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Chapter 5
Thermodynamics

Thermodynamics is the branch of chemistry and physics that is concerned with the intercon-
version of different forms of energy. The laws of thermodynamics place absolute constraints
on how much work can be obtained from different forms of energy and whether or not spe-
cific processes will occur spontaneously. Nobody gets to break these laws! Thermodynamics
does not tell us how a process will occur, but only whether or not the process will occur
spontaneously.

Thermodynamics is definitely one of the most challenging subjects for nearly all students,
for several reasons:

• The ideas are fundamentally abstract and subtle. Even people who have thought about
thermodynamics for many years easily get tripped up.

• It uses math! Even if many of the ideas seem to be conceptually simple, a deep and
useful understanding depends on mathematics.

• The language can be confusing. Different disciplines sometimes use different terms. In
addition, the language has historical origins, and the history is convoluted.

• Historical confusion. Unlike classical mechanics, which almost all came from one per-
son, Newton, over a short period of time, thermodynamics was developed over a long
period of time by several generations of scientists, and there were periods of profound
confusion.

But, it’s worth it! The current issues regarding energy and climate change offer a dramatic
examples of how important the interconversion of energy forms can be. In the context of our
course, we will use these principles to understand how biological systems become organized
and do amazing things.

5.1 Energy, Work and Heat

I. Units of energy.

Before going on, it is worthwhile to review again the definition of energy and the units
we use. A general definition of energy is that it is the “ability to do work”. We define
mechanical work as the integral of force applied over distance:

w =

∫ x2

x1

Fdx
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CHAPTER 5. THERMODYNAMICS

If the force is constant, then

w = F (x2 − x1)

The units of work must be force times distance. The SI unit of force is the newton,
which is the force required to accelerate a mass of 1 kg by 1m/s per s. The SI unit of
work or energy is then the Nm, or joule:

1 joule = 1 newton ·meter = 1 kg ·m2s−2

Another commonly used unit of energy is the calorie, which is defined as the amount
of energy required to raise the temperature of 1 g of water by 1 ◦C, or 1K. One
problem with defining the calorie in this way is that the heat required to raise the
temperature of water depends on the starting temperature. 4 ◦C and 15 ◦C have been
used to define the unit, sometimes with a subscript indicating the temperature. The
standard definition now is in terms of the Joule, as defined above:

1 cal = 4.184 J

Another source of confusion is that the calorie has been defined at different times in
terms of the energy to heat either 1 g of water or 1 kg. The current convention is to use
a lower case “c” to designate the “gram calorie” and an uppercase “C” to designate
the “kilogram calorie”. The energy content of foods is expressed in kilogram calories.
This is one reason that the idea of loosing weight by eating ice cream (which should
cool the body and result in negative calorie intake) is doomed to failure!

II. An important distinction: Temperature versus heat.

Before considering some simple examples, it is important to be sure that we are using
language carefully. One common cause of confusion is the difference between temper-
ature and heat.

• Temperature has a relatively straight-forward definition. It is a property of a
given mass of matter that is directly related to average kinetic energy of the
molecules making up the matter. For an ideal gas, the temperature determines
the relationship between volume and gas according to the ideal gas law:

PV = nRT

For an ideal gas, temperature is related to the average kinetic energy of the ideal
gas molecules according to:

E = 3kT/2

• Heat is often defined as “a form of energy”. More specifically, heat is the flow of
energy from a warm object to a cooler one, with the result that the temperatures
become more equal.
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5.1. ENERGY, WORK AND HEAT

At one time, heat was thought to be a massless substance, often called “caloric”,
that flowed invisibly between objects. We now understand that heat is not some-
thing that objects contain, but the language still seems to imply this. This is one
of the historical origins of some of the confusion in thermodynamics.

It is possible to formulate the laws of thermodynamics without invoking “heat”,
but that seems rather artificial to me and only shifts the difficulties to other words.

• In summary: temperature is a property of matter that can be directly measured,
while heat is a flow of energy associated with temperature changes. The heat flow
is always from a warm object to a cooler one.

III. Some examples based on the expansion and compression of gasses.

Historically, one of the most important motivations for the development of thermody-
namics was the invention of the steam engine. Once steam engines started to be used,
there was great interest in getting the maximum amount of work from them. Since
steam engines work through the expansion of a gas, many of the ideas in thermody-
namics were formulated in this context.

