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Chapter 1
The Scale of Things: Units and Dimensions

Aside from establishing links among the various sciences, a goal of this class is to help
strengthen some of the skills that are required in all of the sciences, especially quantitative
skills. Working with dimensions and units is one of the most important of these skills.

Historically, one thing that has tended to distinguish biology from the physical sciences
is the extent to which mathematics is used. This distinction is diminishing, but there is
certainly a strong tradition in biology that is very descriptive. The greatest of all biologists
was (arguably) Charles Darwin, who used little or no mathematics.

What is so good about using mathematics in science? Is there anything that Darwin
should have used math for? Two major things that math brings to biology and other
sciences are that:

• Math provides a way to formalize a description, or “model” a phenomenon.

• Mathematical models have the power of prediction, both to test the theory and make
useful predictions. Predictions are at the heart of the current debate about climate
change (at least at one level). How good are the predictions?

Interestingly, Darwin’s successors, evolutionary biologists, are among current biologists who
use math most extensively. For instance, determining the evolutionary relationships among
different species using DNA sequence data is a major application.

Most, but not all, applications of math in science involve measurable quantities, such as
length, area, volume, mass, time, or concentration. Thus, working with the units of these
measurements is one of the most important basic math skills for scientists, and you have,
no doubt, had experience with this in many of your classes. None the less, many students
continue to find this kind of calculation challenging, and I want to spend some time on this
subject before moving on in the class. Even if you are already comfortable with this kind of
calculation, you may find that there are some interesting subtleties that you may not have
thought about before.

1.1 Measurements as comparisons

Although most measurements are expressed in terms of units, such as meters, grams, liters,
etc., mathematics usually deals just in numbers. How do we bridge measurement and num-
bers? To start, it is useful to consider that nearly all measurements involve comparisons.
For instance, we measure length by comparison with some sort of ruler, as illustrated in
Fig. 1.1A. Similarly, we measure mass by comparing the gravitational force on an object (its
“weight”) with the gravitational force of a reference mass (Fig. 1.1B).
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS
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Figure 1.1 Measurement of the diameter of a basketball (A) and the mass of a cube of something (B).
In each case the measurement is based on a comparison with some reference object.

The object that we use for comparison then defines the units for the measurement. What
is the most natural unit for length? A human body or part of a human body! In the United
States, we still use the foot as a unit of length, and the basic unit of length in the metric
system, the meter, is on the order of the length of human body.

The somewhat arbitrary nature of unit definitions is illustrated by a famous prank played
at the Massachusetts Institute of Technology (MIT) in 1958. A fraternity at MIT decided
to use the body of a freshman pledge, Oliver Smoot, to measure the length of the Harvard
Bridge, which connects Cambridge, near the site of MIT, to Boston on the other side of
the Charles River (and isn’t actually close to Harvard University). To do so, they laid
Smoot down with his feet at one end of the bridge and his head pointed towards the other.
They then made a mark indicating the position of the top of his head, moved his feet to
this position and repeated the process until his head reached the other side of the bridge.
From this process, the length of the bridge was determined to be 364.4 smoots, ±1 ear1 , as
commemorated in a plaque shown in Fig. 1.2.

The punch line to this story is that Oliver Smoot went on to a distinguished career
in the discipline of metrology, the science and technology of measurement. He served as
both chairman of the American National Standards Institute (ANSI) and president of the
International Organization for Standardization (ISO), the U.S. and international agencies
that define the standards of measurement.

Although any unit for length, as an example, can be used as a reference for length at any
scale, it is convenient to have units that are appropriate for different ranges. In addition, it
is very helpful to have your own “internal rulers” to aid in thinking about the very different
scales that we encounter in the sciences, especially when we can’t directly experience them
on the scales of our body. Fig. 1.3 shows a few examples of biological and manufactured
objects on a wide range of length scales. In this figure, lengths are indicated both in meters
(at the top) and in units derived from the meter.

1The names of units are never capitalized, even when they are derived from a person’s name, such as the
newton or tesla (a unit of magnetic field strength, not the car). On the other hand, the abbreviations of
these names are capitalized, such as N, T or (I presume) S.
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1.1. MEASUREMENTS AS COMPARISONS

Figure 1.2
The plaque commemorating the
measurement of the the length of the
Harvard Bridge in smoot units.

https://en.wikipedia.org/wiki/Smoot

https://alum.mit.edu/news/

AlumniNews/Archive/smoots_legacy

Some typical lengths that are relevant in biology are:

• 1meter (m) ≈ length of an adult human arm

• 1millimeter (mm) = 10−3m ≈ length of some of the smallest multicellular animals,
e.g., the nematode C. elegans. Also about the diameter of a sharp pencil point.

• 1micrometer (µm or just µ) = 10−6m ≈ length of a bacterial cell.

• 1 nanometer (nm) = 10−9m ≈ radius of a small protein molecule.

• 1 angstrom (Å) = 10−10 m = 0.1 nm ≈ length of a covalent chemical bond.

All but the last of the units of listed above use the meter and one of the standard prefixes
defined in the metric system. (We will get more specific about what we usually mean by the
term “metric system” shortly.) The same prefixes are used for nearly all metric units and,
you should be or become fluent in using the ones listed in Table 1.1 on the following page.

Although it may seem an arcane subject, the definition of units and the establishment of
standards is of immense practical importance for science, technology and commerce. In the
United States, Article 1, Section 8 of the Constitution gives Congress the power (among other
things) “To coin Money, regulate the Value thereof, and of foreign Coin, and fix the Standard
of Weights and Measures.” To fulfil this responsibility, in 1830 Congress established the Office
of Standard Weights and Measures, as part of the Department of the Treasury. This office
was replaced 1901 by the National Bureau of Standards (NBS). Over time, the NBS took
on a broader range of activities, and in 1988 it was replaced by the National Institute of
Standards and Technology (NIST) and is now part of the Department of Commerce. Other
nations have comparable agencies, and they collaborate to establish international standards
through the International Organization for Standardization (ISO)2

2In English speaking countries it is often believed that ISO stands for International Standards Orga-
nization and should be pronounced “eye-ess-oh”. But, ISO is defined by the organization as an official
abbreviation to be used in all languages and pronounced “iso”, which is derived from the Greek word for
equal, isos. (I usually forget and say “eye-ess-oh”, but it’s wrong!)
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS
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Figure 1.3 Some examples of biological and fabricated objects on a wide range os size scales.

