Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

Lecture 14:

 k_{cat} , K_m , K_d and Energy Profiles for Enzymatic Reactions

23 February 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

A Closer Look at Binding and K_m : K_m versus K_d

$$E + S \xleftarrow{k_1} E \cdot S \xrightarrow{k_{cat}} E + P$$

K_m is defined in terms of the rate constants:

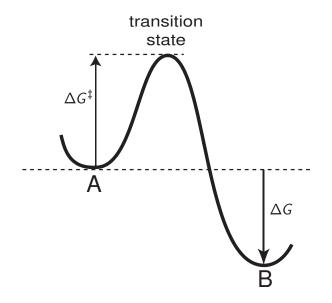
$$K_{\rm m} = \frac{k_{-1} + k_{\rm cat}}{k_1}$$

 \blacksquare K_d is the equilibrium constant for dissociation.

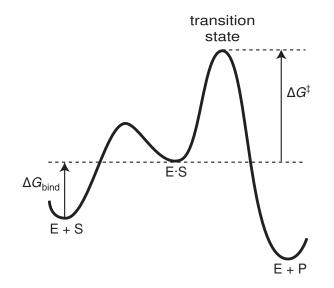
$$\mathcal{K}_{\mathsf{d}} = rac{[\mathsf{E}]_{\mathsf{eq}}[\mathsf{S}]_{\mathsf{eq}}}{[\mathsf{E}\cdot\mathsf{S}]_{\mathsf{eq}}} = rac{k_{-1}}{k_1}$$

A large K_d indicates <u>weak</u> binding.

$K_{\rm m}$ versus $K_{\rm d}$

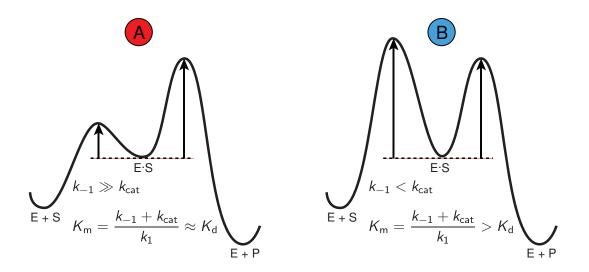

$$\begin{aligned} \mathcal{K}_{\mathrm{m}} &= \frac{k_{-1} + k_{\mathrm{cat}}}{k_{1}} \\ \mathcal{K}_{\mathrm{d}} &= \frac{[\mathsf{E}]_{\mathrm{eq}}[\mathsf{S}]_{\mathrm{eq}}}{[\mathsf{E} \cdot \mathsf{S}]_{\mathrm{eq}}} = \frac{k_{-1}}{k_{1}} \end{aligned}$$

If k_{cat} ≪ k₋₁, the E⋅S complex is more likely to dissociate than undergo catalysis:

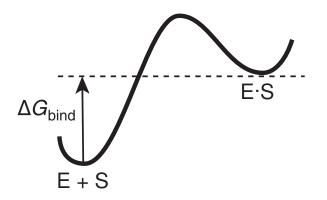

$$K_{
m m} pprox rac{k_{-1}}{k_1} = K_{
m d}$$

- In general, $K_{\rm m} \ge K_{\rm d}$
- Strength of equilibrium binding may be greater than indicated by K_m .

Energy Profile for a Simple Chemical Reaction



Energy Profile for an Enzyme-Catalyzed Reaction



Clicker Question #1

For which enzyme-substrate pair is $K_m \approx K_d$?

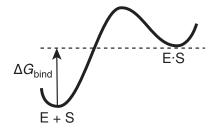
How do we define ΔG_{bind} ?

The Standard Free Energy Change and the Equilibrium Constant

$$\Delta G^{\circ} = -RT \ln K_{eq} \qquad A \rightleftharpoons B \qquad K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

