stern-Gerlach experiments
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Taking particles with wavefunction k_a, from the z-filter and, again measuring Iz

(%i99) k_a;

(%i100) Iz.k_a;

(%i101) b_a.Iz.k_a;

Now measure Ix

(%i102) Ix.k_a;

(%i103) b_a.Ix.k_a;

Take the particles from the x-filter, with wavefunction k_eIx1 and measure the Iz magnetization

(%i104) k_eIx1;

(%i105) Iz.k_eIx1;

(%i106) b_eIx1.Iz.k_eIx1;

4 11.7 Other angles4 11.7 Other angles
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Other angles: Matrix representation of the operator for a Stern Gerlach filter oriented at angle phi from z-axis. In this case, the operator is a function of phi

(%i107) Iphi(phi):=(declare(phi,real),(1/2)*matrix([cos(phi),sin(phi)],[sin(phi),-cos(phi)]));

(%i108) Iphi(phi);

(%i109) Iphi(phi).k_psi;

Compare this operator, with phi=0, with Iz

(%i110) Iphi(0);

(%i111) Iz;

Compare Iphi(pi/2) with Ix

(%i112) Iphi(%pi/2);

(%i113) Ix;

(%i114) Iphi(phi).k_b;

Maxima can find the general form of the eigenvectors for this matrix, but has a hard time simplifying them to the forms shown in the text. But we can show that
the ones given in the text satisfy the requirements of orthonormal eigenvectors.

(%i115) k_ePhi1(phi):=ket(cos(phi/2),sin(phi/2));

(%i116) k_ePhi1(phi);

(%𝚘𝟷𝟶𝟽) Iphi (ϕ) := declare (ϕ, real) ,
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2

sin(ϕ)
2

− cos(ϕ)
2

(%𝚘𝟷𝟶𝟿) ( )
+cb⋅sin(ϕ)

2
ca⋅cos(ϕ)

2

−ca⋅sin(ϕ)
2

cb⋅cos(ϕ)
2

(%𝚘𝟷𝟷𝟶) ( )
1
2

0

0

− 1
2

(%𝚘𝟷𝟷𝟷) ( )
1
2

0

0

− 1
2

(%𝚘𝟷𝟷𝟸) ( )
0
1
2

1
2

0

(%𝚘𝟷𝟷𝟹) ( )
0
1
2

1
2

0

(%𝚘𝟷𝟷𝟺) ( )
sin(ϕ)

2

− cos(ϕ)
2

(%𝚘𝟷𝟷𝟻) k_ePhi1 (ϕ) := ket (cos ( ) , sin ( ))ϕ
2

ϕ
2

(%𝚘𝟷𝟷𝟼)
⎛

⎝
⎜⎜⎜

cos ( ) ⎞

⎠
⎟⎟⎟



(%i117) b_ePhi1(phi):=bra(k_ePhi1(phi));

(%i118) b_ePhi1(phi);

(%i119) b_ePhi1(phi).k_ePhi1(phi);

(%i120) trigsimp(%);

(%i121) k_ePhi2(phi):=ket(-sin(phi/2),cos(phi/2));

(%i122) k_ePhi2(phi);

(%i123) b_ePhi2(phi):=bra(k_ePhi2(phi));

(%i124) b_ePhi2(phi);

(%i125) b_ePhi2(phi).k_ePhi2(phi);

(%i126) trigsimp(%);

(%i127) b_ePhi1(phi).k_ePhi2(phi);

Demonstration that the proposed eigenfunctions really are eigenfunctions.

(%i128) Iphi(phi).k_ePhi1(phi);

(%i129) trigrat(%);

(%𝚘𝟷𝟷𝟼)
⎛

⎝
⎜⎜⎜

cos ( )ϕ
2

sin ( )ϕ
2

⎞

⎠
⎟⎟⎟

(%𝚘𝟷𝟷𝟽) b_ePhi1 (ϕ) := bra (k_ePhi1 (ϕ))

(%𝚘𝟷𝟷𝟾) ( )cos ( )ϕ
2 sin ( )ϕ

2

(%𝚘𝟷𝟷𝟿) +sin ( )ϕ
2

2
cos ( )ϕ

2

2

(%𝚘𝟷𝟸𝟶) 1

(%𝚘𝟷𝟸𝟷) k_ePhi2 (ϕ) := ket (−sin ( ) , cos ( ))ϕ
2

ϕ
2

(%𝚘𝟷𝟸𝟸)
⎛

⎝
⎜⎜⎜

−sin ( )ϕ
2

cos ( )ϕ
2

⎞

⎠
⎟⎟⎟

(%𝚘𝟷𝟸𝟹) b_ePhi2 (ϕ) := bra (k_ePhi2 (ϕ))

(%𝚘𝟷𝟸𝟺) ( )−sin ( )ϕ
2 cos ( )ϕ

2

(%𝚘𝟷𝟸𝟻) +sin ( )ϕ
2

2
cos ( )ϕ

2

2

(%𝚘𝟷𝟸𝟼) 1

(%𝚘𝟷𝟸𝟽) 0

(%𝚘𝟷𝟸𝟾)