Table 1.1Standard prefixes for units in the SI metric system. See http://physics.nist.gov/cuu/

Units/prefixes.html for prefixes covering the range from 10−24 to 1024.

prefix abbreviation multiplier examples

nano n 10−9 nm, ng

micro µ 10−6 µm, µg

milli m 10−3 mm, mg

centi c 10−2 cm, cg

deci d 10−1 dm, dg

kilo k 103 km, kg

mega M 106 Mm, Mg
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

1.2 Units versus dimensions and a brief history of the

metric system

The types of quantities described in the previous sections imply a built in reference object
for comparison, such as an object 1m long. These quantities are called units and they are
distinguished from another kind of quantity called dimensions. A dimension is a quantity
like length, mass etc. that can be expressed in different, but interchangeable, units. We
can compare 1 m and 1 smoot, but we can’t compare 1 m and 1 g. (In principle we could
have a unit of mass defined as the mass of Oliver Smoot, but this would be very confusing!)
Quantities that can be compared directly, such as length, have the same dimension, even if
they are given in different units, such as 1 km and 1mile.

Modern systems of measurement recognize (a minimum of) 5 basic dimensions:

• Length, L

• Mass, M

• Time, T

• Temperature, Θ

• Electric charge, Q, or current, I

Note that the symbols for these quantities are written with italic (or Greek) characters,
which follows the mathematical typesetting convention that most variables are represented
in this way. The dimensions are usually used in more abstract expressions where specific
values are not assigned.

Other dimensions can be derived from the five listed above. Some examples are listed
below.

• Area: A = L2

• Volume: V = L3

• Velocity: distance per unit time: v = L/T

• Acceleration: change in velocity per unit time: a = (L/T )/T = L/T 2

• Force: defined by Newton’s second law of motion, f = m · a: f = ML/T 2

Notice that the dimension of volume is defined in terms of length, as L3, but the liter (L) is
a unit of volume. This is a particularly tricky case where it is important to make sure we
are talking about a unit or a dimension. Also, the liter is somewhat of an oddity, because
its abbreviation is an upper-case letter but is not derived from a person’s name.

For most of history, measurements have been made using a mish-mash of units chosen
for different purposes, such as cubits, furlongs, feet, miles, etc.. This is still true to a degree,
but far less so.
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS

Figure 1.4
The original definition of the meter
(1795) as as one ten-millionth (10−7) of
the distance from the Equator to the
North Pole, along the meridian passing
through Paris. Illustration from:
https://en.wikipedia.org/wiki/

Metric_system

1.2.1 Early metric systems

Although there were earlier precedents, the origins of our current metric system lie in the
French Revolution of 1789–1799. Although you might not think that the details of measure-
ment would be an important issue in a political revolution, one of the grievances that led
to the revolution was inconsistency among tax collections in different parts of France and
with other countries, in part because of the use of numerous different units for measurement
of goods. The leaders of the French Revolution also placed a high value on rationality (as
they saw it) and wanted a measurement system based on powers of 10. They even went so
far as to introduce a decimal calendar and clock. Although the decimal time system didn’t
catch on, the decimal metric system definitely did, and the United States is now one of just
a few countries that use derivatives of what are commonly called “English” units (which,
themselves, are not entirely consistent among the countries that use them).

In the 1790s, the French defined two basic (as we would consider them now) units, the
métre (meter in English) and the gramme (gram). Traditionally the definition of any unit
has required some standard object that can be used for comparison, and the best standard
objects are the most universal ones, so that they are accessible, in principle, to anyone. In
this vein, the French chose the Earth itself as the reference object for length, and they defined
the meter as one ten-millionth (10−7) of the distance from the Equator to the North Pole,
along the meridian passing through Paris, as illustrated in Fig. 1.4. The gram, in turn, was
defined as the mass of water in a volume defined by the meter, specifically 1 cm3 = 10−6m3.

Although these definitions are clear and based on well-defined physical objects, the defini-
tion of the meter, especially, is obviously problematic for practical measurements of, say, the
height of a house. Not only is the specified distance along the surface of the Earth absurdly
impractical for comparison to a house, the distance was not very well-determined at the time.
To address the latter problem, a survey expedition was commissioned to measure a fraction
of a meridian that almost passes through Paris (from Dunkirk, France to Barcelona, Spain).
This turned out to be a rather heroic endeaver that lasted seven years, and the calculations
ignored what are now recognized to be significant asymmetries in the shape of the Earth.
None the less, the survey produced a defined distance. To create a practical reference for
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

the meter, a platinum bar, the mëtre des Archives, based on the meridian measurement was
fabricated and placed for safekeeping in the French National Archives. This reference was
then used to create secondary references, which were then used to make additional references,
and so on. As it turned out, the platinum bar was about 0.02m shorter than defined by
the meridian, but it remained the standard reference for many decades, probably because
everyone was so tired of the whole business by then!

At the same time, a reference object for the gram, a cylinder of platinum with mass
equal to that of 1000 cm3 of water, representing 1000 g=1 kg, was fabricated and placed in
the French National Archives. This object was designated the kilogramme des Archives. The
French also defined units for area and volume based on the meter.

