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Chapter 4
Diffusion

Now, we go back to the problem introduced when we first began discussing probability,
Brownian motion and diffusion. We would like some real numbers about how far a molecule
or particle will diffuse in a given time, and we would like to know what factors determine this.
Traditionally most experimental measurements of diffusion have been based on measuring
changes in bulk concentration. An example that we will consider in some detail involves
setting up two adjacent volumes, one containing a molecule of interest and the other without.
At the beginning of the experiment, there is a sharp boundary between the two volumes, as
diagrammed below.

0

x

Setting up an arrangement like this is technically challenging, but not impossible. Typically,
the apparatus is set up vertically, but it is shown horizontally here, because we will define
the xaxis as the axis of diffusion, as indicated

With time, we expect the molecules to diffuse and the concentration to become more
even. The rates at which the concentration changes at different points along the x-axis will
depend on the rates at which the molecules move, and we should be able to deduce the
parameters of the random walk from the rate of change in concentration.

What we are trying to do here is to extend the treatment of individual random walks to
the bulk behavior of molecules that lead to concentration changes. This will require thinking
about things a little differently.

4.1 Flux: Fick’s First Law

I. The derivation

We will look at diffusion along a single dimension, x. Diffusion depends on Brownian
motion, which can be described as a random walk. In each step of the walk, the
direction is random, in three dimensions. If the mean-square length of the steps is ⟨l2⟩,
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CHAPTER 4. DIFFUSION

then the mean-square displacement of the step along the x-axis will be ⟨δ2x⟩ = ⟨l2⟩/3.
For convenience, we will refer to the step size along the x-axis as δx = RMS(δx).

We will also define the average time interval between steps as τ . After a time period t,
the number of steps will be n = t/τ . The mean-square displacement along the x-axis
will be:

⟨x2⟩ = nδ2x = tδ2x/τ

Notice that the average (RMS) distance will increase with the square root of time.

Now, let’s consider two thin slices of the volume diagrammed in in the previous figure,
cut perpendicular to the direction of the concentration difference:

The thickness of each volume is set to be δx, the RMS length of a random-walk step
along the x-axis, and the cross-section along the x-axis has an area of A. Therefore,
the volume of each slice is Aδx. During the interval τ , one half of the molecules within
a slice will move to the left and half will move to the right. This will happen in
both slices. If the number of molecules is the same in the two slices, the number of
molecules that cross in each direction will be the same. But, if there are more molecules
at position x+ δx than at position x, then there will be a net movement of molecules
to the left.

Call the number of molecules in the slice centered at x Nx, and the number of molecules
in the slice at x+ δx Nx+δx . The net number of molecules going to the right in time t
will be:

dN =
1

2
Nx −

1

2
Nx+δx

= −1

2
(Nx+δx −Nx)

Notice that we have defined things so that if the number of molecules to the right is
larger than to the left, the flow of molecules to the right will be negative.

The flux across a given surface area is expressed as the number of molecules (or moles)
per unit time per unit area. The expression above is divided by A and the time interval,
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4.1. FLUX: FICK’S FIRST LAW

τ , to give the flux, J :

J = − 1

Aτ

1

2
(Nx+δx −Nx)

We can express the number of molecules in each slice in terms of the concentrations
and the volumes of each slice:

Nx = CxAδx

Nx+δx = Cx+δxAδx

We can then re-write the flux equation as:

J = − 1

Aτ

1

2
(Nx+δx −Nx)

= − 1

Aτ

1

2
(Cx+δxAδx − CxAδx)

= −δx
τ

1

2
(Cx+δx − Cx)

Now, we can write the difference in concentrations at the two positions in terms of a
derivative with respect to x

dC

dx
= lim

δx→0

Cx+δx − Cx

δx

In the limit of small δx:

Cx+δx − Cx = δx
dC

dx

So, we now have:

J = − δ2x
2τ

dC

dx

Consider the quantity δ2x/(2τ). Both parameters in this ratio are properties of the
diffusing particle under a particular set of conditions. For now, we won’t worry abut
it’s particular significance, but we will replace it with a new parameter, which we call
the diffusion constant, D. Thus:

J = −D
dC

dx

This equation is known as Fick’s first law. (Adolf Eugen Fick, German physiologist,
1829–1901.)

Important conclusion: The net flux of molecules per unit area and per unit time
is determined by the difference in concentration, and the diffusion coefficient, which
reflects the steps in a random walk.
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CHAPTER 4. DIFFUSION

Why do molecules “move down a concentration gradient”? It’s not because they can
sense concentration! All of the molecules move randomly, but the probability for
moving from a high concentration to a lower concentration is higher than the reverse
simply because there are more molecules in the high-concentration region.

Let’s also look at the units in this equation:

• The flux, J , has dimensions of molecules per cross-sectional area per unit time,
or, in SI units: molecules ·m−2s−1. Alternatively, it can be expressed in terms of
moles.

• The diffusion constant, D = δ2x/(2τ), has units: m
2s−1.

• The derivative of concentration with respect to x has dimensions of molecules per
volume per length. In SI basic units this is: molecules ·m−3m−1 = molecules ·m−4

• Combining these:

J = −D
dC

dx

molecules ·m−2s−1 = m2s−1 ×molecules ·m−4

molecules ·m−2s−1 = molecules ·m−2s−1

Looks good!

II. The distribution of molecules diffusing from a single position.

Consider the case described earlier, where there is initially a sharp boundary between
an area where C = 0 and an area with C = 1, in arbitrary concentration units

x

C(x)

We might ask: For a molecule at any initial position along the x-axis, what is its most
likely position after a given period of time? If we treat this as a random-walk problem,
we conclude that the most likely position is the starting position, even though the
random walk will have taken the molecule to many other positions during the time
period. But, this must be true for all of the molecules in the sample. So, how does net
diffusion ever take place?

The solution to the paradox lies in the nature of the probability distribution function.
Recall that the Gaussian distribution for a random walk is given by:

p(x) =

√
1

2π⟨x2⟩
e−x2/(2⟨x2⟩)
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4.1. FLUX: FICK’S FIRST LAW

where x is the position of the endpoint and ⟨x2⟩ is the mean-squared value of x. For
diffusion, we defined the random walk parameters in terms of δx (the step size), τ (the
time interval between steps), t (the total time) and D = δ2x/(2τ), so that ⟨x2⟩ is given
by:

⟨x2⟩ = nδ2x

=
tδ2x
τ

= 2Dt

So, the probability function can be expressed in terms of D and t:

p(x) =

√
1

4πDt
e−x2/(4πDt)

A plot of the function looks like:
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For this plot, D = 3× 10−10m2/s, and t = 105 s.