At the time, though, the relationship between the pressure of a gas and the motion
of molecules was not understood, and the theory was developed without any explicit
model for what actually generated forces or work. This treatment is usually referred to
as “classical thermodynamics”. Later, a molecular interpretation was developed, what
we now call “statistical mechanics”. Both can stand on their own and are completely
consistent with one another. But, I think that it is often easier to merge the two
approaches when trying to understand things.

1. Gas expansion without work

Suppose we build an apparatus as shown below:

This apparatus should have the following features:

• It is completely insulated from its surroundings, so that heat can’t flow in or
out of it.

• There are two chambers separated by a valve that can be opened or closed
without perturbing anything else and without generating any heat, that is
there can be no friction.

• One chamber is filled with a gas at some arbitrary pressure, P , and temperature,T .
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CHAPTER 5. THERMODYNAMICS

• The other chamber is evacuated.

Once the system has equilibrated, we open the valve. As we have discussed at
length, the molecules are moving about due to kinetic energy in random direc-
tions. Eventually (quite quickly, actually) we expect the molecules to distribute
themselves throughout the vessel, with roughly equal numbers on the two sides.

What can we say about what has changed and what hasn’t?

• Nothing has happened to change the average velocities of the molecules.
Therefore, the temperature should be the same, and the average kinetic en-
ergy is the same.

• The volume has increased. So, by the ideal gas law, PV = nRT , the pressure
should decrease.

• Because of the insulation, no heat has flowed in or out of the chambers.

• Nothing, except the molecules, has been moved, so no work has been done.

But, something else has happened. Even though no work was done and the energy
has stayed the same, we know that we would have to do work, i.e., spend energy,
to restore the system to its original state. You probably already know the fancy
word for this, “entropy”, but let’s put off discussing this concept. What we can
say, though, is that somehow or other we have wasted the potential to do work,
even though the total thermal energy has stayed the same.

Processes in which there is no exchange of heat are called “adiabatic”.

2. Gas expansion with work, but without heat flow.

Now, let’s think about another type of apparatus. Again we will keep the appa-
ratus fully insulated. But, now a movable piston has been added to the upper
chamber. The upper chamber is still evacuated, and our engineers have made a
perfect, frictionless seal to the outside, through which a rod connects the piston
to a weight.

Weight

Weight

When we open the valve, the gas molecules begin to collide with the piston, and
the pressure from the gas molecules pushes the piston and the weight upward.
Mechanical work is now being done. What is changing as the piston moves?
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5.1. ENERGY, WORK AND HEAT

• Does the temperature change? Consider what happens when the piston is
pushed upwards. The gas molecules collide with the piston and transfer some
of their energy to it. Unlike when they collide with a fixed wall, their velocity
is not quite as great when they bounce off in the other direction. As a
consequence the average kinetic energy of the molecules decreases, meaning
that the temperature decreases as well.

• If the volume increases by the same amount as in the previous example and
the temperature decreases, then the pressure must decrease more than in the
previous example.

The key point about this example is that some of the kinetic energy of the gas
molecules has been converted to mechanical work. From the conservation of
momentum, the change in energy should be equal to the amount of work done.

Let’s put some labels on the quantities involved:

• E = energy of the molecules. For an ideal gas, this is entirely translational
kinetic energy. We will define the change in energy associated with a process
as:

∆E = Efinal − Estart

It’s important to keep track of the signs! We will define the work involved,
w, so that it is positive when work is done on the gas (or, more generally the
“system”), and negative when the system does work on the outside world, as
in this case.
For this example, we know that the amount of work must equal the change
in energy:

∆E = w

Is this always true?

3. Gas expansion at constant temperature with work.

Next, we have the engineers build an even fancier device by adding a thermal
reservoir at the bottom of the cylinder:
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Weight

Thermal Reservoir

(Constant T)

Weight

Thermal Reservoir

(Constant T)

Basically, the reservoir is a large mass equilibrated at the same temperature as
the gas. If the temperature of the gas drops, heat will flow to equalize the two
temperatures, without significantly lowering the temperature of the reservoir.

What happens, now, when we allow the piston to move and do work?

• As the piston is pushed upwards, the gas molecules loose some energy, and
the temperature starts to drop. But, as soon as that happens, heat flows
from the reservoir.