In 1875, an international treaty, the Convention du Mëtre was signed by 17 nations and
called for replacement of the mëtre des Archive and the kilogramme des Archive with new
standard reference objects, the international prototype meter (IPM) and the international
prototype kilogram (IPK). Like the earlier reference objects, these were made of a platinum
alloy and were based on the French standards. Importantly, however, the meter and the
kilogram were now defined directly in terms of the IPM and IPK, as opposed to the length
of a meridian or the mass of a given volume of water (or other substance). This eliminated
any question of how closely the reference objects matched the the official definitions of the
units. On the other hand, this placed extraordinary importance on the objects themselves,
and the Convention du Mëtre and the organizations it created, established detailed protocols
for maintaining the standards and replicating them. Copies of the IPM and IPK were made
and distributed to all of the treaty signatories, which then used these as references for their
own countries. The Convention du Mëtre also established an international organization
to continue work on refining measurement standards and to organize conferences for this
purpose, the General Conference on Weights and Measures (Conférence générale des poids
et mesures, CGPM). Since then, there have been 26 CGPM meetings.

The IPM remained the definition of the meter until 1960, when the meter was redefined
in terms of the wavelength of light corresponding to a specific electronic transition in krypton
85 atoms. This represented the long-sought goal of a standard that was independent of a
single object and was, in principle, accessible anywhere. However, the IPK continued to
serve as the international standard for mass until 2018, when a major revision of the SI was
adopted, as discussed further below.

During the century following the establishment of the French metric system (and related
ones in other countries), some of the major advancements in the physical sciences were
in the fields of thermodynamics, electricity and (closely related to electricity) magnetism.
These fields required the the development of entirely new classes of dimensions and units.
It took much of the nineteenth century to define the basic quantities for these disciplines,
and even then there were two basic approaches for relating electricity and magnetism to
force as defined by Newton’s second law3. In 1873, a committee of the British Association
for the Advancement of Science proposed a system of units that unified units for electricity
and magnetism with previously defined units for length, mass, time and temperature. This
system came to be known as the centimeter-gram-second (cgs) system, which was widely

3The two approaches differed by whether force was related to electricity in terms of the electrostatic
interaction between two charges or the magnetic interaction between currents flowing through two wires.
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS

adopted and was the official “metric system” for several decades. Even with the introduction
of the cgs system, however, there were internal inconsistencies involving electrostatic and
magnetic forces. As a consequence, there were actually two branches of the cgs system (each
with further variants). This can still be a source of confusion, especially when reading older
publications and trying to convert values to the modern conventions.

1.2.2 Establishment of the Modern Metric System, the Système
International d’unitès (SI) and Further Revisions

The next major revision to the metric system was enacted in 1960, when the name Système
International d’unitès (SI) was introduced at the 11th CGPM.. Among other things, the SI
finally settled on a single, consistent way of dealing with electricity and magnetism. The SI
also replaced the centimeter and gram as the basic units of length and mass, respectively,
with the meter and kilogram. As a consequence, the SI is sometimes referred to as the MKS
(meter, kilogram, second) system, but this is really a more general designation that includes
some predecessors to the SI.

Rapid developments in physics and electronics (especially the invention of the laser) led
to another redefinition of the meter in 1983. The meter is now defined as the distance
travelled by light in a vacuum during 1/299792458 of a second.

This redefinition of the meter was more profound than earlier changes in units, because
it depended on establishing an essentially arbitrary definition of a fundamental constant of
the universe, the speed of light, as opposed to a measurement of the constant using defined
units. At the same time that the meter was redefined, the speed of light was declared to
be exactly 299792458m/s. The second had previously been defined, in 1967, as the time of
9,192,631,770 cycles of the radiation associated with a specific quantum transition4 of cesium
133 (133Cs) atoms (The frequency of this radiation is designated ∆νCs). Like the speed of
light, the second was defined by setting the value of a physical constant, in this case ∆νCs.
Although the numbers associated with these definitions may seem rather arbitrary and not
very convenient, they were chosen to give the best possible match to the original standards.

The new definition of the meter represented a change from an explicit-unit to an explicit-
constant basis for defining units. Though this indirect approach is admittedly rather awk-
ward, it allows the continuous refinement of numerical values of units by making more precise
physical measurements of the constants. For instance, if the speed of light were to be more
precisely measured, the official value for this constant will remain exactly 299792458m/s,
but the standard for the meter or second would be adjusted to reflect the improved mea-
surement. Furthermore, these measurements can, in principle, be made by anyone in any
location. For instance, it would be possible to for an extraterrestrial civilization to implement
our definition of a meter, provided only that they know our definitions and can measure the
speed of light and the frequency of the 133Cs transition used to define the second.

In contrast to the definition of the meter, the IPK proved to be remarkably difficult to
replace as the standard for mass, which was finally accomplished in 2018. In 2007 the CGPM
called for a complete shift in the definition units to an explicit-constant basis. The 2011
CGPM further decided to base the definition of the kilogram on a fixed value of the Planck

4The ground-sate hyperfine transition
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

constant, h, which defines the relationship between the energy of a quantum transition,
E, and the frequency, ν, of the electromagnetic radiation absorbed or released during that
transition

E = hν

As discussed below, the units of energy are expressed in SI units as kg ·m/s2, so that the
units of the Planck constant are given by:

h =
E

ν
=

kg ·m/s2

s−1
= kg ·m/s

Once the Planck constant is given a fixed value (along with the defined values for the meter
and second), the kilogram can be defined as:

kg =
h · s
m

The 2011 CPMG defined the value of the Planck constant to be exactly 6.62606×10−34 kg ·m2s−1.
However, the kilogram was not redefined at this time, because there was not yet a method
deemed sufficiently precise for implementing the new definition, which requires being able to
actually make measurements of mass that are directly related to the Planck constant. The
first step in that process was to establish very precise measurements of the Planck constant
in terms of the existing definition of the kilogram. The criteria established in 2011 specified
that the Planck constant be determined by three independent experiments, using two inde-
pendent methods, with uncertainties less than 50 parts per billion (5×10−8). At that time,
there were two methods available for measuring the Planck constant with such precision,
both of which are somewhat round-about.