Remember that a continuous probability distribution function is interpreted in terms of
its integral. In this case, the probability that the molecule lies between two positions,
a and b is given by the integral:∫ b

a

√
1

4πDt
e−x2/(4Dt)dx

If we divide up the range of x values into thin slices, the slice with the largest probability
is the one centered at x = 0. But the total probability that the molecule will be in one
of the other slices is much larger than the probability that x will be close to zero.

So, we really do expect virtually all of the molecules to be somewhere else after the
time period. The lesson here is that it is not enough to ask what the most likely
outcome is! The most likely may represent only a tiny fraction of the total.
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CHAPTER 4. DIFFUSION

III. A (simplified) biological example

In biology, we don’t really have examples where we start with a perfectly sharp bound-
ary, with nothing separating the two sides. But, we do have lots of cases where there is a
sharp change in concentration across a membrane. Biological membranes are composed
of bilayers of phospholipids, along with proteins that are embedded in the bilayer. For
now, the structural details are not very important, except that most molecules diffuse
across lipid bilayers extremely slowly, and proteins can act as pores that allow much
faster selective diffusion of molecules.

Suppose that we have a membrane with a thickness of about 3 nm, a typical value,
and a small-molecule compound that has a concentration of 50mM on one side of the
membrane and 5mM on the other.

High concentration Low concentration

Membrane

Pore

Across the width of the membrane, we can estimate the concentration gradient as:

dC

dx
=

50mM− 5mM

3nm
=

0.045M

3× 10−9m

= 1.5× 107M/m

To go further, we need to convert the concentration gradient to units with consistent
units of length:

dC

dx
= 1.5× 107M/m

= 1.5× 107
moles

L×m
× 1 L

10−3m3

= 1.5× 1010moles/m4

From Fick’s first law, we can calculate the flux, J :

J = −D
dC

dx
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4.1. FLUX: FICK’S FIRST LAW

A typical diffusion coefficient for small molecules is 10−10m2/s.

J = −10−10m2/s× 1.5× 1010moles/m4

= −1.5moles/(m2s)

This looks like a lot of molecules per second, but remember that the flux is expressed
per unit of area, in this case 1m2. The negative sign simply indicates that the flux is
in the opposite direction of the concentration gradient.

The pores in membranes vary greatly is size and shape, and many of them have very
small and specialized structures for which a general treatment of diffusion is probably
not appropriate. But, there are examples of pores with diameters of a few nm. For a
pore diameter of 1 nm, the area is:

A = πr2 = π(0.5× 10−9m)2 = 7.8× 10−19m2

The flow through this pore is then:

1.5moles/(m2s)× 7.8× 10−19m2 = 1.2× 10−18moles/s

The number of molecules per second is:

1.2× 10−18moles/s× 6.02× 1023molecules/mole ≈ 7× 105molecules/s

How many molecules would be in the volume of the pore at any instant? The volume
is:

V = A× L = πr2 × L = π(0.5× 10−9m)2 × 3× 10−9m

= 7.8× 10−19m2 × 3× 10−9m = 2.4× 10−27m3

= 2.4× 10−24 L

If the concentration within the pore is the average of that on the two sides of the
membrane, 20mM, the average number of molecules in the pore is calculated as:

2.4× 10−24 L× 0.02moles/L = 5× 10−26moles ≈ 0.03molecules

This result means that the pore is empty nearly all of the time, even though about 106

molecules are passing through every second. So, each is there for a very short time.

Can a flow of 106molecules/s be detected through a singe pore? It can be if the molecule
is charged, by measuring electric current. A current of 1 ampere (A) corresponds to 1
coulomb per s, or about 6×1018 charges per s. So 106 charges/s corresponds to about
2× 10−13A, or 0.2 pA. This is a very small current, but currents of this magnitude are
routinely measured by electrophysiologists studying single channels in membranes in
(or removed from) neurons and muscle cells.

101



CHAPTER 4. DIFFUSION

4.2 Fick’s second law

As soon as there is a net flux between regions of a sample, the concentrations will change.
Fick’s second law describes the change in concentration with time.

I. The derivation

Consider, again, a thin slice cut perpendicular to the x-axis, with area A and thickness
δx:

The net number of molecules moving to the right at the two sides of the slice during
an interval dt will be:

Nx = AJxdt

Nx+δx = AJx+δxdt

where Jx and Jx+δx are the values of the flux at positions x and x + δx respectively.
The change in the number of molecules in the slice will be:

dN = AJxdt− AJx+δxdt

= Adt(Jx − Jx+δx)

The change in concentration will be:

dC =
dN

Aδx

=
Adt(Jx − Jx+δx)

Aδx

= −dt
Jx+δx − Jx

δx
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4.2. FICK’S SECOND LAW

In the limit of small dt and small δx:

dC

dt
= −Jx+δx − Jx

δx
= −dJ

dx

From Fick’s first law, we know how J depends on the change of C with respect to x:

J = −D
dC

dx

Differentiating J with respect to x gives:

dJ

dx
= −D

d2C

dx2

Substituting:

dC

dt
= D

d2C

dx2

This is the usual form of Fick’s second law. It is also referred to as the “diffusion
equation”, and it provides the basis for calculating how concentration will change with
time, provided that we know how concentration depends on position, x, which, of
course, changes continuously.

The good news is that diffusion is described by this very simple equation. The bad
news is that it’s not at all simple to solve this equation for real problems. What is
required is to find a function, C, of both x and t, that satisfied this differential equation
and describes the particular physical arrangement at when t = 0.

Historically, problems of this type were first solved in the context of heat flow through
materials, which follows the same mathematical laws as diffusion. Consideration of
problems of this type led the French mathematician Joseph Fourier to develop the
methods now known by his name, Fourier analysis. This can be, and is, the subject of
entire courses.

The two laws of Fick describe different, but closely related, features of the dynamics:

1. Fick’s first law states that the net flux of diffusing molecules is proportional to
the change in concentration with respect to distance, i.e., the “concentration
gradient”.

2. Fick’s second law states that the change in concentration with respect to time, at
a given position, is proportional to the derivative of the concentration gradient,
i.e., how rapidly the concentration gradient changes with position.

To see how these relationships work, we will look at the solution to the case of diffusion
from a sharp boundary.
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CHAPTER 4. DIFFUSION

4.3 Diffusion from a Sharp Boundary

The case introduced earlier, diffusion from a sharp boundary, is one for which a solution
to the diffusion can be found relatively easily. Though this case is highly simplified and
restricted to diffusion in only a single dimension, its solution reflects general properties of
diffusion and provides considerable insight.

