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Chapter 3
Random Walks

We have now spent a lot of time looking at “plinko probabilities”, and you should have a
good feel for how bell curves arise and how to calculate the probabilities of different outcomes
in a binomial distribution. Now, we want to start talking about random walks and the ways
in which they arise in physical and biological contexts.

Although the binomial distribution can, in principle, be used to describe a random walk
in one dimension, actually using this function for large numbers of steps quickly becomes
problematic. Calculating n! requires n−1 multiplications, and the magnitudes of the numbers
quickly become difficult to handle.. Also, we need to move beyond one dimension. So, we
need some other mathematical approaches.

We will start, however, by considering a one-dimensional random walk.

3.1 Random walks in one dimension

In the simplest version of a random walk, we imagine an individual standing on a sidewalk
and flipping a coin. If the coin lands heads-up, she turns in one direction and takes a step
of length l. If the coin lands tails-up, she turns the opposite direction and takes a step of
length l. She then repeats this process another n − 1 times, for a total of n steps in the
random walk.

I. The final position of the walker.

We will define the walker’s position as x, which is zero at the beginning of the random
walk. As the walker takes steps in the opposite directions, the value of x can take on
positive or negative values, as illustrated by the single coordinate axis drawn below:

We will call the position after i steps, xi, and the final position, after n steps, is xn. At
the outset, we can assume a few things abut the value of xn, irrespective of whether
the coin is fair or not:

• The maximum possible value of xn is nl

• The minimum possible value of xn is −nl

• Assuming that n is very large, the probability of a walk ending at either nl or
−nl is very small, since either outcome would require the coin to land the same
way for each toss.
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CHAPTER 3. RANDOM WALKS

• If a large number of random walks are carried out the distribution of xn should
be related to a binomial distribution.

As a first step in analyzing the random walk in one dimension, we will calculate the
expected value of xn, that is the expected average value of xn if a large number of
random walks, each of n steps, is executed. Here and through out the discussion of
random walks, we will call the number of steps in an individual random walk n, and
the number of random walks, as used for calculating averages, N .

For each random walk, the final position is given by:

xn =
n∑

i=1

δi

where i is the step number, and δi is the change in x in step i. If the step is to the
right, δi = l, whereas if the step is to the left, δi = −l. We will call the probability of
an individual step to the right p+ and the probability of a step to the left p−.

The expected value of δi, for any individual step, is calculated as:

E(δi) = lp+ − lp−

= lp+ − l(1− p+)

= lp+ + lp+ − l

= 2lp+ − l = l
(
2p+ − 1

)
As a quick check, note that if the probability of left and right steps are equal, p+ = 0.5,
and the expected value of δi is 0.

An important theorem from probability states that if x and y are two independent
random variables, then the expected value of the sum of x and y is calculated as:

E(x+ y) = E(x) + E(y)

Since xn is simply the sum of δi for each step in the random walk, the expected value
of xn is calculated as:

E
(
xn

)
=

n∑
i=1

E(δi)

=
n∑

i=1

l
(
2p+ − 1

)
= nl

(
2p+ − 1

)
Note that if p+ = 0.5, then the expected value of xn is zero, that is the average final
position is the starting point, irrespective of the number of steps. The plot below shows
the expected value of xn as a function of n for different probabilities of an individual
forward step.
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3.1. RANDOM WALKS IN ONE DIMENSION
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As one might expect, values of p+ greater than 0.5 favor positive values of xn, and
values of p+ less than 0.5 favor negative values of xn. Notice also that, for any given
value of p+ (except 0.5), the expected value of xn increases or decreases linearly with
the number of steps.

If the number of individual random walks, N , is large, then the average value of xn will
approach the expected value. Note the distinction between the average value of xn for
N specific random walks and the expected value, E

(
xn) which is calculated from the

probabilities of individual forward and reverse steps, as well as the number of steps.
Mathematically, we would write the relationship between the two as:

lim
N→∞

1

N

N∑
j=1

xn,j = E
(
xn

)
where the index j indicates the individual random walks included in the average.

To write averages over multiple random walks in a more compact form, we will employ
the practice of representing averages using pairs of angle brackets, ⟨⟩, as in the example:

⟨xn⟩ =
1

N

N∑
j=1

xn,j

Though it is a bit sloppy, we will generally take averages represented in this way to
mean that N is large enough that the average approaches the expected value, unless
N is otherwise specified.