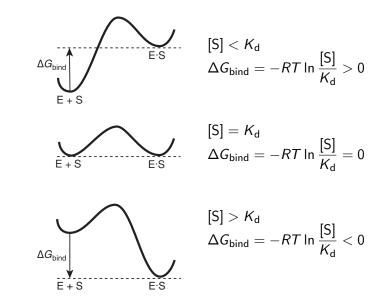
$$\blacksquare \text{ If } K_{eq} > 1:$$

$$\bullet \text{ Reaction favors B over A.}$$

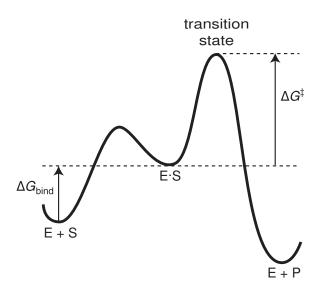

$$\bullet \Delta G^{\circ} < 0$$

$$\blacksquare \text{ If } K_{eq} < 1:$$

- Reaction favors A over B.
- $\Delta G^{\circ} > 0$
- If $K_{eq} = 1$:
 - A and B have equal free energies.
 - $\Delta G^\circ = 0$
- ΔG° refers to reactant and product concentrations of 1 M.
- The free-energy change, ΔG, depends on the concentrations of products and reactants.
- Things get trickier when there are more than one reactant or product!


One Way to Define ΔG_{bind} : Focus on E and E \cdot S

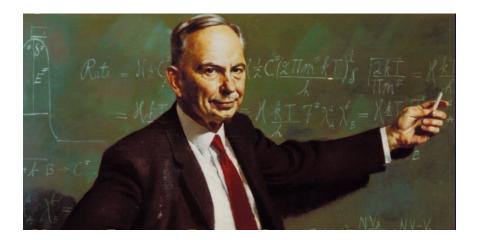
Δ



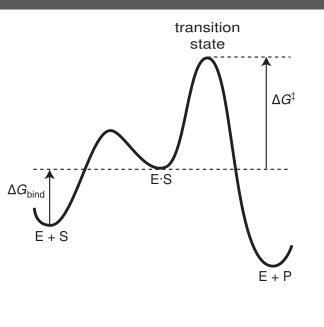
$$G_{\text{bind}} = -RT \ln \frac{[\text{E} \cdot \text{S}]}{[\text{E}]}$$
$$= -RT \ln \left(\frac{[\text{E} \cdot \text{S}]}{[\text{E}][\text{S}]} [\text{S}] \right)$$
$$= -RT \ln \frac{[\text{S}]}{K_{\text{d}}}$$

ΔG_{bind} and Substrate Concentration

The Transition-state Free-energy Change



Free-energy change from E·S complex to transition state:


$$\Delta G^{\ddagger} = RT \ln \left(\frac{k_{\rm b}T}{k_{\rm cat}h} \right)$$

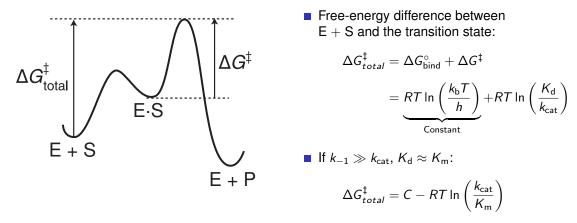
- T = Temperature
- R = Gas constant
- $k_{\rm b} = {\rm Boltzmann\ constant}$
- h = Planck constant

Henry B. Eyring: Founder of Transition-state Theory

Energy Profile for an Enzyme-Catalyzed Reaction

Free-energy change for binding:

$$\Delta G_{\mathsf{bind}} = -RT \ln rac{[\mathsf{S}]}{K_{\mathsf{d}}}$$

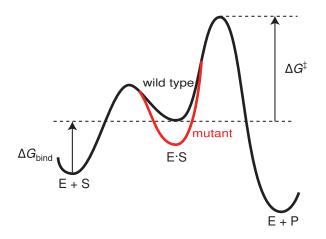

$$\Delta G_{\rm bind}^{\circ} = -RT \ln \frac{1\,{\rm M}}{K_{\rm d}} = RT \ln K_{\rm c}$$

- R = Gas constant
- T = Temperature
- Free-energy change from E·S complex to transition state:

$$\Delta G^{\ddagger} = RT \ln \left(\frac{k_{\rm b}T}{k_{\rm cat}h} \right)$$

- $k_{\rm b} = {\rm Boltzmann \ constant}$
- h = Planck constant

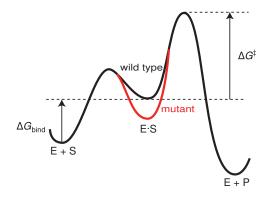
The Significance of k_{cat}/K_m



The ratio k_{cat}/K_m reflects the standard-state free-energy difference between E · S and the transition state. (Assuming $K_d \approx K_m$)

• k_{cat}/K_m is commonly interpreted as a measure of enzymatic efficiency.