• At the end of the process, the temperature is the same as when it started, so
the energy must be the same as well. In this respect, the result is the same
as in the adiabatic expansion without work.

• Again, work has been done. Is more work done in the adiabatic or isothermal
process? Consider a point part way through each process, where the volumes
have increased by the same amount, as illustrated below:

Weight Weight

Thermal Reservoir

(Constant T)

Adiabatic Isothermal
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5.1. ENERGY, WORK AND HEAT

Because the adiabatic process does not allow heat to flow to the gas, the
temperature at this intermediate point must be lower for the adiabatic process
than the isothermal one. As a consequence, the pressure must be lower for
the adiabatic process. Since pressure represents force divided by the area
over which it is exerted, the total force on the piston must also be less for the
adiabatic process than for the isothermal one. We can thus conclude that the
isothermal process can produce more work than the adiabatic process.
The energy for the additional work from the isothermal process is drawn from
the heat of the reservoir.

In this example, ∆E = 0, but work has been done, and there has been a flow of
heat.

We represent the heat flow by the symbol q and define it so that it is positive
when heat flows from the surroundings into the system of interest. In this case, q
is positive and w is negative, and:

q = −w

IV. The first law of thermodynamics.

The common statement of the first law is that the energy of the universe is constant.
But, the more formal statement is that for any process, the change in energy, E, is the
sum of the work done on the system and the heat absorbed from the surroundings:

∆E = q + w

We can see how this applies to the three examples from above:

• Adiabatic expansion without work.

q = 0

w = 0

∆E = 0

• Adiabatic expansion with work

q = 0

w < 0

∆E < 0

∆E = w

• Isothermal expansion with work

q > 0

w < 0

∆E = q + w = 0

q = −w
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Is there a proof of the first law? No! The laws of thermodynamics are postulates, and
our confidence in them comes from the fact that no one has ever found an exception.

In 1775 the French Royal Academy of Science effectively made the first law of ther-
modynamics (before it was called that) a real law by declaring that it would no longer
consider patent applications for perpetual motion machines.

V. Reversible expansion and compression

We have already seen that we can get extra work from the expansion of the gas by
allowing it to draw heat from its surroundings as it expands. Even if the temperature is
the same at the beginning and end of the expansion processes, different paths can lead
to different amounts of work being produced and different amounts of heat absorbed.

The maximum amount of work that can be generated from the expansion of a gas
is obtained by controlling the movement of the piston so that it is slow enough that
the temperature never actually drops. This cannot be done in practice, but it can be
approached as a limit, in the sense of limits in calculus, by allowing the piston to move
only in infinitesimal steps, as suggested in the drawing below:

Weight

Weight

Weight

Thermal Reservoir Thermal ReservoirThermal Reservoir

Because the piston moves in infinitesimally small steps, the temperature never falls
below that of the reservoir. If a larger step ever does take place, the temperature will
drop, causing the pressure to drop. As a consequence, less work will be produced by
the expansion. This is why we can argue that this is the path that will lead to the
maximum production of work (the most negative value of w).

The reverse of this process, diagrammed below, is the one that requires the least amount
of work to compress the gas to its original volume.

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Weight

Thermal Reservoir
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5.1. ENERGY, WORK AND HEAT

Again, the volume is changed in infinitesimally small steps. As the gas is compressed,
the piston imparts extra kinetic energy on the gas molecules, but (in the ideal case)
the excess energy is instantly transferred to the thermal reservoir and the temperature
remains constant. Because the volume of the gas decreases, the pressure increases,
and progressively more work must be done for each decrease in the volume. But, if
larger steps were taken, the temperature would increase temporarily, causing a larger
increase in pressure and requiring more work for the next step.

The two processes described above are said to be reversible, and that term can be
taken in two senses. In the first sense, the two processes are reversible because they
are exact opposites. The maximum work that can be done during expansion is also
the minimum amount of work that is required for compression. Thus:

wexp,rev = −wcomp,rev

Since ∆E = 0 for both processes, and q = −w for each, we can also conclude that

qexp,rev = −qcomp,rev

We can also imagine a cycle formed by the two processes, as illustrated below:

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Because wexp,rev = −wcomp,rev and qexp,rev = −qcomp,rev, w and q for the complete cycle
must be zero. Thus, the system is restored to its original volume, pressure, temperature
and energy with no net input or output of either work or heat.