I. A solution to the diffusion equation

In looking for a solution to the diffusion equation, we are looking for a function, C(x, t),
that describes the concentration of the diffusing molecules as a function of both x and
t such that the derivatives of the function satisfy the differential equation:

dC

dt
= D

d2C

dx2

For each value of x, the concentration at time t will represent all of the molecules that
have diffused to that point, from all of the points at which molecules were initially
present (including x itself). For the case of diffusion from a sharp boundary, we can
say the following:

• For x < 0, the initial concentration is 0.

• For x >= 0 the concentration is initially the same, and we can call this value 1,
in arbitrary units.

These constitute the boundary conditions for the problem. Any solution must satisfy
these conditions, as well as the differential equation.

Assuming that there are initially a very large number of molecules in the vicinity of each
value of x >= 0, we know that the final distribution of molecules from that position
will be described by a Gaussian probability distribution function that is centered at the
initial position. Recall that the Gaussian function, for molecules beginning at x = 0,
can be written as:

p(x) =

√
1

4πDt
e−x2/(4Dt)

More generally, if we consider molecules that begin at position x = a, we can replace
x with (a− x) in the distribution to give

P (x, a) =

√
1

4πDt
e−(a−x)2/(4Dt)

A plot of the function looks like:
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4.3. DIFFUSION FROM A SHARP BOUNDARY
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For a given position x, the final concentration will be the total of molecules from all
values of a > 0. So, we add together the value of all of the probability functions for all
values of a > 0, as represented in the figure below:

x

0 a
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In other words, we integrate:

C(x, t) =

∫ ∞

0

√
1

4πDt
e−(a−x)2/(4Dt)da

Notice that the variable a doesn’t appear in the final result, it simply represents all
of the possible starting positions of the molecules. This integral cannot be evaluated
analytically, but it can be estimated numerically.

In most textbooks, this result is presented somewhat differently, as:

C(x, t) =
1

2

[
1 + erf

(
x√
4Dt

)]
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CHAPTER 4. DIFFUSION

where erf is called the “error function” (because it arises in the statistical analysis of
measurement errors) and is defined as:

erf(z) =
2√
π

∫ z

0

e−u2

du

We can check that our solution satisfies Fick’s second law by calculating the appropriate
derivatives. For this purpose, it is convenient to use the form using the error function,
substituting x/

√
4Dt for z:

C(x, t) =
1

2
+

1√
π

∫ x/(4Dt)

0

e−u2

du

Since the function C(x, t) is an integral of the Gaussian function, it should not be
surprising that the derivatives of C(x, t) are Gaussian functions. The fundamental
theorem of calculus stipulates that if a function F (X) is defined as:

F (X) =

∫ X

a

f(x)dx

then the derivative of F (X) is simply f(X).

Using this relationship and some substitutions, differentiating C(x, t) with respect to
x gives:

dC

dx
=

d

dx

[
1

2
+

1√
π

∫ x/(4Dt)

0

e−u2

du

]

=

√
1

4πDt
e−x2/(4Dt)

The second derivative of C with respect to x is:

d2C

x2
= − x

4
√
πD3t3

e−x2/(4Dt)

With some effort (or the assistance of a computer program such as Mathematica or
Maxima), the derivative of C with respect to t can be shown to be:

dC

dt
= − x

4
√
πD3t3

e−x2/(4Dt)

Thus, Fick’s second law is satisfied by this solution:

dC

dt
= D

d2C

dx2

− x

4
√
πDt3

e−x2/(4Dt) = −D
x

4
√
πD3t3

e−x2/(4Dt)
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4.3. DIFFUSION FROM A SHARP BOUNDARY

II. Graphical representations of the solution

The best way to get a feel for all of this is to look at graphs representing the solution
and its derivatives.

The profiles predicted by the solution to the diffusion equation (for this particular
starting state) are shown in the graph below, for the case where D = 3 × 10−10m2/s
and the time after creation of the sharp boundary, t, is 103, 104, 105 or 106 s, as
indicated. (Note that the function is not defined for t = 0.)

0-0.04 0.04-0.02 0.02

The first derivative of C with respect to x is plotted below for the same value of D
and the indicated times.

0-0.04 0.04-0.02 0.02

Notice that the derivative has the form of a Gaussian function, which reflects the fact
that C(x, t) has the form of an integral of the Gaussian. The peak of the concentration
gradient remains at x = 0, but decreases in steepness with time as the gradient covers
a wider range of x values.

The net rate at which molecules pass a particular point is proportional to the concen-
tration gradient. Thus, the flux, J , is always maximal at x = 0 but decreases with
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time at this point. At other points, however, the flux increases and then decreases with
time.

Finally, we look at the second derivative of C with respect to x:

0

0-0.04 0.04-0.02 0.02

Notice that there are two peaks, one positive and one negative. At t = 0, these
are extremely sharp and represent the two edges of the sharp concentration gradient.
With time, these peaks move apart and become less pronounced as the concentration
gradient becomes more gentle.

The positive peak on the left represents the region where the concentration is begin-
ning to increase and where the gradient increases most rapidly. This is where the
concentration is increasing most rapidly. But, it’s not where the flux, J , is maximal!
The flux is always maximal at x = 0.

Why is the region where the flux is greatest not where the concentration changes most
rapidly?

At x = 0, the flux is maximal, but the molecules are constantly being replaced by the
“reservoir” to the right and are being drawn off to the left. So, the concentration stays
constant.

Where the second derivative is maximal, the flux changes most rapidly with position.
This means that the flux going into a volume element is greater than that leaving, so
that the concentration changes most rapidly.

As time increases, the absolute values of both the first and second derivatives decrease,
so that both the flux and the rate of change in concentration decrease.

Notice, also that the concentration at positions close to x = 0 change very rapidly, but
even a millimeter away, the change is quite slow.
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4.4. ESTIMATING A DIFFUSION CONSTANT FROM A SIMPLE EXPERIMENT

4.4 Estimating a Diffusion Constant from a Simple Ex-

periment

An approximation to the ideal sharp boundary experiment can be realized in practice by
overlaying two solutions, one containing a dye. In order to form the (relatively) sharp
boundary easily, it is also necessary to make the lower solution slightly more dense than the
upper one, for instance by adding a few percent of glycerol. The increased viscosity of the
lower solution slightly complicates the situation, but not so much as to obscure the essential
features of the experiment

The photograph below shows the result of such an experiment 48 h after establishing the
boundary.