⎛

⎝

⎜⎜⎜
+

sin( )⋅sin(ϕ)ϕ
2

2

cos( )⋅cos(ϕ)ϕ
2

2

−
cos( )⋅sin(ϕ)ϕ

2

2

sin( )⋅cos(ϕ)ϕ
2

2

⎞

⎠

⎟⎟⎟

(%𝚘𝟷𝟸𝟿)

⎛⎜⎜⎜

cos( )ϕ ⎞⎟⎟⎟



(%i130) %/k_ePhi1(phi);

(%i131) Iphi(phi).k_ePhi2(phi);

(%i132) trigrat(%);

(%i133) %/k_ePhi2(phi);

Make phi=-pi/4 The operator is now

(%i134) Iphi(%pi/4);

The eigenfunctions, with phi=-pi/4

(%i135) k_ePhi1(-%pi/4);

(%i136) float(%);

(%i137) k_ePhi2(-%pi/4);

(%i138) float(%);

Applying the phi=-pi/4 operator to |alpha> to find the average outcome.

(%𝚘𝟷𝟸𝟿)

⎛

⎝

⎜⎜⎜

cos( )ϕ
2

2

sin( )ϕ
2

2

⎞

⎠

⎟⎟⎟

(%𝚘𝟷𝟹𝟶) ( )
1
2
1
2

(%𝚘𝟷𝟹𝟷)

⎛

⎝

⎜⎜⎜
−

cos( )⋅sin(ϕ)ϕ
2

2

sin( )⋅cos(ϕ)ϕ
2

2

− −
sin( )⋅sin(ϕ)ϕ

2

2

cos( )⋅cos(ϕ)ϕ
2

2

⎞

⎠

⎟⎟⎟

(%𝚘𝟷𝟹𝟸)

⎛

⎝

⎜⎜⎜

sin( )ϕ
2

2

−
cos( )ϕ

2

2

⎞

⎠

⎟⎟⎟

(%𝚘𝟷𝟹𝟹) ( )
− 1

2

− 1
2

(%𝚘𝟷𝟹𝟺)
⎛

⎝
⎜⎜⎜

1

2
3
2

1

2
3
2

1

2
3
2

− 1

2
3
2

⎞

⎠
⎟⎟⎟

(%𝚘𝟷𝟹𝟻) ( )
cos ( )π

8

−sin ( )π
8

(%𝚘𝟷𝟹𝟼) ( )0.9238795325112867
−0.3826834323650898

(%𝚘𝟷𝟹𝟽) ( )
sin ( )π

8

cos ( )π
8

(%𝚘𝟷𝟹𝟾) ( )0.3826834323650898
0.9238795325112867



(%i139) b_a.Iphi(-%pi/4).k_a;

(%i140) float(%);

Calculating the probabilities

(%i141) abs(b_ePhi1(-%pi/4).k_a)^2;

(%i142) float(%);

(%i143) abs(b_ePhi2(-%pi/4).k_a)^2;

(%i144) float(%);

5 11.8 The shift operators I+ and I-5 11.8 The shift operators I+ and I-
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(%i145) Ix+%i*Iy;

(%i146) Ix-%i*Iy;

These are defined in 1spinLib.mac

(%i147) Iplus;

(%i148) Iminus;

Shift operators applied to a general wavefunction

(%i149) Iplus.k_psi;

(%i150) Iminus.k_psi;

(%𝚘𝟷𝟹𝟿)
1

2
3
2

(%𝚘𝟷𝟺𝟶) 0.3535533905932737

(%𝚘𝟷𝟺𝟷) cos ( )π
8

2

(%𝚘𝟷𝟺𝟸) 0.8535533905932737

(%𝚘𝟷𝟺𝟹) sin ( )π
8

2

(%𝚘𝟷𝟺𝟺) 0.1464466094067262

(%𝚘𝟷𝟺𝟻) ( )0
0

1
0

(%𝚘𝟷𝟺𝟼) ( )0
1

0
0

(%𝚘𝟷𝟺𝟽) ( )0
0

1
0

(%𝚘𝟷𝟺𝟾) ( )0
1

0
0

(%𝚘𝟷𝟺𝟿) ( )cb
0

(%𝚘𝟷𝟻𝟶) ( )



Shift operators applied to the Iz eigenfunctions

(%i151) Iplus.k_a;

(%i152) Iplus.k_b;

(%i153) Iminus.k_a;

(%i154) Iminus.k_b;

Created with wxMaxima.

(%𝚘𝟷𝟻𝟶) ( )0
ca

(%𝚘𝟷𝟻𝟷) ( )0
0

(%𝚘𝟷𝟻𝟸) ( )1
0

(%𝚘𝟷𝟻𝟹) ( )0
1

(%𝚘𝟷𝟻𝟺) ( )0
0
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