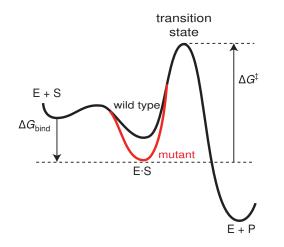
Catalytic efficiency is favored by a large value of k_{cat} and a small value of K_m.


Suppose that we could design a mutant enzyme that forms a more stable complex with substrate.

This will lower $K_{\rm m}$ and $k_{\rm cat}$, but leave $k_{\rm cat}/K_{\rm m}$ the same.

Clicker Question #2

At **low** substrate concentration ([S] $\ll K_m$), will the velocity for the mutant enzyme be greater or less than that of the original enzyme?


A) Greater than the original enzyme

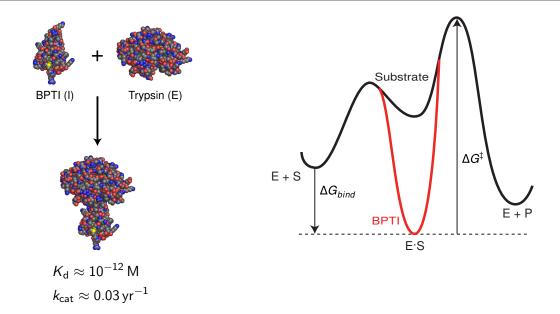
B) Less than the original enzyme

C) The same as the original enzyme!

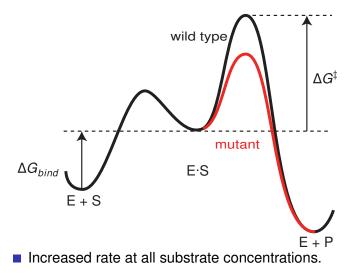
$$V = \frac{[S][E]_{T}k_{cat}}{K_{m} + [S]}$$
$$V \approx \frac{k_{cat}}{K_{m}}[S][E]_{T}$$

At **high** substrate concentration, will the velocity for the mutant enzyme be greater or less than that of the original enzyme?

A) Greater than the original enzyme

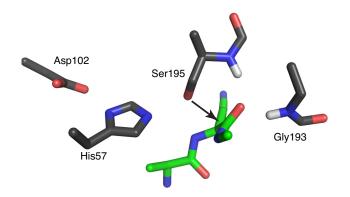

B) Less than the original enzyme!

C) The same as the original enzyme


$$V = \frac{[\mathsf{S}][\mathsf{E}]_{\mathsf{T}} k_{\mathsf{cat}}}{K_{\mathsf{m}} + [\mathsf{S}]}$$

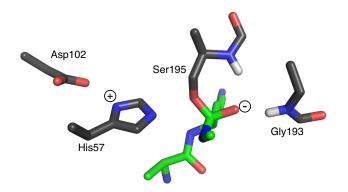
$$V pprox k_{\mathsf{cat}}[\mathsf{E}]_{\mathsf{T}} = V_{\mathsf{max}}$$

BPTI is an Extreme Example of a Low- K_m , Low- k_{cat} substrate

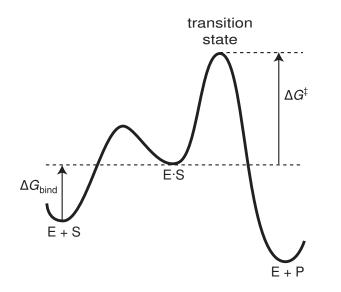

To Make a Better Enzyme (or Substrate), Stabilize the Transition State!

Easier said than done!

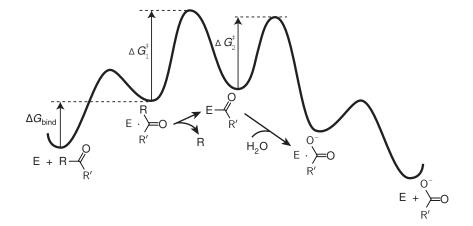
Transition State Stabilization in Serine Proteases


Enzyme-Substrate Complex

Substrate-enzyme model from structure of trypsin-BPTI complex (PDB entry 2FTL)


Transition State Stabilization in Serine Proteases

Transition State


Transition state model from structure of trypsin with boronic inhibitor (PDB entry 1BZT)

What is Missing from this Energy Profile?

- A product-enzyme complex
- For the serine proteases: The acyl-enzyme intermediate.

A More Complete Energy Profile for Serine Proteases