The first method is based on the value of Avogadro’s number (also called the Avogadro
constant, NA), the number of atoms, molecules or ions in a mole of a substance. Avogadro’s
number is directly related to the Planck constant, through other physical constants that
have been measured with extremely high precision (less than one part per billion). Thus, a
measurement of Avogadro’s number is equivalent to a measurement of the Planck constant.
Prior to 2019, Avogadro’s number was defined as the number of atoms in 12 g of pure carbon
12 (12C). But, determining an actual value for NA directly from that definition is highly
problematic, because carbon readily undergoes a variety of chemical reactions and even pure
carbon can exist in multiple forms. Instead silicon, which forms very stable and well defined
crystals were used.

The method used to determine Avogadro’s number is referred to as an x-ray crystal
density (XRCD) measurement and used crystals of silicon highly enriched (99.995%) in 28Si.
Implementation of the XRCD method involved machining two spheres of crystalline silicone
28Si (to provide two of the three independent measurements called for). The sphere is the
three-dimensional shape that can be most precisely manufactured (using a lathe), and its
size is defined by a single measurable length, the diameter. The spacing between atoms in
the crystal can be determined with very high precision by x-ray crystallography, so that the
number of atoms in the sphere can be determined with very low uncertainty. However, to
correlate the number of atoms with the mass of the crystal, it was also necessary to determine
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS

Figure 1.5
One of two silicon spheres, 99.995%
enriched in 28Si, used to establish
Avogadro’s number. A reflection of an old
kilogram standard can be seen in the
surface of the sphere. Illustration from:
Cho, A. (2018). World poised to adopt
new metric units. Science, 362, 625–626.
http://doi.org/10.1126/science.362.

6415.625 Photograph from the
Physikalisch-Technische Bundesansttalt
(PTB), Germany.

Figure 1.6
Schematic diagram of a Kibble (or
moving-coil watt) balance. The
gravitational force acting on the mass to
be determined (on the left) is balanced by
the magnetic force between a stationary
magnetic field and the field generated by
electric current passing through the coil
attached to the right-hand side of the
balance. The electric current required to
balance the two forces is measured and
used to calculate the mass of the object.
Adapted from:
Cho, A. (2017). Plot to redefine the
kilogram nears climax. Science, 356,
670–671. http://dx.doi.org/10.1126/
science.356.6339.670

precisely the isotopic composition of the silicon, which was done by mass spectrometry. Over
a period of several years, measurements of the dimensions and isotopic composition of these
spheres were refined, until the reproducibility could be established to be 1 part in 50 million.
Among other precautions, this required extensive polishing to remove virtually all traces of
contamination from the surface. These spheres have been described as “the world’s roundest
objects”, and a photograph of one of them is shown in Fig. 1.5. From the measurements of
the silicon spheres, the value of Avogadro’s number was defined, at the 2018 CGPM, to be
exactly 6.02214076×1023.

The second method for measuring the Planck constant uses a special electronic balance
called a Kibble balance, illustrated in Fig. 1.6. In this device, the force of gravity acting
on the object to be weighed is balanced by the magnetic force generated by a coil of wire
in a magnetic field, and the mass is determined by the electric power, expressed in watts,
required to balance the two forces. Although this basic idea for a balance is not new (and
is commonly incorporated in electronic laboratory balances), an important refinement was
introduced in 1975 by Bryan Kibble, who devised a method to internally calibrate the coil
and magnetic field. Kibble died in 2016, just before his invention was expected to enable a
new definition of the kilogram, and the device (previously described as a moving-coil watt
balance) was named in his honor.
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

The power required to balance the mass represents the product of the electrical current,
measured in amperes (A) passing through the coil and the electrical potential across the
coil, measured in volts (V). The current and potential can be directly related to the Planck
constant through measurements of two quantum-mechanical phenomena, the quantum Hall
effect and the Josephson effect. Using a kilogram standard (as then defined), it was possible
to precisely measure the Planck constant in a way that is independent of the XRCD analysis
of the 28Si spheres.

By 2018, the criteria established in 2011 for measuring the Planck constant, with an
uncertainty of less than 50 parts per billion, had been met by multiple experiments using
both XRCD method for determining Avogadro’s number and the Kibble balance. This
milestone, then enabled the 2018 CGPM to finally redefine the kilogram in terms of the
Planck constant, the second (defined by ∆νCs) and the meter (defined by the second and
the speed of light). At the same time, Avogadro’s number was redefined to be exactly
6.02214076×1023.

In principle, internally calibrated Kibble balances can now be used to independently
measure masses in laboratories, or more practically, Kibble balances can be used to measure
reference masses that can be used as secondary standards. Alternatively, spheres of 28Si
characterized by XRCD could be used a mass references. At present, however, both of these
techniques are very challenging in practice, and only a few nations have the resources to
implement them. The XRCD method is particularly difficult to implement, and for the near
future the Kibble balance is expected to be used to calibrate secondary standards, including
the IPK, which will be used to calibrate additional reference masses. As a consequence,
the redefinition of the kilogram will have practical consequences at only the highest level of
metrological standardization. It should also be noted that the Kibble balance is actually a
bit less precise (about 20µg/kg) than the best conventional balances (with precisions as low
as ( 1–2µg/kg), so that reference objects calibrated with the new method are expected to be
slightly more variable than before. To place this in perspective, however, the uncertainties
from the Kibble balance are on the order of one millionth of one percent.

1.2.3 The base dimensions of the SI and their current definitions

The SI defines seven “basic” dimensions and their standard units, as summarized in Table 1.2.
Of the seven basic units, the first five in the table are independent of one another. However,
the amount of a substance (mole) and luminous intensity (candela) can be defined in terms
of the the other five basic dimensions and are not strictly necessary for a complete set of
units. They are included in the SI largely as a matter of convenience and consistency with
older definitions.