Of course, no real process can meet this ideal. As noted above, any real expansion
process will produce less work than the ideal, and any real compression will require
more work than the ideal. As a consequence, there is a net amount of work applied to
the system and w for the cycle will be greater than zero. If the original temperature is
restored ∆E = 0 and q = −w, and q will be negative, meaning that heat is transferred
to the surroundings. This is the general nature of less-than-ideal processes, they require
more work (or produce less) than the ideal process and they release more heat.

The ideal expansion and compression processes described above are also reversible in
a second sense: Either process can be reversed at a given point by an infinitesimal
force in the opposite direction. This is the meaning usually implied by the term in
thermodynamics.
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VI. The maximum work from expanding a gas at constant temperature

We can calculate the work from the reversible isothermal expansion with a bit of
calculus, starting with the integral for any work function:

w =

∫ x2

x1

fdx

where x1 and x2 are the initial and final positions of the piston, and f is the force. Dur-
ing the reversible gas expansion, the force does not remain constant, but rather drops
as the pressure decreases. At any instant, the force is proportional to the pressure:

f = −P · A

where A is the area of the piston. The negative sign reflects the fact that the work
done on the system by expansion will be negative. For each small increment of x, there
is a corresponding small increment in the volume of the gas:

dV = Adx

or, we can write:

dx = dV/A

We can replace dx in the integral with dV/A, and f with −P · A, so that:

w = −
∫ V2

V1

(P · A)dV/A

= −
∫ V2

V1

PdV

(recall that the product PV has the units of energy, or work!) We can also express
pressure in terms of volume, P = nRT/V :

w = −
∫ V2

V1

nRT

V
dV

n, R and T are all constant, so they can be moved outside of the integral.

w = −nRT

∫ V2

V1

1

V
dV

= −nRT ln(V )
∣∣∣V2

V1

= −nRT ln

(
V2

V1

)
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5.1. ENERGY, WORK AND HEAT

Since we have the same number of molecules at the beginning and end of the process,
the concentration is inversely related to the volume. So, we can write this expression
in terms of concentration:

w = −nRT ln

(
C1

C2

)
The form of this expression will likely be familiar to you, or will be soon. This is
the origin of all of the expressions like −RT ln(C1/C2) that occur so frequently in
chemistry!

Since the energy of the gas molecules is the same at the beginning and end of the
process, ∆E = 0, and we can write:

∆E = 0 = q + w

q = −w = nRT ln

(
V2

V1

)
= nRT ln

(
C1

C2

)
VII. State functions versus path functions

The quantities E, on the one hand, and q and w, on the other are fundamentally
different. The energy of a system depends only on the state of that system, irrespective
of how it got there. For an ideal gas, the energy depends only on the temperature and
the number of molecules. A change in energy, ∆E, depends only on the starting and
ending states.

But, will we always get the same amount of work for a given change in state? Our
examples clearly show that we won’t. For both the adiabatic expansion without work
and the isothermal expansion, ∆E is zero, but q and w are different for the two
processes. Furthermore, the amount of work produced by an isothermal expansion
(where the temperature is the same at the beginning and end) depends on just how
the expansions is carried out.

We say that the energy is a “state function”, while heat and work are path-dependent
functions. For a gas, the pressure, P and volume, V , are also state functions.

Although work and heat are not state functions, the changes in these quantities asso-
ciated with the ideal, reversible process separating two states do represent changes in
state function. Thus, there are quantities, wrev and qrev, that are associated with any
two states that can, in principle, be interconverted by a reversible process.

The quantity wrev is described as being the “free energy change”, ∆F , for the conversion
of one state to another.1 ∆F represents the maximum amount of work that can be
obtained from a favorable process, or the minimum amount of work required to drive an
unfavorable process. The energy change is “free” in the sense that it is the maximum
amount of energy that is available to do work. In a more practical sense, free energy
is anything but free, since it is the kind of energy that we pay for when we buy, for

1More specifically, ∆F is the change in Helmholz free energy, as distinguished from the Gibbs free energy
that will be introduced later.
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CHAPTER 5. THERMODYNAMICS

instance, electrical power or gasoline. On the other hand, molecular kinetic energy is
“free” in the sense that it is always there, but it can’t actually be used to do any work.