Even after 48 h, very little, if any, of the dye has reached the top of the solution, about
2 cm from the initial boundary. We can use the result of this experiment to make a rough es-
timate of the diffusion coefficient, D, by comparing the observation to those predicted by the
solution for diffusion from a boundary. The plot below shows the expect concentration, after
48 h, as a function of position, x, with different values assumed for the diffusion coefficient,
as indicated.
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As a rough estimate, it appears that the experimental result lies somewhere between the
curves calculated for D = 10−10 and 10−9m2/s. Later, we will see how to calculate the
diffusion coefficient from the size of a molecule and the viscosity of the solution, and we’ll
see how close the two estimates match.

4.5 Molecular Motion and Kinetic Energy

So far, we have considered diffusion from a macroscopic point of view, focusing on the net flux
of molecules and changes in concentration, without considering the nature of the molecular
motions. To take a more microscopic view, we need to consider the motions of individual
molecules, which reflect their kinetic energy.

I. Kinetic energy

We can begin this discussion by asking, in the most general way, what is energy? The
standard textbook definition is that energy is the ability do do work. But what, then,
is work?

For mechanical motion, work, and therefore energy, represents an integral of force with
respect to distance:

w =

∫ b

a

Fdx

The units of energy are those of force times distance. In SI units N·m = joule (J).
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4.5. MOLECULAR MOTION AND KINETIC ENERGY

The unit of force, N, is defined from Newton’s second law:

F = m · a = kg ·m · s−2

Therefore, in the basic SI units, energy has units of 1 J=1 kg ·m2·s−2.

The kinetic energy of an object moving along a given direction, x, from classical me-
chanics is:

Ek,x = m · v2/2

This represents the work required to accelerate an object of massm from rest to velocity
v, in the absence of friction. It doesn’t matter how rapidly or slowly the acceleration
is, the final energy depends only on mass and velocity. If the object slows down, it
looses some of that energy.

Note that kinetic energy has the correct units, = kg ·m2·s−2

Also note that doubling the velocity increases the kinetic energy four fold. This is why
car accidents become so much more dangerous at higher speeds.

II. Thermal energy

Fundamentally, temperature is a measurement of the motion of molecules. The sim-
plest thermometer is a container of gas that expands or contracts when the temperature
changes (at constant pressure). Alternatively, we can measure temperature by measur-
ing the pressure of a gas at constant volume. Though this was not always understood,
we now know that the pressure represents the collisions of molecules against the side
of the container.

For an ideal gas, we have the relationship:

PV = nRT

where P is pressure, V is volume, n is the number of moles of gas, T is temperature
and R is the gas constant. An ideal gas is one that is made up of particles that do not
interact at all with one another. At moderate temperatures and pressures, real gasses
are well approximated by the ideal gas law.

What are the units of the gas constant?

Pressure has the units of force per unit area, or N ·m−2, and volume has the units of
m3. T has units of K, and n has units of moles. Therefore, R has units of:

R =
PV

nT
=

N ·m−2m3

K ·mol
= N ·m/(K ·mol)

In the basic SI units, R has the units of:

N ·m/(K ·mol) = kg ·m2s−2K−1mol−1
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Notice, though, that we just showed that kg ·m2·s−2 is a unit of energy, the Joule. So,
R can be expressed in units of J/K, and the product RT must, in some sense be a
measure of the energy that one mole of moving molecules have at a given temperature,
irrespective of pressure and volume.

To discuss the energy of individual molecules, it is convenient to divide the gas constant
by Avogadro’s number. (≈ 6.02× 1023). This is the Boltzmann constant, which, in SI
units, is:

k = 1.3806× 10−23 kg ·m2s−2K−1 = 1.3806× 10−23 J/K

In a given volume of gas, not all of the molecules will have the same energy (or velocity)
at a given instant. In fact, they will have a broad distribution of energies as they collide
with one another and the walls and exchange energy. So, we have to express the kinetic
energy as an average. Without going through the derivation, the RMS translational
kinetic energy in one direction is:

RMS(Ek,x) = kT/2

And the total translational energy, summed over all three directions is:

RMS(Ek) = 3kT/2

Remember, though that the kinetic energy is also expressed in terms of the velocity
and mass of a particle:

Ek = m · v2/2

Combining these equations gives:

v =
√

kT/m

where v is understood to be an RMS average velocity. With this equation, we can
calculate the RMS velocity knowing only the mass of a molecule and the temperature.

III. Steps in the random walk

The equations for kinetic energy in a gas also apply to molecules in a liquid, at the same
temperature. The instantaneous velocities are the same, it’s just that the molecules
collide with one another much more frequently in a liquid, and we can now calculate
just how frequent that is.

For a single (average) step in the random walk, the displacement is δx and the time is
τ . Therefore, the velocity during this period is:

v = δx/τ
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4.5. MOLECULAR MOTION AND KINETIC ENERGY

If we have measured the diffusion coefficient, D, we can now calculate δx:

D =
δ2x
2τ

=
δx
2
v

=
δx
2

√
kT/m

δx =
2D√
kT/m

The average time between collisions is given by:

τ = δx/v

=
2D√
kT/m

1√
kT/m

=
2D

kT/m

What is implied by these equations?

• The average velocity of a molecule depends on the temperature and mass, irre-
spective of the surrounding environment.

• But, the average distance that a molecule goes before colliding and bouncing off
in different directions does depend on the environment.

• All molecules at a given temperature have the same average kinetic energy. (This
is implied by the ideal gas law.) However, the average velocity is inversely related
to the square root of the molecular mass. Big molecules move more slowly.

IV. Some typical values of D, δx and τ .

From the simple diffusion experiment, we estimated that the diffusion coefficient for
the bromophenol blue dye is about 10−10m2/s. The molecular weight of this dye is
670 g/mol. Thus, the mass of a single molecule is 1.1×10−21 g, or 1.1×10−24 kg. At
room temperature (≈300 K), the expected velocity of the molecule is then:

v =
√

kT/m

=

√
1.38× 10−23 kg ·m2·s−2·K−1 · 300K

1.1× 10−24 kg

≈ 60m/s
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This seems very fast, especially considering how slowly the molecules diffused. But,
we know that they only move in a given direction for a short time before colliding
with another molecule in the solution. From the relationships derived earlier, and the
estimate of the diffusion coefficient, we can calculate the distance between collisions
as:

δx = 2D/v

≈ 2× 10−10m2/s÷ 60m/s

≈ 3× 10−12m

Thus, the average displacement is extremely small: A hydrogen atom is about 10−10m
in diameter. The time interval between collisions is correspondingly small:

τ = δx/v

≈ 3× 10−12m÷ 60m/s

≈ 5× 10−14 s

The RMS displacement along one axis as a function of time is given by:

RMS(x) =
√
2Dt

≈
√

2× 10−10m2/s · t(s)

≈ 1.4× 10−5m
√

t(s)

V. The relationship between molecular size and diffusion coefficient

In general, we expect the diffusion coefficient to depend on the molecule and its envi-
ronment. More specifically, we might expect D to depend on the size of the molecule,
the temperature and the viscosity of the solution. Indeed, this is the key relationship
that Einstein formulated in his classic 1905 paper on Brownian motion:

D =
kT

6πηr

where η is the viscosity of the solution and r is the radius of a spherical particle. This
is usually referred to as the Stokes-Einstein equation, showing that even Einstein built
on the work of others! Strictly, this applies only to spherical particles, but it is common
to refer to an “effective radius” for particles that are less symmetrical.