The luminous intensity and its SI unit, the candela, may be the dimension and unit
that are least familiar. As suggested by its name, luminous intensity is a measure of the
brightness of visible light sources and, specifically the intensity along a specific direction.
The origin of the candela, and its name, is reflected by the fact that the luminous intensity
of a conventional wax candle is approximately 1 candela. (The Latin for candle is candela.)
Until 1948, various countries had different defined units of luminous intensity defined in
terms of very specific light sources, including in some cases a wax candle of defined size and
composition. The dimension of luminous intensity (and the several other quantities related
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CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS

Table 1.2 The seven basic dimensions and units defined in the SI. For details, see http://physics.

nist.gov/cuu/Units/units.html

Dimension SI base Unit Abbreviation

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamics temperature kelvin K

amount of substance mole mol

luminous intensity cendela c

to light intensity) are also unusual because they were originally used to express a human
response to a stimulus, rather than a specific amount of light, as measured for instance by
the number of photons of a specified energy.

By 2019, all of the SI basic units were defined by the values of seven physical constants,
which are now set to exact values, as listed in Table 1.3. There is not a simple one-to-one
relationship between the basic SI units and the constants listed in Table 1.3, as several of
the units are defined in a somewhat hierarchical way, as listed in Table 1.4.

From the seven basic units, there are an almost limitless number of derived units that can
be used to specify any measured quantity that has so far been conceived. Some examples of
derived SI units are listed in Table 1.5.

Although the the basic units in the SI now well established as the foundation for mea-
surement throughout the world, the system continues to be updated to incorporate new
technologies and new applications. Going forward, this will involve making decisions about
when to update the numerical values used to define the basic units, while keeping the the
seven physical constants fixed to their standardized values.
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

Table 1.3 The seven physical constants used to define the SI basic units, and the their exact, defined
values. For details, see http://physics.nist.gov/cuu/Units/units.html

Constant Symbol Exact value

The ground-state hyperfine transition fre-
quency of 133Cs

∆νCs 9.192631770× 109Hz

The speed of light in vacuum c 2.99792458× 108m/s

The Planck constant h 6.62607015× 10−34 J · s

The elementary charge e 1.602176634× 10−19 coulomb

The Boltzmann constant k 1.380649× 10−23 J/K

The Avogadro constant NA 6.02214076× 1023mol−1

The luminous efficacy of monochromatic
radiation of frequency 540× 1012Hz

Kcd 683 lm/W
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Table 1.4 Definitions of the basic SI units in terms of the seven physical constants listed in Table 1.3.
For details, see http://physics.nist.gov/cuu/Units/units.html

Unit Defined by:

second (s) Setting ∆νCs to be 9.192631770×109 in units of s−1.

meter (m) Setting the speed of light (c) to be 2.99792458×108 in
units of m/s, with the second defined in terms of ∆νCs.

kilogram (kg) Setting the value of the Planck constant to
be 6.62607015×10−34 in units of kg ·m/s,
with the meter and second defined in terms
of ∆νCs and c.

ampere (A) The relationship 1A = 1 coulomb/s, with the coulomb
defined so that the elementary charge (e) has the exact
value 1.602176634×10−19 coulomb, and the second is de-
fined in terms of ∆νCs.

kelvin (K) Setting Boltzmann’s constant (k) to be 1.380649×10−23

when expressed in units of kg ·m2s−2K−1, with the kilo-
gram, meter and second defined in terms of ∆νCs, c and
h.

mole (mol) Making 1mol equal to Avogadro’s number of elementary
entities.

candela (cd) Setting the value ofKcd to be 683 when expressed in units
of lm/W, which is equivalent to units of cd ·m−2kg−1s2.

Table 1.5 Examples of derived SI units.

Dimension SI unit

Area m2

Volume m3

Acceleration m/s2

Force newton (N) = kg ·m/s2

Energy joule (J) = N ·m = kg ·m2/s2

Electric charge coulomb (C) = A · s

14

http://physics.nist.gov/cuu/Units/units.html
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1.2.4 Other Units

The non-metric units still used in the United States for consumer products and some other
purposes are sometimes referred to informally as “English units”, but this term, like “metric
system”, actually covers several historic and closely related systems. The units used in the
United States are more properly designated the “United States customary units”. The other
major system of English units is the Imperial system, which was officially established in
1824, and still has limited use in the United Kingdom, Canada and a few other British
Commonwealth nations. The United States customary and Imperial systems are largely
similar, but with some distinctions.

In order to simplify conversions with the SI, while not deviating too noticeably from
the traditional definition of length units, the U.S. Customary yard is defined directly in
terms of the meter, as exactly 0.9144m, which makes the inch exactly 0.0254m = 25.4mm.
Similarly, the U.S. customary pound is defined as exactly 453.59237 g,5 and the US gallon
(for liquid measure) is defined as exactly 3.785411784L. There are also more informally
defined “English” units of fluid and dry volume, as typically found in food recipes. These
are not so formally defined, and probably don’t need to be.

1.3 Using units in calculations

For students and practitioners of science, the important point about units and dimensions
is that their proper use is a critical skill! Although students in this course should have had
lots of experience in this already, I often find that many are rather rusty.

The simplest problems involving dimensions often have the form, “How many feet are
there in a kilometer?”, and one can find tables that provide instructions such as, “To covert
kilometers to miles, multiply by 0.621371.” Instructions like this one are often called con-
version factors and there are many published tables and websites with conversion factors
for different units. Most of these are probably correct, though care is sometimes required,
especially when the same word is used for different measurements; “ounces” is a particularly
confusing one. One convient and quite comprehensive website for conversions is:

http://www.digitaldutch.com/unitconverter/

But, I can provide no guarantee for the reliability of the information on this site! One can
also use Google and other web-search engines to quickly look up conversions, with queries
such as:

Miles to feet

More authoritative references for conversion factors are provided at the end of this chapter.
The use of units in calculations has a fancy name, Dimensional Analysis. The basic idea

of dimensional analysis is to treat units as part of the algebraic terms representing quantities.