The quantity qrev for any two states is also very important, as we will soon see when
we discuss the elusive concept of entropy.

5.2 Entropy and the Second Law

The term entropy is commonly associated with the idea of randomness, and this general
meaning is used very widely, even entering every-day language. In the context of thermo-
dynamics, where the term originated, a much more specific definition is required, however.
There are, in fact, two different and precise ways in which entropy is defined, reflecting the
classical and statistical approaches to thermodynamics. Here, we will look at both definitions
and show that they are equivalent for at least one process, the expansion of a gas.

I. The classical definition of entropy.

The maximum work that we calculated for the expansion of a gas is simply a function
of the temperature and the starting and finishing volumes. This allows us to define
this quantity as a state function. It also describes what is lost when a gas expands,
the ability to do work, and it seems to be related to the increased disorder of the gas,
i.e., its entropy.

In fact, the thermodynamic definition of entropy is based on the heat absorbed, q, via
the path leading to maximum work, that is the reversible process:

∆S =
qrev
T

where qrev is the heat absorbed by the system in the reversible process, which is −wrev.

We can apply this definition to the case of a gas expansion, when the temperature
is the same at the beginning and end of this process. Among the examples we have
considered, this could be either the adiabatic expansion without work or the isothermal
expansion with work. Because entropy is a state function, the change in entropy is
independent of the path between states. But, the heat quantity used to calculate the
entropy change is the one associated with the reversible process. For the reversible
isothermal expansion of a gas, we showed that the heat absorbed is:

qrev = −wrev = nRT ln

(
V2

V1

)
The entropy change is then calculated as:

∆S =
qrev
T

= nR ln

(
V2

V1

)
The entropy change is easiest to calculate for a process in which the temperature stays
constant, but there is still a maximum amount of work that can be obtained for the
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5.2. ENTROPY AND THE SECOND LAW

transition between two states that have different temperatures, and this maximum
amount of work is also obtained through a reversible, (i.e., infinitely slow) path. In
this case, the entropy change is calculated as an integral:

∆S =

∫ T2

T1

qrev
T

dT

where T1 is the initial temperature and T2 is the final temperature, and qrev may be a
continuously changing function of temperature.

Now, entropy is supposed to be a quantity that increases spontaneously and is related
to disorder. In the case of the expanding gas, the quantity we calculated above does
seem to be related to disorder, since the molecules are less ordered in a larger volume.

The entropy of a system, as defined here, is a state function. The entropy changes by
the same amount irrespective of how much work, for instance, was obtained from the
expansion.

But, it is important to point out that this definition only applies to the isolated system.
We haven’t said anything about how the entropy of the surroundings change. We will
come back to this when we talk about the second law, which concerns the entropy of
the system and its surroundings.

II. The statistical definition of entropy.

The classical definition of entropy is probably not the one that you are most familiar
with, which probably refers to the idea of randomness or disorder. In fact, the classical
definition is is not an easy concept to work with and is only useful in rather restricted
cases, like heat engines.

The important point from the earlier discussions of gas expansion and contraction is
that the energy, E, is a function that helps define a state, but the change in energy
for a change from one state to another is not sufficient to tell us whether or not the
change is favorable or how much work can be obtained. In addition to the internal
energy, there is this other quantity that defines the states and determines how much
work can be obtained.

In the case of the expanding gas, it appears that the driving force is the tendency of the
individual molecules to occupy as large a volume as is made available to them. As we
have repeatedly discussed, this is a purely probabilistic phenomenon. If the molecules
begin on one side of the container and are allowed to move freely to the other, there
is a 50% probability that any one molecule will wind up on the other side. There will
be a net flow to the other side until the concentrations on the two sides are equal.

The statistical definition of entropy of a state can be expressed as:

S = k lnΩ

where k is the Boltzmann constant, and Ω is the number of equally probable mi-
crostates that make up the state. In other words, Ω is the number of different ways of
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arranging the components of the system. This is the fundamental postulate of statisti-
cal mechanics. It was deduced (not proven!) by Ludwig Boltzmann, and it is engraved
on his tombstone in Vienna. Like the laws of thermodynamics, we believe it because
it works!