We will ignore the question of how viscosity is defined and measured except to note
that it is most commonly expressed in units of centipoise, which is equivalent to
10−3N · s ·m−2. The factor of 10−3 has obscure historical origins, but the unit of
centipoise has been retained, probably because water at room temperature has a vis-
cosity very close to 1 centipoise. It is left to the student to demonstrate that the units
in the Stokes-Einstein equation are consistent.
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Here are a few examples of particles with a range of sizes and calculated diffusion
coefficients:

• Small molecule (1 nm): 2× 10−10m2s−1

• Protein (10 nm): 2× 10−11m2s−1

• Bacterium (1 µm): 2× 10−13m2s−1

• 1 mm sphere: 2× 10−16m2s−1

To place these diffusion coefficients into some context, it is helpful to calculate the
time required for a particle to diffuse until the RMS distance from the starting point
reaches a given value. Earlier, the relationship between the RMS distance and time
was given as:

RMS(x) =
√
2Dt

Rearranging this equation gives:

t =
RMS(x)2

2D

The graph below shows how the time required to diffuse a given RMS distance depends
on time for different size molecules:
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This graph shows that diffusion leads to quite fast net movements of molecules over
short distances, but the times required for movement over longer distances can greatly
exceed what is necessary in many biological contexts.

115



CHAPTER 4. DIFFUSION

A biological example highlighting the differences in diffusion times over different dis-
tances is neural transmission. Individual neurons communicate with adjacent neurons
and muscle cells via chemical synapses, as diagrammed below1:

When stimulated, the axon terminus of a neuron (the pre-synaptic cell) releases neu-
rotransmitter molecules, such as acetylcholine, glutamate or dopamine. These small
molecules diffuse across the synaptic cleft, which has a width of about 20 nm, and bind
to receptors on the adjacent neuron or muscle cell (the post-synaptic cell). Binding
to these receptors then generates a signal within the post-synaptic cell. The time re-
quired for the transmitter to diffuse an RMS distance of 20 nm is calculated (assuming
a diffusion coefficient of 2× 10−10m2s−1) as:

t =
RMS(x)2

2D

=
(2× 10−8m)2

2× 2× 10−10m2s−1

= 10−6 s = 1µs

Signals also must travel along the lengths of neurons, which can be up meters in length.
To travel by diffusion a distance this long, would take:

t =
(1m)2

2× 2× 10−10m2s−1

= 2.5× 1010 s ≈ 80 yr

The obvious conclusion from this calculation is that some other mechanism must be
employed to transmit signals over the length of the neuron, and this mechanism is
the propagation of an electrical potential across the membrane. Within neurons and
other eukaryotic cells, the components of various structures must be transported over
distances that are similarly too long for diffusion to be effective. Molecular motors
that move along structural tracks in the cell facilitate this kind of motion.

1Figure from https://en.wikipedia.org/wiki/Chemical_synapse, Thomas Splettstoesser (www.
scistyle.com).
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4.6 A Plant Faces Diffusion

Diffusion plays a role in the physiology of all organisms, as they exchange nutrients and
other compounds with their environments. Here we consider diffusion at the surface of plant
leaves, a process that dictates many aspects of plant physiology, structure and ecology.

I. A plant’s demand for CO2

Consider the growth of a seed to a plant. Where does all of the mass, especially the
carbon, come from? Nearly all of the carbon comes, literally, from thin air. The net
chemical reaction is:

6CO2 + 6H2O −−→ C6H12O6 + 6O2

This is an extremely unfavorable chemical reaction, except when it is coupled to the
absorption of energy provided by sunlight.

A back of the envelope calculation: How much CO2 must cross the leaf surface per
second to support a plant’s growth? Suppose that a plant incorporates 1 kg of carbon
a year. How much leaf area does such a plant have? A rough estimate might be that
the plant has 1,000 leaves with an area of 1 cm2 each, for 0.1m2 total.

Total moles of carbon per year:

1 kg ÷ 12 g/mol ≈ 80mol

Total seconds per year:

1 yr× 365 days/yr× 24 hr/day × 60min/hr× 60 s/min ≈ 3× 107 s

But, CO2 is incorporated only during daylight, so the total time available is only about
half of this. The number of moles per second is:

80mol÷ 1.5× 107 s ≈ 5× 10−6mol/s

II. Leaf structure and stomata

CO2 enters leaves only through special openings, called stomata, which can be regulated
depending on physiological state. A rough cross-sectional drawing of a typical plant
leaf is shown below.

Epidermal cells

Guard cells Stomatal pore

Mesophyll cells
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The cells that carry out photosynthesis, the mesophylls, are enclosed in a space bounded
by the leaf epidermis on both sides. In some plants, the stomata are found only on the
lower leaf surface, but in others they are on both surfaces. Photosynthesis takes place
within the chloroplasts of the mesophylls, and the CO2 is converted into sugars by the
enzyme ribulose-1,5-bisphosphate carboxylase (Rubisco). This is the most abundant
enzyme on earth, and is arguably the most important for life. Essentially every carbon
atom in our bodies passes through this enzyme.

The left-most panel in the figure2 below is a scanning electron micrograph of a tomato-
plant leaf. The large gaping opening is a single open stoma, with a diameter of about
10µm and a depth of about 40µm.

The two other panels in the figure are diagrams of a stoma in the open and closed
states. The opening is controlled by two large cells, called guard cells on either side,
which expand and change shape when their water content increases to open the stoma.
When the water content decreases, the guard cells contract, and the opening closes.

III. Diffusion of CO2 through stomata

In the air, CO2 is a trace gas, making up about 580 parts per million of the atmosphere
by mass. This number has increased with the burning of fossil fuels, which is, of course,
a very important issue right now. At sea level, the concentration of CO2 is about
1.5× 10−2mol ·m−3 = 15µM.