II. Other averages: The mean-square and root-mean-square

As shown above, it is quite easy to calculate the expected value of xn for a one-
dimensional random walk, even when the probabilities of turns in the two directions
are not equal. However, this average provides only limited information. From our
study of plinkos, we know that most of the balls don’t actually land in the central
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CHAPTER 3. RANDOM WALKS

bucket (or central two buckets when the number of rows is odd), even though landing
in the central bucket(s) is the most probable result.

What we need as a way to represent the distribution of final positions away from the
average value of xn. For this purpose, there are two other kinds of average, which are
widely used in a variety of contexts. These are the mean-square and root-mean-square
averages, which are defined below, using the angle brackets to represent averages.

The mean-square:

⟨x2
n⟩ =

1

N

N∑
j=1

x2
n,j

where, as before, the sum is over the N random walks.

The root-mean-square (RMS):

RMS(xn) =
√

⟨x2
n⟩ =

√√√√ 1

N

N∑
j=1

x2
n,j

By summing over the squares of the final positions, both positive and negative values
of xn make a positive contribution to the averages, rather than canceling out, as when
the simple average of xn is calculated. This goal could be also be obtained by using
the absolute value of xn, but absolute values are more awkward when deriving general
results, and the squared quantities have important statistical significance.

A common application of the mean-square and RMS averages is in electrical engineer-
ing, where they are used to treat alternating currents (AC). The graph below shows
ideal behavior of voltage as a function of time, for the AC power used in US homes.

Note that the voltage oscillates between a maximum of 170V and a minimum of
−170V, with the average over time being 0V. For the US power system, each cy-
cle takes 1/60 s, for a frequency of 60Hz. Although mathematically correct, the simple
average of the voltage over time obviously doesn’t convey much information about
the power available frome the current. To obtain a positive value, the instantaneous
voltage can be squared to generate the plot below.
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3.1. RANDOM WALKS IN ONE DIMENSION

In this plot, both the maxima and minima in the original plots give rise to peaks of
28900V2. The average square voltage over time is 14400V2. Although this average
is positive and reflects the magnitude of both the positive and negative voltage fluc-
tuations, it has the disadvantage of being expressed in units of V2, which are not so
intuitively interpreted. This is the main reason for introducing the root-mean-square
(RMS) average. In the plot below, the instantaneous voltage vales are squared, and
the the square root is taken for each point.

Notice that the peaks in the plot have slightly different shapes than those in the plot
of V 2, and the peaks have a height of 170V. The RMS average over time is 120V, and
it is this average that is usually specified for AC circuits. Note that the RMS average
is calculated as the square root of the mean-square average and not by averaging over
the square root of the squares of the individual values, which would, in general, give a
different result.

III. The mean-square and RMS end-to-end distance of a one-dimensional random walk

For the reasons discussed above, we would like to have an average that represents
distance between the beginning and end of a random walk, calculated in a way that
positive and negative steps don’t cancel one another. We will begin with the mean-
square distance, ⟨x2

n⟩, which is easier to work with. Once an expression for ⟨x2
n⟩ is

derived, the root-mean-square is calculated by taking the square root.

We start with a definition of the mean-square distance for the random walk:
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CHAPTER 3. RANDOM WALKS

⟨x2
n⟩ =

1

N

N∑
j=1

x2
n,j

where N is the number of random walks, and the index j represents the individual
random walks. For each of the random walks, the final position is given by:

xn =
n∑

i=1

δi

where δi is the change in position along the x-axis and can be either +δ or −δ. Though
the reason for doing so may not be obvious yet, we can also write xn as:

xn = xn−1 + δn

where δn is the change in x in the very last step of the walk. Using this representation,
the mean-square distance can be written as:

⟨x2
n⟩ =

1

N

N∑
j=1

x2
n,j

=
1

N

N∑
j=1

(
x(n−1),j + δj,n

)2

=
1

N

N∑
j=1

(
x2
(n−1),j + 2x(n−1),jδj,n + δ2j,n

)
where δj,n is the change in x for the last step in the jth random walk. This can be
broken down into individual sums and averages to give:

⟨x2
n⟩ =

1

N

N∑
j=1

x2
(n−1),j +

1

N

N∑
j=1

2x(n−1),jδj,n +
1

N

N∑
j=1

δ2j,n

= ⟨x2
n−1⟩+ ⟨2xn−1δn⟩+ ⟨δ2n⟩

As before the angle brackets represent averages over a large number of random walks.
For each random walk, the final change in x will be either l or −l and will be uncorre-
lated with the position, xn−1. If we limit ourselves to the case where the probability of a
forward or backward step is equal, the central term in the expression above, ⟨2xn−1δn⟩,
will be zero. Thus, we can write:

⟨x2
n⟩ = ⟨x2

n−1⟩+ ⟨δ2n⟩

Note that the average of δ2n over all of the random walks is not expected to be zero.
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3.1. RANDOM WALKS IN ONE DIMENSION

Following the same arguments as above, the position of the walker after n − 1 steps
can ve written as:

xn−1 = xn−2 + δn−1

and the average of xn−1 is:

⟨x2
n−1⟩ = ⟨x2

n−2⟩+ ⟨δ2n−1⟩

The mean-square average of xn can then be written as:

⟨x2
n⟩ = ⟨x2

n−1⟩+ ⟨δ2n⟩
= ⟨x2

n−2⟩+ ⟨δ2n−1⟩+ ⟨δ2n⟩

Since the individual steps in a random walk are uncorrelated, and the individual walks
are uncorrelated, the average values of δ2n−1 and δ2n should be the same, so that we
have:

⟨x2
n⟩ = ⟨x2

n−2⟩+ 2⟨δ2i ⟩

where ⟨δ2i ⟩ is the mean-square average of the change in x, averaged over all of the steps
in the random walks.

The same logic can be applied repeatedly:

⟨x2
n⟩ = ⟨x2

n−2⟩+ 2⟨δ2i ⟩
= ⟨x2

n−3⟩+ ⟨δ2n−2⟩+ 2⟨δ2i ⟩
= ⟨x2

n−3⟩+ 3⟨δ2i ⟩
= ⟨x2

n−4⟩+ 4⟨δ2i ⟩

and so on, until we have:

⟨x2
n⟩ = ⟨x(1)2⟩+ (n− 1)⟨δ2i ⟩

= ⟨x(0)2⟩+ n⟨δ2i ⟩
= n⟨δ2i ⟩

This derivation does not depend on any assumptions about the value of ⟨δ2i ⟩, though it
does assume that ⟨δi⟩ is zero. If we further assume that δi is either l or −l, with equal
probability, then the average of δ2i can be further specified from the expected value:

⟨δ2i ⟩ = E(δ2i ) = p+l
2 + p−(−l)2

= p+l
2 + p−l

2

= l2
(
p+ + p−

)
= l2

We can then write ⟨x2
n⟩ in the terms defining the random walk, n, the number of steps

and l, the length of each step:

⟨x2
n⟩ = nl2
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CHAPTER 3. RANDOM WALKS

The root-mean-square distance between the starting and ending positions is then given
by:

RMS(xn) =
√
nl2 =

√
nl

Note that RMS(xn) has the same dimensions, length, as the step length, l.

This is the key result: The RMS average distance increases with the square root of the
number of steps. It doesn’t increase linearly with the number of steps, because not
every step moves the walker away from the starting point. But, the average distance
isn’t zero, even though the average position, ⟨xn⟩ is zero. The relationship between
the RMS end-to-end distance and the number of steps is shown in the figure below:

0 200 400 600 800 1000
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20

40

60

Note that for small values of n the RMS distance increases relatively rapidly with n.
This is because, for a small number of coin flips, for instance, there is a relatively large
probability that a significant majority will be either heads or tails. However, as the
number of coin flips, n, increases, the likelihood of a significant deviation from the
expected average decreases, and the RMS distance increases with n more slowly. For
any given number of steps, RMS(xn) is proportional to the step length.

3.2 Random walks in two dimensions

In the simplest form of a two-dimensional random walk, a walker begins at the origin of
a two-dimensional coordinate system, where x = 0 and y = 0, and chooses at random an
angle, θ, between 0 and 2π rad. The walker then takes a step, of length l in the direction
defined by the angle θ with respect to the x-axis, as diagrammed below:
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3.2. RANDOM WALKS IN TWO DIMENSIONS

The process is then repeated n− 1 times to generagte an n-step random walk.

