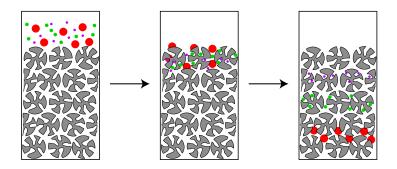
Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2023

Lecture 26:


More on Gel Filtration Chromatography

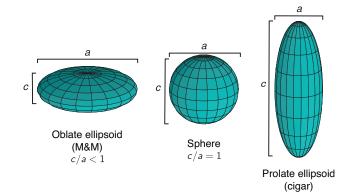
and

Experiment 6

13 April 2023 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

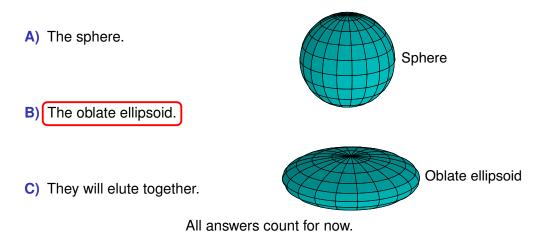
Gel Filtration Chromatography

- Partition between stationary and mobile phases depends on ability of molecules to enter pores of the beads.
- K_{av} is the fraction of the bead volume that a molecule can enter.

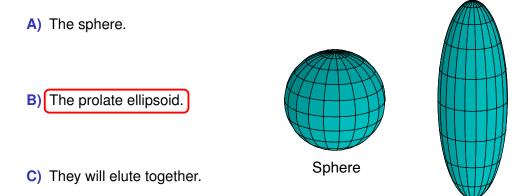

How Does Shape Affect K_{ave} (or Elution Volume)?

Cartoon by GE HealthCare: http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences-us/brands/superdex/

Useful Approximations for Non-spherical Proteins

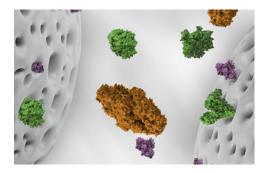

c/a > 1

- Drawings scaled to represent equal volumes.
- Axial ratio, c/a, defines asymmetry.
- For a given volume (∝ MW) which is more likely to enter a pore?


Clicker Question #1

If the volumes are the same, which will elute first from a gel filtration column?

Clicker Question #2


If the volumes are the same, which will elute first from a gel filtration column?

Prolate ellipsoid

All answers count for now.

Why Does a Prolate Ellipsoid Elute First?

- The prolate ellipsoid should be able to enter smaller pores than a sphere of equal volume.
- But, ellipsoid has to be in the right orientation to enter the smaller pore.
- Most orientations make it *harder* to enter a smaller pore.
- In thermodynamic terms, the ellipsoid has to lose entropy to enter the stationary phase.
- Elution volume reflects equilibrium between stationary and mobile phase.

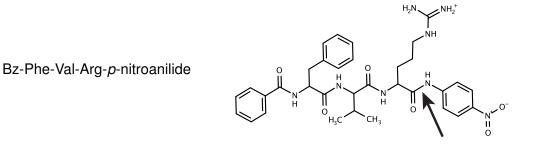
- For molecules with the same overall shape, K_{ave} and elution volume decrease with increased molecular weight (over suitable range for a given media).
- For molecules with different shapes, elution volumes may not reflect molecular weights.
 - When compared to \approx spherical proteins, more asymmetric molecules will appear to have larger molecular weights than they really do.
 - For molecules with a range of shapes, *K*_{ave} is best correlated with their frictional coefficients and diffusion rates in solution.
 - "Stokes radius" or "hydrodynamic radius", radius of a smooth sphere with the same frictional coefficient.

Can be combined with other information (such as sedimentation velocity) to better determine molecular weight and shape.

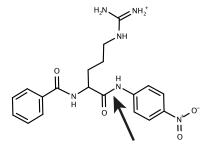
Outline of Chromatography Experiment

Day 1:

- 1. Prepare column
 - Pour hydrated beads into glass column.
 - Flow several column-volumes of buffer through column.
- 2. Calibrate column
 - Apply a mixture of a large and a small molecule, blue dextran (MW \approx 2,000,000) and phenol red (MW 354).
 - Elute column and collect fractions.
 - Measure absorbance of fractions.
- 3. Record image of SDS gel.