Within the leaf, the consumption of CO2 by the chloroplasts depletes the concentration
in the leaf airspace. The flux through the leaf involves many steps and concentration
gradients, but the most significant barrier to diffusion is in the stomata. In the airspace,
the CO2 concentration is about half of what it is in the atmosphere, i.e., about 7.5×
10−3mol ·m−3. So, the concentration difference across the stomata is about 7.5 ×
10−3mol ·m−3.

Recall Fick’s first law:

J = −D
dC

dx
2Scanning electron micrograph of tomato-leaf surface by Louisa Howard, http://remf.dartmouth.edu/

images/botanicalLeafSEM/source/16.html

Diagrams of open and closed stomata by Ali Zifa https://en.wikipedia.org/wiki/Stoma
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where J is the flux, D is the diffusion coefficient, C is concentration and x is distance
along the direction of diffusion.

For the stomata:

dC

dx
=

1.5× 10−2mol ·m−3 − 0.75× 10−2mol ·m−3

40× 10−6m
= 190mol ·m−4

The diffusion coefficient for CO2 at atmospheric pressure is 1.5 × 10−5m2s−1. This is
much larger than the numbers we discussed for molecules in water. Why?

The flux, per unit of surface area, is then:

J = −D
dC

dx
= −1.5× 10−5m2s−1 × 190mol ·m−4

= −2.8× 10−3mol ·m−2s−1

How much surface area do we need in order to fix 1 kg of CO2 per year?

5× 10−6mol · s−1 ÷ 2.8× 10−3mol ·m−2s−1 ≈ 0.002m2

We can then calculate the minimal number of stomata required to allow this transfer
of CO2 into the leaves. The area of each stomatal pore is:

π(5× 10−6m)2 ≈ 10−10m2

and the number of pores required is:

0.002m2 ÷ 10−10m2 = 2× 107

If the plant has a total of 0.1m2 of leaf area, then about 2% of that must be devoted
to stomatal pores. A plant that grows by 1 kg/yr might have about 1,000 leaves of
1 cm2 = 10−4m2 each, so that there would be about 20,000 stomata per leaf, or 200
stomata per mm2. Actual densities of stomata on plant leaves range from 100 to 1,000
per mm2, depending on plant species and environmental conditions.

IV. The big problem: Water diffusion

Because the stomata are just open holes in the leaf surface, other gasses can also diffuse
in and out of the airspace. The diffusion of water out of leaves, transpiration, is a major
factor that limits the ability of plants to fix CO2.

Within the airspace of the leaf, water reaches saturation concentration, i.e., close to
100% humidity. For a leaf at 25 ◦C, this is about 1.3mol ·m−3. Outside the leaf, the
water vapor concentration is about half this.

So, we can calculate the H2O vapor gradient across the stomata:

dC

dx
=

0.6mol ·m−3

40× 10−6m
= 1.5× 104mol ·m−4
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The diffusion coefficient is slightly larger for H2O than for CO2. Why? D =2.4 ×
10−5m2s−1.

The flux per unit area of stomata is:

J = −D
dC

dx
= −2.4× 10−5m2s−1 × 1.5× 104mol ·m−4

= −0.36mol ·m−2s−1

For our plant with 0.1m2 of leaf surface area and 0.002m2 of stomatal surface area:

0.36mol ·m−2s−1 × 0.002m2 = 7× 10−4mol/s

In one year:

1.5× 107 s× 7× 10−4mol/s = 104mol

104mol× 18 g/mol = 18× 104 g

= 180 kg

≈ 45 gal

The plant needs about 180 kg of water for each kg of carbon it fixes, just because of
evaporation from the leaves.

Note: This is a very rough approximation!

This dwarfs the amount of H2O directly used in the photosynthesis reactions (≈
80mol ≈ 1.4 kg).

Consequences of huge water losses:

• Stomata are closed when photosynthesis rates are low (e.g., at night). This is
probably why plants evolved stomata, rather than allowing diffusion across the
entire leaf area.

• The tradeoff between photosynthesis and water loss is the major physiological
challenge to plants. Plants in different environments evolve to optimize this trade-
off.

• All of this water has to pass through roots and stems of the plant.

• For tall trees, there is a huge pressure difference from the bottom to the top of
the trunk of the tree. Conduction depends on unbroken flow of liquid. If bubbles
form, conduction stops. Tree trunks have small parallel tubes to conduct water,
the xylem. If one develops a cavity, it is sealed off.

• For trees, each year there is a discontinuity in the flow, and new tissue has to be
grown, leading to rings.

V. The Crassulacean Acid Metabolism Cycle

In some plant lineages, special adaptations have evolved to minimize the loss of wa-
ter through stomata, particularly in species that live in arid environments. One of
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these adaptations is based on a metabolic pathway, the crassulacean acid metabolism
(CAM) cycle, which allows CO2 to be captured at night and then incorporated into
carbohydrates during the day. The name, crassulacean, comes from the plant family
Crassulacae (which includes the pineapple and jade plants), where the pathway was
first studied in detail. The overall cycle is illustrated in the figure3 below:

During the night, when water transpiration is minimal because of lower temperatures,
the stomata are open to allow CO2 into the leaves. Because, there is no sunlight, how-
ever, the plants are not able to convert the CO2 into carbohydrate via photosynthesis.
Instead, the CO2 is used to convert phosphoenolpyruvate (PEP) into oxaloacetate,
which is then converted to malate. The resulting malate is then stored in vacuoles.
During the daytime, the stomata are closed, to prevent transpiration, and the malate
that accumulated overnight is metabolized to regenerate CO2, which is used for pho-
tosynthesis.

By temporally separating the processes of CO2 diffusion and photosynthesis, plants us-
ing this cycle minimize the loss of water. But, this does come with a cost in metabolic
energy, including the hydrolysis of ATP to drive the reformation of PEP and for trans-
port of malate into vacuoles.