I. The random walks along the x- and y-axes

As the walker generates a path in two dimensions, it also can be thought of as carrying
out a walk along the x-axis. With each step, the projection of the current walker
position onto the x-axis changes, as illustrated below:

For each step, the change in the x-coordinate is

δx,i = xi − xi−1

Just as we did for the one-dimensional random walk along the x-axis, we can calculate
the following averages for the walk defined by the projections along the x-axis:

⟨xn⟩ =
1

N

N∑
j=1

xn,j

⟨x2
n⟩ =

1

N

N∑
j=1

x2
n,j

RMS(xn) =
√

⟨x2
n⟩
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CHAPTER 3. RANDOM WALKS

The central assumption that we will make at this point is that the turn angle at each
step is equally likely to take on any value between 0 and 2π rad. This means that
positive and negative changes in the x-coordinate are equally likely, leading to the
result:

⟨xn⟩ = 0

Recall that for the one-dimensional random walk we showed that:

⟨x2
n⟩ = n⟨δ2⟩

where ⟨δ2⟩ is the mean-square average of the changes in position along the x-axis. This
derivation assumed only that ⟨δi⟩ = 0, so it applies to the case of the x-projections in
the two-dimensional random walk, as well.

For the one-dimensional random walk, we also argued that the individual changes in
the x-position could only be l and −l and, therefore, ⟨δ2i ⟩ = l2. However, this argument
does not apply to the changes in the x-projections in the two-dimensional random walk.
To see why, consider the change in x-coordinate for a single step, as diagrammed below:

If the angle, θ is zero, then δx,i = l, and δ2x,i = δ2. If θ is π, then δx,i = −δ, and δ2x,i = l2.
However, for most values of θ, δx,i lies between −l and l and δ2x,i is less than l2

To calculate the average value of δ2x,i, we calculate the expected value for a continuous
probability distribution function (see page 60):

⟨δ2x,i⟩ = E(δ2x,i) =

∫ δ

−δ

δ2xp(δx)dδx

It’s not so obvious what the probability distribution function, p(δx) is, but the random
variable δx is related to the random variable θ according to:

δx = l cos θ
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3.2. RANDOM WALKS IN TWO DIMENSIONS

From this relationship, the expected value of δ2x,i, ⟨δ2x,i⟩, can be calculated by integration
with respect to θ:

⟨δ2x,i⟩ =
∫ 2π

0

δx(θ)p(θ)dθ

=

∫ 2π

0

(l cos θ)2p(θ)dθ

In Chapter 2 (page 59), it was shown that p(θ) = 1/(2π) for a uniform distribution of
θ between 0 and 2π. The integral can then be evaluated as:

⟨δ2x⟩ =
1

2π

∫ 2π

0

(l cos θ)2dθ

=
l2

4π

(
sin(2θ)

2
+ θ

)∣∣∣∣2π
θ=0

=
l2

2

The mean-square projection along the x-axis of the endpoint after n steps is then
calculated as:

⟨x2⟩ = n⟨δ2x⟩

=
nl2

2

The two-dimensional random walk can also be envisioned as creating a random walk
along the y-axis:

There is nothing really special about either the x- or y-axis, or any other direction
(though the relationship between the x- and y-axis is special, because they are perpen-
dicular to each other). As a consequence, the results derived for the averages of the
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CHAPTER 3. RANDOM WALKS

projections along the x-axis can be directly applied to the y-axis:

⟨y⟩ = 0

⟨y2⟩ = nl2

2

II. The end-to-end distance

In addition to the projections along the x- and y-axis for a two-dimensional random
walk, we can consider the distance between the starting and ending positions along the
straight line connecting them, as opposed to the actual path of the walk. The diagram
below shows how the distance of the walker from the starting position, ri, changes as
the number of steps in the random walk increases:

At the end of any specific random walk, the distance from the starting point, rn, is
related to the x- and y-projections according to:

rn =
√

x2
n + y2n

and

r2n = x2
n + y2n

To calculate the mean-square end-to-end distance, we again use the theorem for the
expected value of a sum of two random variables. For two random variables, A and B,
with expected values E(A) and E(B):

E(A+B) = E(A) + E(B)

The expected value for r2 can thus be written:

E(r2n) = E(x2
n) + E(y2n)

Assuming, as we have, that the number of random walks, N , over which the averages
are taken is very large, this can be expressed in terms of the mean-square averages:

⟨r2n⟩ = ⟨x2
n⟩+ ⟨y2n⟩
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3.3. THREE-DIMENSIONAL RANDOM WALKS

In the previous section, we showed that

⟨x2
n⟩ = ⟨y2n⟩ = nl2/2

By substitution, we have:

⟨r2n⟩ = ⟨x2
n⟩+ ⟨y2n⟩

= nl2/2 + nl2/2

= nl2

Thus, we have exactly the same result as for the one-dimensional random walk! The
root-mean-square end-to-end distance is also the same as for the one-dimensional case:

RMS(rn) =
√

⟨r2⟩ =
√
nl

3.3 Three-dimensional Random Walks

A random walk in three-dimensions can be represented as a series of vectors in a three-
dimensional coordinate system. The first step begins at the origin, as shown in the left-hand
panel below, and ends on a random point on the surface of a sphere with its center at the
origin and a radius equaling the step length.

z

yx

z

yx

The second step begins the end of the first and ends on a point on the sphere with its center
at the starting point for the step, as illustrated in the right-hand panel.

To describe the changes in direction for each step, it is useful to use polar coordinates,
as illustrated below:

z

y
x
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CHAPTER 3. RANDOM WALKS

In the polar-coordinate system, the position of the endpoint of a vector is described by the
length of the vector and two angles. The vector is visualized as beginning initially aligned
with the z-axis and then being rotated by an angle, ϕ, away from the z-axis in the plane of
the x-z plane, and then rotated by an angle, θ, about the z-axis.

We can derive an expression for the mean-square end-to-end distance for a three-dimensional
random walk by following the same general approach as for the two-dimensional case. For
that case, we showed that

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩

where ⟨x2⟩ and ⟨y2⟩ are the mean-square projections of the random-walk end-points onto
the x- and y− axes, respectively. For the three-dimensional case:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩

In order to calculate ⟨x2⟩, ⟨y2⟩ and ⟨z2⟩, we need to consider the distributions of the projec-
tions of the individual steps onto the three axes and then calculate ⟨δx,i⟩, ⟨δy,i⟩ and ⟨δz,i⟩.

If the direction of each step is random with respect to the coordinate axis, the mean-
square projection along any direction is the same as along any other direction. When using
the polar coordinate system as defined above, the z-axis is the most convenient to work with,
since the projection for a single step depends only on the step length, l, and the angle ϕ:

δz = l cosϕ

The mean-square projection of an individual step onto the z-axis is given by:

⟨δ2z⟩ =
∫ π

0

p(ϕ)δ2zdϕ =

∫ π

0

p(ϕ)(l cosϕ)2dϕ

To evaluate this expression, we need to know the probability distribution function for the
angle ϕ, p(ϕ). At first glance it might seem that all values of ϕ would be equally probable,
so that p(ϕ) would be a simple constant. Recall, however, that the steps in the random walk
were defined so that a step towards any point in the surrounding sphere is equally probable.
The figure below represents the effect of rotating the vector by different values of ϕ from the
z-axis and the points on the sphere that are accessible as the vector is rotated about the
z-axis.

z

y
x

As indicated in the figure, the largest number of points on the sphere is associated with
a rotation that places the vector in the x-y plane, corresponding to a value of ϕ equal to
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3.3. THREE-DIMENSIONAL RANDOM WALKS

π/2. At the other extreme, if ϕ = 0 or π, the number of points is infinitesimally small.
More generally, the number of points accessible for a given value of ϕ is proportional to
the circumference of the circle swept out by the vector as it rotates about the z-axis. The
circumference in turn is proportional to the radius, rc, which is related to ϕ according to:

rc = l sinϕ

In order to satisfy the requirement that all directions in three dimensions be equally probable,
the probability distribution function for ϕ must be proportional to sinϕ.1 The probability
distribution function can thus be written in the form of:

p(ϕ) = c sinϕ

where c is a constant of proportionality. To evaluate this constant, we impose the requirement
that the distribution function must be normalized:∫ π

0

p(ϕ)dϕ =

∫ π

0

c sinϕdϕ = 1

=
(
− c cosϕ

)∣∣π
0

= c− (−c) = 2c

The constant c must then be equal to 1/2 in order for the probability density function to be
normalized:

p(ϕ) =
1

2
sinϕ

The average, or expected, value of the step-length projection onto the z-axis is then:

⟨δ2z⟩ =
∫ π

0

p(ϕ)δ2zdϕ =

∫ π

0

p(ϕ)(l cosϕ)2dϕ

=

∫ π

0

1

2
sinϕ(l cosϕ)2dϕ

=
l2

2

∫ π

0

sinϕ cos2 ϕdϕ

The integral can be evaluated using a table of integrals or a computer program such as
Mathematica, Maple or Maxima, to give:

⟨δ2z,i⟩ =
l2

2

∫ π

0

sinϕ cos2 ϕdϕ

=
l2

2

(
−1

3
cos3 ϕ

)∣∣∣∣π
0

=
l2

2

(
1

3
+

1

3

)
=

l2

3

1One could define the probability distribution function for ϕ as a constant, but this would give a different
distribution of directions, in which those aligned more closely with the z-axis would be disproportionately
favored.
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We can now calculate the mean-square projection onto the z-axis of the end-to-end distances
for a large number of n-step random walks:

⟨z2n⟩ = n⟨δ2z,i⟩ = n
l2

3

Since the z-axis is not special (except for the definitions of ϕ and θ, which are arbitrary) the
mean-square end-to-end projections onto the x- and y− axis are also equal to nl2/3, and the
mean-square end-to-end distance is given by:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩

= n
l2

3
+ n

l2

3
+ n

l2

3

= nl2

Thus, we have exactly the same result as for one and two dimensions. In fact, the same result
applies to random walks in any number of dimensions, though it may be hard to visualize
the ones in more than three dimensions.

3.4 Computer Simulations of Random Walks

For many random processes, computer simulations can provide a useful complement to the-
oretical treatment, such as those derived in the previous sections. For random walks, sim-
ulations can provide snap shots of individual random walks and illustrate the distribution
of properties, such as the end-point position, rather than just the averages that we have
calculated so far. In addition, the process of writing the computer code for a simulation can
help clarify one’s thinking about the description of a random process.

I. Turtle graphics to illustrate two-dimensional random walks

Generating the high-quality computer graphics that we are now so familiar with takes a
great deal of computer programming. But, there is a simple system that can be used for
generating a graphical representation of two-dimensional random walks, called turtle
graphics. Turtle graphics was introduced as a feature of a computer programming
language, Logo, that was developed in the 1960s as a means for introducing children
to computers and programming. Although there was much more to Logo than turtle
graphics, that is probably the feature that it is best known for, and it has been adopted
in other languages as well. The basic idea is that we imagine a turtle placed on a floor
covered with a big piece of paper, and the turtle caries a pen. The turtle is given
simple commands, such as “move forward by 10 units”, or “turn right by 45◦”. These
commands can be incorporated into programs where they are repeated numerous times,
with variations, to generate a wide variety of patterns. Since a two-dimensional random
walk consists of repeated steps and turns, turtle graphics is an ideal way to represent
individual walks.

The figures below show turtle-graphics representations of a turtle at its starting point,
at the origin of the x-y coordinate system, (on the left) and after taking a taking a
200-step random walk (on the right).
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The path of the turtle in this example illustrate an important general feature of random
walks that is not readily apparent from the mathematical treatments of the previous
two sections: The movement of the walker tends to be concentrated in small areas for
a number of steps, followed by a series of steps in approximately the same direction,
leading to a substantial excursion. The excursions are analogous to a series of coin
tosses for which all, or nearly all, land heads. Although such series are relatively rare,
they do occur on occasion, and have a significant effect when they do.

Another way in which simulations of this type are useful is that they let us explore the
effects of changing the rules defining a random walk. For instance, the figures below
represent random walks in which the turn angle at each step is constrained relative to
the direction of the previous step. In the walk represented on the left, the turn from
the previous was restricted to ±90◦. In the right-hand figure, the turn was restricted
to ±46◦.

The obvious effects of restricting the turn angle in this way are to expand the random
walk and reduce the number of times the path crosses itself. Note that these random
walks consisted of only 20 steps each, yet the distance from the starting point is about
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the same as for the 200-step random walk shown above, in which the turn angles were
unrestricted. A random walk of this type is sometimes referred to as a correlated
random walk.

We can also change the random walk by allowing the step length, as well as the turn
angle, to vary randomly. The examples shown below were generated by sampling the
step length from a Gaussian distribution centered at zero. For the diagram on the left,
the standard deviation of the length distribution was 20 pixels, whereas the standard
deviation was 30 pixels for the example on the right.

In both cases, short step lengths are the most probable, but longer ones are not un-
common. For the example on the left, with the narrower distribution, the random walk
included 100 steps. To keep the walk to roughly the same extension, the number of
steps was reduced to 50 for the walk shown on the right.