5More specifically, this defines the pound avoirdupois (derived from a French phrase for “weights and
measures”) in the U.S. Customary system. There are actually two groups of units for mass in this system,
the other being the Troy system, which is still sometimes used for precious metals, and even more are found
in other English systems.
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This idea can be developed quite formally, but for practical purposes this is not necessary.
We can think of conversion factors as recipes, such as “To convert kg to g, multiply by
1,000.”. But we can also write them as equations, such as

1 kg = 1000 g

We can re-write this equation as

1 kg

1000 g
= 1

or:

1000 g

1 kg
= 1

Remember that any number multiplied by 1 (or divided by 1) is itself. This is expressed
more formally by the statement, “Multiplication by 1 is an identity operator.” So, if we
want to convert 37 kg to g, we can write this algebraically as:

37��kg ×
1000 g

1��kg
= 37000 g

This isn’t very exciting, but the important point is that the units are treated just as any
other algebraic term, like a variable x or a, would be. We know that we did things properly
because the kg units cancel out properly to give us an answer in g. If we had divided instead
of multiplied we would get:

37 kg × 1 kg

1000 g
= 0.037 kg2/g

Mathematically, this is correct, but the answer we get doesn’t make sense in terms of the
units we are looking for.

As a potentially more interesting example, consider the scale and dimension of a bacterial
cell. One of the major bacterial species in our gut is Escherichia coli, and the cells of this
species can be approximately described as cylinders 2µm long and 1µm in diameter, as
illustrated in Fig. 1.7.

Expressing the relationship in terms of dimensions (as opposed to specific units), the
volume of a cylinder is calculated as:

V = L× A

where L is the length of the cylinder and A is the area of the “caps” at each end. From the
equation for area of a circle,

V = LπR2

where R is the radius of the cylinder. For our bacterium, L=2µm and, R=0.5µm, so that
we can replace the dimensions with values with specific units:

V = 2µm · π · (0.5µm)2

= π · 0.5µm3

≈ 1.57µm3
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A.

B.

Figure 1.7
A. Light-microscope image of an E. coli
bacterium, from http:

//eduspace.free.fr/ibbiology2007_

14/02_cells/e_coli.html.
B. Approximation of the bacterial cell as a
cylinder.

So the answer is ≈1.6µm3, but cubic micrometers are not units of volume that are very easy
to relate to!

A more conventional unit of volume is a liter. So, how do we get from µm3 to L? An easy
to remember conversion factor for volume is based on the cubic centimeter, or “cc”, which
is equal to 1mL. We can use this to derive a conversion factor from mL to m3.

1 cm = 0.01m

(1 cm)3 = (0.01m)3

1 cm3 = 10−6m3

1mL = 10−6m3

Notice that we start with a relationship between two units of linear distance and raise both
sides of the equation to the third power to obtain a relationship between units of volume.
Importantly, the entire expression on each side of the second line is raised to the third power,
not just the units. This follows the standard rules of algebra, and raising only the units to
the third power will lead to an incorrect result. We can then manipulate this result further
to obtain the relationship between 1L and m3.

1mL× 1000 = 10−6m3 × 1000

1000mL = 10−3m3

1000��mL× 1 L

1000��mL
= 10−3m3

1 L = 10−3m3

This conversion factor is one that is worth committing to memory, as we will frequently want
to relate volumes to lengths on a range of scales.
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For the case of the bacterial cell, we can use this factor to express the volume in liters:

1.6 µm3 ×
(
10−6m

1 µm

)3

= 1.6× 10−18m3

1.6× 10−18m3 × 1 L

10−3m3
= 1.6× 10−15 L

A typical laboratory culture of E. coli contains about 109 (1 billion) bacteria per mL.
The total volume of these bacteria is:

109 bacteria× 1.6× 10−15 L/bacterium = 1.6× 10−6 L

1.6× 10−6 L× 103mL/L = 1.6× 10−3mL

So, about 0.2% of the culture volume is occupied by bacteria.

1.4 Units of Concentration

The concept of concentration is central to chemistry and is critical to much of biology and
physics. The particular issues that arise in dealing with units of concentration are thus
deserving of some review here. There are a variety of different ways that concentrations can
be expressed, but we will focus on the ones that are most common and appropriate for the
topics we will cover in this course.

1.4.1 Different ways of expressing concentration

For most purposes, the most convenient units of concentration are those that express the
amount of solute present in a given total volume of solution. This amount of solute might
be expressed as a mass or as the number of moles, to give units, for instance, of g/L or
mol/L (M). In practical terms, these definitions mean that we would make, for instance, a
10 g/L solution by measuring 10 g of the solute and dissolve it in somewhat less than 1L of
solvent and then add more solvent to make up a final volume of 1 L. At first glance, this
seems like a rather awkward definition and procedure: It would be easier to make a solution
by dissolving 10 g of solute in 1 L of solvent. However, for calculations, it is much easier to
work with concentrations defined in terms of the total volume, rather than the amount of
solvent used. This is because it is straight forward to calculate the amount of solute in a
given volume of solution, or conversely the volume that would contain a given amount of
solute. For instance, if we have 50mL of a 50 g/L solution of glucose in water, we can readily
calculate the number of grams in the solution as follows:

50��mL× 1 L

1000��mL
= 0.05 L

50 g/��L× 0.05��L = 2.5 g

Consider, on the other hand calculating the number of grams in a solution made up by dis-
solving 50 g of glucose in 1 L of water. We would expect that the total volume of this solution
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would be greater than 1L, but knowing how much more requires additional information, and
this is not a simple calculation! When compounds, even as liquids, are mixed together in
a solution their volumes do not necessarily add together in a simple way. The balance of
interactions among the different kinds of molecules can bring some pairs closer together and
lead to repulsions between others. As a consequence, the final volume can be either smaller
or greater than the sum of two volumes of different liquids. When a solid is dissolved in a
liquid, the problem is even more complicated. Furthermore, water, the solvent most relevant
to biology, is a particularly complicated liquid, a point that we will return to later in the
course. So, if we were to make up a solution by mixing a given amount of solute with a given
amount of solvent, we would probably have to measure the final volume in order to relate
volume to the amount of solvent. (For a few, particularly well-characterized solute-solvent
pairs, very precise measurements have been made that can be used to predict volumes and
densities of solutions.)