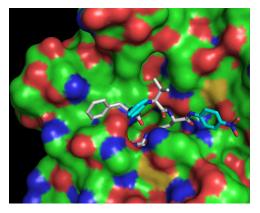

Day 2:

- 1. Separate trypsin and benzamidine
 - Mix trypsin and benzamidine inhibit trypsin activity.
 - Apply mixture to column.
 - Elute with buffer.
 - Measure A₂₈₀ of fractions.
 - Measure trypsin activity of peak fraction. Is activity restored?

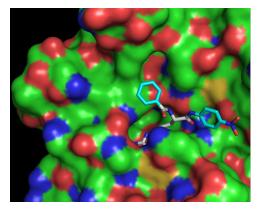

The Last Experiment: Some Considerations

- Compare column sample with inhibited and uninhibited control samples.
- To make a meaningful comparison, the trypsin concentrations must be the same in all of the assays.
- To be detected in the column fractions, the trypsin concentration must be relatively high. $\approx 0.1\,\text{mg/mL}.$
- By comparison, the trypsin samples used in our previous rate measurements had concentrations of $\approx 0.001\,\text{mg/mL}.$
- If we dilute the trypsin samples in this experiment to make the rate slow enough to measure, we will also dilute any inhibitor present.
- The solution: Use a substrate that is cleaved more slowly than Bz-Phe-Val-Arg-p-NA.

Two Chromogenic Substrates for Trypsin



Bz-Arg-p-nitroanilide



Models of the Two Substrates Bound to Trypsin

Bz-Phe-Val-Arg-p-nitroanilide

Bz-Arg-p-nitroanilide

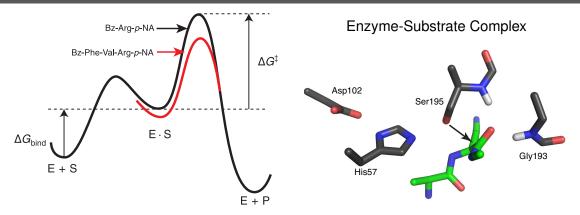
■ How will *K*_m and *k*_{cat} for the two substrates differ?

Clicker Question #3

For Bz-Arg-p-nitroanilide, compared to Bz-Phe-Val-Arg-p-nitroanilide,

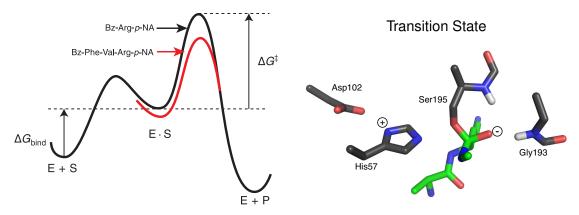
- A) $K_{\rm m}$ will be greater, and $k_{\rm cat}$ will be the same.
- **B)** k_{cat} will be smaller, and K_m will be the same.
- **C)** $K_{\rm m}$ will be greater, and $k_{\rm cat}$ will be smaller.
- **D)** $K_{\rm m}$ will be greater, and $k_{\rm cat}$ will be greater.
- **E)** $K_{\rm m}$ will be smaller, and $k_{\rm cat}$ will be smaller.

All answers count for now.


Kinetic Parameters for the Two Substrates

	K _m	k _{cat}	$k_{\rm cat}/K_{\rm m}$
Bz-Arg- <i>p</i> -nitroanilide	600 µM	1 s ⁻¹	$1.7{ imes}10^3{ m s}^{-1}{ m M}^{-1}$
Bz-Phe-Val-Arg- <i>p</i> -nitroanilide	60 µ M	$10\mathrm{s}^{-1}$	$1.7{ imes}10^5{ m s}^{-1}{ m M}^{-1}$

Adding Phe and Val to Bz-Arg-p-nitroanilide


- Decreases $K_{\rm m}$ by \approx 10- fold.
- Increases k_{cat} by \approx 10-fold.
- Increases k_{cat}/K_m by \approx 100-fold.

Why Does Making the Substrate Bigger Increase k_{cat} ?

- Extra atoms of the larger substrate stabilize the E · S complex, relative to the free enzyme and substrate.
- But, the extra atoms stabilize the transition state *more*.

Why Does Making the Substrate Bigger Increase k_{cat} ?

- Extra atoms of the larger substrate stabilize the E · S complex, relative to the free enzyme and substrate.
- But, the extra atoms stabilize the transition state *more*.

A hypothesis: The extra interactions with Phe and Val in Bz-Phe-Val-Arg-p-NA push the carbonyl group towards the tetrahedral conformation of the transition state.