One of the important ways in which simulations of nearly any process can be used is
to compare them to experimental observations. The extent to which the simulations
matches the observed results can help support a theoretical model or indicate the ways
in which the model might be improved. As an example the theory of random walks
can be applied to analyzing the paths that animals follow when foraging for food.

The figures below represent the paths of individual ants, of two different species, as
they foraged for food, as studied by Prof. Donald Feener and his colleagues at the
University of Utah.2

2Pearce-Duvet, J. M. C., Elemens, C. P. H. and Feener, D. H. (2011) Walking the line: search behavior
and foraging success in ant species. Behavioral Ecology 22, 501–509.
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Brachymyrmex depilis

(25 s)

Dorymyrmex insanus

(21 s)

The paths of the ants show some distinct similarities with those generated in the
simulations shown above. In particular, there are frequent turns with a wide range of
angles, and relatively straight segments of varying lengths. Of course, an ant has to
take a large number of tiny steps to cover any significant distance, but it is reasonable
to define random walk steps that correspond to the relatively straight segments in the
path.

Particularly for Brachymyrmex deplis, the range of step lengths is extremely wide. A
random walk model that has been used to describe walks with occasional steps that
are very long is called a Lévy flight. This type of walk is characterized by a long-tailed
distribution of step sizes, meaning that long steps are favored much more than by a
Gaussian distribution. One such distribution is called the Pareto function, which has
the general form:

p(x) =


αxα

m

xα+1 if x ≥ xm

0 if x < xm

where xm is the minimum value for which the probability is greater than zero. The
parameter α determines the rate at which the probability falls as x increases and lies
between 0 and 2. An example of a Pareto distribution, with xm = 1 and α = 2 is
plotted below.

0 1 2 3 4 5

0

1

2
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As written above, the Pareto function is a normalized probability distribution function.
An interesting property of this function is that for α ≤ 2, its variance is infinite. (More
properly, the integral representing the variance increases without bound as x increases.)

The figure below shows a simulated Lévy flight based on the Pareto function with the
step lengths determined by a Pareto function with xm = 10 and α = 2.

Compared to the random walks shown earlier, this one is characterized by a few very
long steps, separated by much more localized random steps. In this respect, it seems to
be a better model for the behavior of the ants shown above, and there is some evidence
that this type of random walk is appropriate model for the foraging behavior of many
species.

It should be noted that each of the turtle graphics representations shown above is just
a single random walk and was chosen without complete objectivity. In particular the
examples were chosen to highlight particular features, and for the fact that they didn’t
exceed the arbitrary boundaries of the axes. None the less, the features highlighted
are quite real and can be found when large samples are examined.

II. Simulating large samples of random walks

Another way in which simulations can be used is to generate large samples of random
walks, from which general statistical insights can be gained. The figure below shows
the endpoints of 10,000 two-dimensional random walks of 50 and 100 steps, on the left
and right respectively. The steps in these random walks have a length of 1, in arbitrary
units.
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Note that the maximum projection along the x- or y-axes is 50 or 100, for the left
and right panels, respectively. However, even among 10,000 random walks, distances
greater than 20 are rare in either case.

The graphs below show the relative probabilities of the x-projections of the endpoints
lying within intervals 1 step-length wide.
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To produce these relatively smooth curves, 100,000 simulated random walks were gen-
erated. As expected, the distributions are bell shaped and centered at x = 0. As the
number of steps increases, the breadth of the distribution increases.

The next set of graphs, below, show the distribution of distances between the starting
and end points.
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It may seem surprising that the peaks of these distributions are not at r = 0, since the
highest density of endpoints in near the starting point. To understand this apparent
paradox, it is important to keep in mind the meaning of a probability distribution
function. If the probability distribution function is p(r), then the probability that the
distance lies with in a small interval of r-values is the product p(r)dr, as represented
in the figure below:
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As shown in the figure, the probability distribution function, p(r), represents the prob-
ability that the endpoint of the random walk lies within an annulus dr thick at a
distance r from the starting point. This probability depends on both the density of
points at distance r and the area of the annulus. This area is calculated as:

A = 2πrdr

To help visualize this relationship, imagine a thin metal ring, with radius r and thick-
ness dr. If you were to cut this ring and flatten it out, the cross-sectional area (viewed
along the thin edge) would be the length, 2πr, times the thickness dr. Thus, the area
of the annulus increases as r increases, while the density of endpoints decreases with r.
The product of the area and the density is small when either term is small, and reaches
a maximum at an intermediate value of r, as shown in the distribution function.
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