There are some special applications for which it is advantageous to use units of concen-
trations based on the amounts of solute and solvent, rather than total volume. In particular,
molal units are used often in chemical thermodynamics. A 1molal solution is prepared by
dissolving 1mole of solute in 1 kg of solvent. The advantage of a concentration defined this
way is that it does not change with temperature or pressure; the masses of solute and sol-
vent remain the same. In contrast, a change in temperature or pressure can change the
total volume of a solution and, therefore the molar concentration. The behaviors of the two
solutions aren’t really different, it’s just that the definition of a molar concentration depends
on volume, and the molal concentration doesn’t. As in many things, it is a matter of what
is most important to keep track of for a particular purpose.

Now, it should also be noted that the practical difference between solutions defined by
the amount of solvent versus a given total volume depends greatly on just how concentrated
the solutions are. If, for instance, the solute makes up less than 1% of the total volume of
the solution, just mixing the solute with, say, 1 L of solvent may not introduce a significant
error for many purposes. In biochemistry labs, solutions are often made up to quite small
volumes (usually because the reagents are very expensive), and this kind of error is frequently
considered acceptable. On the other hand, the solute may make up as much as half of the
total volume of some solutions, and the difference between, say, a 5M solution and a 5molal
solution is very significant, indeed.

In some situations, solution concentrations are expressed as percentages, and here there is
also an important distinction. Percentage solutions can be specified as either mass per volume
or volume per volume. A percent mass/volume,%(m/v), concentration, sometimes identified
as %(w/v), is defined as the number of grams of solute dissolved in enough solute to make
100mL total volume. As with molar concentrations, it is easy to calculate the amount of
solute in a given volume of solution for a %(m/v) solution. Percent volume/volume, %(v/v),
concentrations are usually used for solutions made by mixing volumes and are defined by
the number of mL of one liquid mixed with a second liquid to give a final volume of 100mL.
Depending on the densities of the liquids, there may be a significant difference between the
percent concentrations expressed as m/v and v/v for the same solution.
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1.4.2 Units of atomic and molecular mass

A variety of terms are used to describe the masses of atoms, ions and molecules, and there
is a bit of confusion and inconsistency in their definitions and use. At first glance, it might
seem that atomic and molecular masses should be expressed in the usual SI unit of mass,
the kilogram. But, the mass in kilograms of a single atom or molecule is a very small and
awkward number for most uses. So, instead we have a special unit, which goes by different
names in different contexts. Both of the following refer to the same unit:

• Unified atomic mass unit, abbreviated as u or amu

• dalton, abbreviated as Da

Niether of these equivalent units is defined in the SI, but are defined by the International
Union of Pure and Applied Chemistry (IUPAC). The term amu is widely used in the field
of mass spectrometry (where molecular masses are sometimes measured with precision of a
fraction of an amu), whereas the dalton is more widely used in the molecular biosciences.

These two equivalent units are defined as the mass of an atom, ion or molecule divided by
the mass of an atom of carbon 12 (12C) divided by 12. By this definition, then, an atom of
12C has a mass of exactly 12Da. 1 amu, or 1 da is approximately equal to 1.66054×10−27 kg.

Although we tend to think of the atomic mass of an atom as being an integer, equal
to the total number of protons and neutrons in the nucleus, the masses of the protons and
neutrons do not add exactly, because of the presence of other subatomic particles. So, the
masses of atoms other than 12C generally differ slightly from an integer. In addition, when a
sample of an atomic or molecular species is considered, there are usually more than a single
isotope present, with different masses, so that the average atomic or molecular mass of the
species usually deviates significantly from an integer. The molecular masses that are usually
cited in articles, books and on the labels on bottles of chemicals are based on the average
ratios of the various isotopes found in nature (on our planet). But, these ratios can differ
slightly for natural reasons and can be altered greatly by artificial enrichment.

Because the amu and dalton are defined as the ratio of two masses, they are really units
without dimensions, and is common and legitimate to represent atomic and molecular masses
as pure numbers without units. To emphasize the relative nature of atomic and molecular
masses, IUPAC defines the terms relative atomic mass and relative molecular mass, with
the symbols Ar and Mr, respectively. The terms atomic weight and molecular weight are
also deeply ingrained in many of us, but aren’t strictly correct, since weight is a measure of
(gravitational) force, rather than mass.

Two other commonly used terms are molar mass and relative molar mass, both of which
refer to the mass of one mole of a substance6. Logically, molar mass would simply have
the units of g or kg, but it is usually expressed as g/mol, which is a bit redundant. The

6The definition of the molar mass has been muddied somewhat by the redefinition of the mole in 2019,
but not in a way that is likely any to have any practical differences. Prior to 2019, the mole was defined as
the number of 12C atoms in exactly 12 g. This meant that, by definition, the molar mass of 12C was exactly
12 g/mol, and the molar masses of other entities were similarly linked exactly to their atomic or molecular
masses. With the mole now redefined as exactly 6.02214076×1023 particles, the direct connection to the
atomic mass and molar mass of 12C is broken. But, any discrepancy is on the order of parts per billion!
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relative molar mass is defined by IUPAC as the molar mass divided by 1 g/mol, making it
dimensionless and equal to the relative molecular mass, Mr.