VI. Changes in atmospheric CO2 concentration

It is now well established that the atmospheric concentration of CO2 has increased
markedly over the past century, as shown in the graph below4:

3Figure from https://en.wikipedia.org/wiki/Crassulacean_acid_metabolism
4The figures in this section are from Lammersma, E. I., de Boer, H. J., Dekker, S. C., Ditcher, D. L.,

Lotter, A. F. &Wagner-Cremer, F. (2011). Global CO2 rise leads to reduced maximum stomatal conductance
in Florida vegetation. Proc. Natl. Acad. Sci., USA, 108, 4035–4040. http://dx.doi.org/10.1073/pnas.
1100371108
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In molar units, the increase in CO2 concentration from 300 to 400 ppm is an increase
from 12 to 16µM. This increase in CO2 concentration could, in principle, be beneficial
for plants, both by increasing the efficiency of CO2 fixation and by minimizing the
loss of water through stomata. It appears that plants have responded to the relatively
recent increase in CO2 concentration by reducing the total area of open stomata on
their leaves. The results of a study examining the nature of this change in nine plant
species found in Florida is shown below:

The quantity plotted on the vertical axis of this plot is termed the anatomical maximal
stomatal conductance to water, gsmax and has the units of mol ·m−2s−1. Note that
these are the same units as used for flux, J , but gsmax is made up of several terms, as
defined by the equation:

gsmax =
dwatD · amax/v

l +
√
πax/2

where dwat is the diffusion coefficient of water, D is the density of stomata on a leaf,
amax is the maximum open area of an individual stoma, l is the length of the stomatal
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pore and v is the molar volume of air (the inverse of molar concentration, with units
m3/mol). gsmax represents the maximum conductivity of water per unit of leaf area
and reflects both the dimensions of the stomata and their density on the leaves of a
plant.

The important message from the figure shown above is that conductance per unit of
leaf area has decreased over the time period when the atmospheric CO2 concentration
has increased. Analogous changes have been demonstrated over geological timescales,
when atmospheric CO2 concentrations have both increased or decreased, and stomatal
conductance has decreased or increased, respectively.

In different plant species, the reduction in overal stomatal surface area is due to a
reduction in stomatal density or in pore size, or both. For the species of Florida plants
examined in this study, the major change appears to be in the density of stomata on
the leaf surface, rather than changes in the size of the stomata.

4.7 Bacterial Chemotaxis: Overcoming the Limits of

Diffusion

Microorganisms are subject to Brownian motion and can diffuse over short distances, but the
requirements for traveling longer distances has led to the evolution of special mechanisms,
referred to as chemotaxis. Among the best studied examples of chemotactic microorganisms
are the closely related gram-negative bacteria Escherichia coli and Salmonella enterica5.

I. Diffusion from a bacterial perspective

As an approximation, we will treat a bacterial cell as a sphere of 1µm radius. First,
we calculate the diffusion coefficient from the Stokes-Einstein equation:

D =
kT

6πηr

η is viscosity and r is the radius of the particle.

k = 1.38× 10−23 kg ·m2s−2K−1

T = 300K

kT = 4.1× 10−21 kg ·m2s−2

η = 10−3N · s ·m−2 = 10−3 kg ·m−1s−1

D =
4.1× 10−21 kg ·m2s−2

6π10−3 kg ·m−1s−1 · 10−6m

= 2.2× 10−13m2s−1

5The species S. enterica is classified into smaller groups, called serovars, and the serovar that has been
most extensively studied with respect to chemotaxis is Typhimurium. Until recently this serovar was iden-
tified as a species, Salmonella typhimurium. It’s very confusing.
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This is about 1/1,000 of the value for a small molecule.

A short cut: Remember a few key facts:

• A ”small molecule” (≈ 100 Daltons) has a radius of r ≈ 1 nm.

• A molecule of this size has a diffusion coefficient of about 10−10m2s−1.

• The diffusion coefficient is inversely proportional to the radius of a particle.

A bacterium with a radius of 1µm should have a diffusion coefficient of about 1,000th
that for a small molecule, or about 10−13m2s−1.

Next, we calculate the velocity of the bacterial cell during its random-walk steps, using
the relationship:

RMS(v) =
√

kT/m

We need to know the mass. Bacteria (and the great majority of all organisms) have a
density that is about the same as water. (Because they are mostly made up of water!)
The density is about 1 g/mL = 1kg/L. So if we know the volume we should be able
to make a reasonable estimate of the mass.

V =
4

3
πr3 =

4

3
π(10−6m)3

= 4.2× 10−18m3

1m3 = 103 L, so we can calculate the mass as:

m = 4.2× 10−18m3 × 103 L

1m3
× 1 kg

1 L

= 4.2× 10−15 kg

The average velocity is:

RMS(v) =
√

kT/m =

√
4.1× 10−21 kg ·m2s−2

4.2× 10−15 kg

=
√
10−6m2s−2

= 10−3m/s

About 1mm/s: Much slower than the small molecules, which have a velocity of about
100m/s.
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The random-walk step size is then calculated as:

D =
δ2x
2τ

=
v

2
δx

δx =
2D

v

δx =
2× 2.2× 10−13m2s−1

10−3m/s

δx = 4.4× 10−10m

Compare this with 3 × 10−12m for a small molecule. The average step size increases
with particle size, but the velocity decreases much more rapidly

For a three-dimensional random walk, the mean-square end-to-end distance is calcu-
lated as:

⟨r2⟩ = 6Dt

where r is the distance, in three-dimensions, from the start to end of a walk, and t is
time.

Note that this expressions differs from the one for one-dimensional diffusion, with the
factor of 6 replacing 2. The reason for this has to do with the definition of the diffusion
coefficient in terms of the random-walk step size, as given above. The parameter δx
is the average projection of the steps onto the x-axis (or any arbitrary axis, for that
matter). If we only consider the net diffusion in one-dimension, the δx corresponds to
the average step size in that direction. But, if we are considering the diffusion away
from the starting point and are calculating the distance through three dimensions, then
the projections along all three axes contribute to the distance:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩ = 6Dt

How long does it take for an average walk to reach 1mm?

⟨r2⟩ = (10−3m)2 = 6Dt

t =
(10−3m)2

6× 2.2× 10−13m2s−1

t = 7.6× 105 s

t ≈ 9 days

Since an E. coli bacterium can divide in as little as 20min, this is obviously a long
time for such an organism!
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II. Bacteria under the microscope

When bacterias such as E. Coli are examined under a microscope it is often observed
that they move much faster than the calculated rates of brownian motion. For many of
these motile bacteria, the motion appears to be a random walk, but with much larger
steps than expected for Brownian motion.

A pioneer in the biophysical study of bacterial swimming is Prof. Howard Berg. In 1972
he built a very fancy microscope, especially for the time, that could track the motion
of individual bacteria in three dimensions6. The figure below shows an example of one
of the paths, projected onto two dimensions, as traced by Berg and his colleagues:

This looks like a random walk with variable step length, and detailed analyses showed
that the typical parameters for the random walks were:

• Velocity ≈ 2× 10−5ms−1

• Average time of forward motion ≈ 3 s

• Average step length ≈ 6× 10−5m

Note that the velocity is much lower than the instantaneous velocity from thermal
motion. But, the length of the steps is vastly longer, about 60 bacterial body lengths.