So, we have the following terms (for molecules) which all have the same numerical values
and convey the same information:

• Molecular mass (or weight), with units of daltons (da) or unified atomic mass unit (u
or amu).

• Relative molecular mass (or weight), without units and represented as Mr.

• Molar mass, with units g/mol.

• Relative molar mass, without units and equivalent to relative molecular mass.

These distinctions are all rather picky, but for clarity one should be careful to use the
appropriate units when using one of these terms. The important point, for practical purposes
is this: Given the molecular mass in any of these forms, one has in hand the conversion factor
for converting between mass in grams and the number of moles. If we have a molecular species
with a relative molecular mass, Mr, we can write:

1mole = Mrg

Mrg/mol = 1

So, for instance, if we have 30.0 of glucose with a molecular mass of 180.16Da, we can
calculate the number of moles as:

30.0 g ÷ 180.16 g/mol = 0.166mol

1.4.3 Special units of concentration for hydrogen and hydroxide
ions

There are two ionic species that receive special attention whenever water is involved, and
these are the hydrogen (H+) and hydroxide (OH– ) ions. These two are always present,
though usually at quite low concentrations, in aqueous solutions because water itself has a
tendency to dissociate to produce both:

H2O −−⇀↽−− H+ +OH–

The forward dissociation reaction rate is actually quite slow, so that the average time for
a given water molecule to dissociate is about 11 h. However, even a small volume of water
contains a large number of water molecules, and re-association of H+ and OH– is very
fast, occurring essentially instantaneously once the the two ions colide in solution. As a
consequence the forward and reverse reactions reach a balance in a fraction of a second.
We will discuss equilibrium constants in more depth later in the course, when we study
thermodynamics, but for now it is sufficient to say that the reaction quickly reaches an
equilibrium state such that the concentrations of H+ and OH– are related to one another
according to:

[H+]eq[OH−]eq = 10−14M2
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where [H+]eq and [OH−]eq are the equilibrium concentrations of the two ions. Because the
dissociation reaction reaches equilibrium very rapidly, we generally assume that the con-
centrations of H+ and OH– in a solution satisfy the equilibrium condition. An important
consequence of this relationship is that if the concentration of either H+ or OH– is known,
the concentration of the other is also determined. In an absolutely pure sample of water,
the dissociation reaction should be the only source of H+ and OH– , and their concentrations
should be equal. This defines what we describe as a neutral solution, and the equilibrium
expression is satisfied under these conditions when the concentrations of H+ and OH– are
10−7M.

Because the concentration of H+ and OH– can vary over a wide range, it is convenient
to use special representation for their concentration, pH and pOH, respectively. The pH and
pOH of a solution are defined by”

pH = − log [H+]

pOH = − log [OH−]

From this definition and the discussion above, you should be able to readily demonstrate
that the pH and pOH of a neutral aqueous solution are both equal to 7 and that the sum
of pH and pOH is equal to 14 for any solution. Although either pH or pOH can be used
to describe the equilibrium concentrations of H+ and OH– in a solution, pH is, by far, the
more commonly used parameter.

Earlier, we estimated the volume of an E. coli bacterium to be about 10−15 L. An
interesting implication of this very small volume is that the number of some molecules and
ions in a single cell are surprisingly small. For instance, we can ask: How many hydrogen
ions are in a bacterium? If the pH in the cell is 7, then the concentration is

[H+] = 10−pHM = 10−7M = 10−7moles/L

The number of moles of H+ ions is then calculated as

10−7moles/L× 1.6× 10−15 L = 1.6× 10−22moles

To calculate the number of ions, the number of moles is multiplied by Avogadro’s number,
which can be thought of as having the units of particles/mole

1.6× 10−22moles× 6.02× 1023 ions/mole ≈ 100 ions

That’s not very many!
There are also bacteria that grow at pH 9. How many hydrogen ions are present in one

of these bacteria?
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1.5 Further reading

For an authoritative reference on the SI units and conversion factors, see:

• Thompson, A. & Taylor, B. N. (2008). Use of the international system of units
(SI). NIST Special Publication 811, National Institute of Standards and Technology,
Gaithersburg, MD.
http://physics.nist.gov/cuu/Units/bibliography.html

A convenient online unit conversion tool:

• http://www.digitaldutch.com/unitconverter/

Keep this disclaimer in mind: “While we try really hard to make all calculations
accurate, we do not guarantee that the results you get are correct. If you do find any
bugs I highly appreciate it if you email us at info@digitaldutch.com”

Wikipedia contains a number of good articles on the metric system, including its history
and the current SI. As a publicly edited secondary source, some caution is always advised
when using Wikipedia (or any source, really), but these articles are well referenced, so that
the primary sources can be checked.

• https://en.wikipedia.org/wiki/Metric_system

• https://en.wikipedia.org/wiki/Metre

• https://en.wikipedia.org/wiki/Kilogram

• https://en.wikipedia.org/wiki/International_System_of_Units

• https://en.wikipedia.org/wiki/2019_redefinition_of_the_SI_base_units

Wikipedia articles on English measurement systems:

• https://en.wikipedia.org/wiki/English_units

• https://en.wikipedia.org/wiki/Imperial_units

• https://en.wikipedia.org/wiki/United_States_customary_units

Articles on the redefinition of the kilogram and mole with new technologies:

• Cho, A. (2018). World poised to adopt new metric units. Science, 362, 625–626.
http://doi.org/10.1126/science.362.6415.625

• Cho, A. (2017). Plot to redefine the kilogram nears climax. Science, 356, 670–671.
http://dx.doi.org/10.1126/science.356.6339.670

• Robinson, I. A. & Schlamminger, S. (2016). The watt or Kibble balance: a technique
for implementing the new SI definition of the unit of mass. Metrologia, 53, A46.
http://dx.doi.org/10.1088/0026-1394/53/5/A46

• https://www.nist.gov/physical-measurement-laboratory/

silicon-spheres-and-international-avogadro-project
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