The number of steps is n = t/(3 s/step)

6Berg, H. C. & Brown, D. A. (1972). Chemotaxis in Esherichia coli analyzed by three-dimensional
tracking. Nature, 239, 500–504. http://dx.doi.org/10.1038/239500a0
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What is the average time to move 1mm? First calculate the number of steps:

n =
⟨r2⟩
δ2

=
(10−3m)2

(6× 10−5m)2

≈ 280 steps

The total time, then, is:

t = 280 steps× 3 s/step

≈ 840 s ≈ 15min

This is almost 1,000 times shorter than the time required for diffusion over the same
distance.

This is an important feature of random walks: For a given period of time, the average
distance from the starting point will be larger if the steps are longer, even if there are
fewer of them.

But, why doesn’t the bacterium take longer steps? Because it wouldn’t help! Notice
the tracks in the microscope. They are curved, because Brownian motion is moving
them off of a straight path. After a few seconds, the bacterium essentially forgets what
direction it is going.

But, it is suddenly changing direction. Why do this if it is going to be randomly
altering direction anyway?

Because, it is doing something much smarter!

III. Chemotaxis: Movement to or from specific chemicals

The ability of bacteria to systematically move towards or away from certain compounds
was first demonstrated by Wilhelm Pfeffer in 1884 in a very simple experiment. Pfeffer
placed a solution of sugar in a small capillary tube and then placed the end of this
tube in a liquid culture of bacteria, as illustrated in the figure below7:

7Figure from: Adler, J. (1969). Chemoreceptors in bacteria. Science, 166, 1588–1597. http://dx.doi.
org/10.1126/science.166.3913.1588
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As shown in the microphotograph, the bacteria quickly cluster around the open end
of the capillary tube. This simple experiment demonstrated that bacteria have the
capability to detect specific compounds and move in a directed fashion.

The first question these observation raise is, how do they know which way to go? Some-
how, they need to detect a concentration gradient and then move in the direction of
increased concentration, if they want to use the compound as a nutrient, or decreased
concentration, if the compound is toxic. One might imagine that the bacteria could
somehow sense concentrations at the two ends of the cell and compare these to de-
termine the concentration gradient. But, our earlier calculation show that the time
required for a small molecule to diffuse over the the length of a typical bacterial cell,
about 1-2µm, is less than a second, so that concentration gradients are insignificant
over these distance.

Instead, bacteria use a modified random walk strategy that involves the following steps:

1. Choose a random direction.

2. Swim for a while.

3. Is life getting better? (more food, less poison)

• Yes: keep going.

• No: Stop and choose a new random direction.

Steps in the good direction are still limited to a few seconds, but steps in the wrong
direction can be much shorter.

This requires that the bacteria have a concentration sensor and a “memory”, so that
they can compare concentrations as they move in a particular direction. How do the
bacteria actually do all of this?

• The bacteria swim using a propeller and a rotary motor.

• Bacteria change direction by stopping the flagella and tumbling for an instant.

• Sensors on cell surface detect concentration changes and transmit that information
to the rotary motor.

IV. The rotary motor

E. coli and many other bacterial species are propelled through liquid media by long
helical flagella. Each cell contains multiple flagella, each with a rotary motor embedded
in the cell membranes and cell wall, as shown in the diagram in the left panel below8.
The right panel shows an image of the motor reconstructed from electron micrographs.

8The diagram of the bacterial motor is from Berg, J. M., Tymoczko, J. L. & Stryer, L. (2002). Biochem-
istry . W. H. Freeman, 5th edition. https://www.ncbi.nlm.nih.gov/books/NBK22489/
The electron microscopy reconstruction is from Thomas, D., Morgan, D. G. & DeRosier, D. J. (2001). Struc-
tures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J. Bacteriol., 183, 6404–6412.
http://dx.doi.org/10.1128/JB.183.21.6404-6412.2001

128

https://www.ncbi.nlm.nih.gov/books/NBK22489/
http://dx.doi.org/10.1128/JB.183.21.6404-6412.2001


4.7. BACTERIAL CHEMOTAXIS: OVERCOMING THE LIMITS OF DIFFUSION

The motor, which we will discuss in more detail later in the course, is driven by the flow
of H+ ions from outside of the cell inward and rotates the flagella at up to 10000RPM.
When the motor rotates in the counter-clockwise direction, the individual flagella of a
cell bundle together and act as a propeller. The bacterium then swims in a (relatively)
straight direction. When the motors reverse direction, the flagella unbundle, and the
bacterium tumbles randomly. After a few seconds, the motor reverses again, and the
bacterium swims in a new direction. By this process, the bacteria carry out their
random walk. The reversals of the motor are controlled by a signalling system that
detects changes in the concentrations of specific compounds in the surrounding liquid.

V. The sensory and signalling system

The system for sensing specific molecules and signalling the rotary motor is quite
complex, but a simplified diagram is shown below:

P

P

Clockwise
"Off"

Counter-clockwise
"Off"

P

P

Clockwise
"Off"

Longer Runs More Frequent Tumbles

Attractant Repellent

Molecules in the extracellular environment are detected when they bind to receptors
that cross the cellular membrane. These receptors are bound to an enzyme and can
exist in two conformations. In one conformation (“on”), the enzyme, a kinase, is acti-
vated and phosphorylates another protein, which, in turns binds to the rotary motor.
When this phosphorylated protein is bound to the motor, the clockwise rotation is fa-
vored, leading to tumbling. When the receptors are in the other conformation (“off”),
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the kinase is inactivated, the signalling molecule is less likely to be phosphorylated,
and counter-clockwise rotation is favored.

The equilibrium between the two conformations of the receptors is controlled by multi-
ple factors, including the presence of attractant and repellant molecules. When attrac-
tants are bound to the receptors, the off conformation is favored, promoting counter-
clockwise rotation and forward swimming. In the absence of attractants or the presence
of repellants, the on conformation is favored, leading to tumbling and shorter steps in
the random walk.

In addition to sensing the concentrations of attractants and repellants, the bacterium
has to do one other very important thing: It has to remember what the concentrations
were a short time ago! In order to bias the random walk in the direction of a concen-
tration gradient, the bacterium has to compare the concentrations at different times
as it swims. This memory is established by another set of enzymes that covalently
modify the receptors by methylating specific glutamate residues. These modifications
are reversible and adjust the sensitivity of the receptors to attractants or repellents. As
the concentration of an attractant increases, the receptors are modified so that higher
concentrations of attractant are required to keep the receptor in the off conformation.
In a real sense, the cell becomes addicted to the attractant and require more of it
to keep swimming in the same direction. In this way, the random walk is biased in
a way that leads it up the concentration gradient. The system adjusts to repellent
concentrations in the opposite way, to favor moving down the concentration gradient.
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