So, all that we have to do to calculate the entropy is count up the ways of arranging the
components. How do we do that? This is not at all trivial, and all we can usually do is
apply this definition to idealized simple systems. But, the problem is made a little bit
easier if we only try to calculate the change in entropy for a process. For instance, we
can go back to our example of a gas expanding. For even a modest number of molecules,
there are a vast number of microstates, each defined by the position and momentum
of each molecule. We obviously can’t count them all. But, if the temperature stays
constant, then the number of possible values for the momentum of each molecule stays
the same. So, that all we have to consider is the number of different positions for each
molecule.

Suppose that we divide up the initial volume into a grid of small cubes, say 1 nm on a
side, as diagrammed below:

If the number of molecules is N and the number of cubes is Nc, then we can calculate
the number of ways of arranging the N molecules into the Nc cubes. To simplify things,
we can assume that Nc is much larger than N , so that once we place a molecule in a
given cube, it doesn’t significantly reduce the number of places available to the next
molecule. So, taking one molecule at a time, the number of ways of arranging them is:

Nc ·Nc ·Nc · · · · = NN
c

But, if all of the molecules are indistinguishable, then we have to divide by number of
ways of choosing the molecules sequentially, N !. So:

Ω =
NN

c

N !
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5.2. ENTROPY AND THE SECOND LAW

So, the initial entropy would be:

S = k lnΩ = k ln

(
NN

c

N !

)
But, this is a little suspect, since the result depends on the number of cubes that I
divided the volume up to. Would the entropy suddenly become larger if I decided to
use smaller cubes? That doesn’t sound right. But, it turns out to be OK if we consider
a change in volume.

To describe a change in volume, we keep the size of the cubes the same, and the volume
change is specified by the change in the number of cubes. If we call the initial number
of cubes Nc,1 and the final number Nc,2, the change in entropy is given by:

∆S = S2 − S1 = k ln

(
NN

c,2

N !

)
− k ln

(
NN

c,1

N !

)

= k(N ln(Nc,2)− ln(N !))− k(N ln(Nc,1)− ln(N !))

= kN ln

(
Nc,2

Nc,1

)
Thus, the change in the entropy change depends on the ratio of the number of cubes at
the beginning and end of the process. If we make the volume of the individual cubes
larger or smaller, this ratio is not affected.

If we want to express the entropy change on a molar basis, n, the number of moles, is
equal to N divided by Avogadro’s number, NA, and N = nNA:

∆S = nNAk ln

(
Nc,2

Nc,1

)
Since k is the gas constant, R divided by Avogadro’s number, we can write:

∆S = nR ln

(
Nc,2

Nc,1

)
Finally, Nc,2 and Nc,1 are proportional to the volumes before and after and we can
write the expression as:

∆S = nR ln

(
V2

V1

)
Notice that this is exactly the same as the expression we derived from the classical
definition of the entropy change for this process.

III. Microstates with different probabilities

What if the state is defined by microstates that do not all have equal probabilities?
For instance, what if we were to divide up the total volume into cubes of different sizes,
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so that they had different probabilities of being occupied. Would the calculated en-
tropy be different? More significantly, what if we were considering a more complicated
environment, like the interior of a cell, where certain molecules have specific affinities
for different compartments Could we still use this approach to calculate entropy, or at
least entropy changes?

The more general expression for the statistical entropy is:

S = −k

N∑
i=1

pi ln pi

where N is the number of microstates, and pi is the probability of microstate i. We
won’t try to prove this, but we can consider a couple of extreme cases. At one extreme,
if we have N states with equal probabilities, the probability of each state must be
pi = 1/N . The entropy is then calculated as:

S = −k
N∑
i=1

pi ln pi = −k
N∑
i=1

1

N
ln

1

N

= −kN
1

N
ln

1

N

= k lnN

consistent with the original expression for Ω microstates with equal probabilities. At
the other extreme, if there is only a single state, its probability must be 1, and the
entropy is:

S = −k
N∑
i=1

pi ln pi

= −k1 ln(1)

= 0

So, this state has an entropy of zero. In general, for a given number of microstates, if
some of the microstates are more probable than others, the entropy will be lower than
if all of the microstates have equal probabilities. So, for instance, if some configurations
of a molecule are more probable because certain atoms tend to interact with each other,
the molecule will have a lower entropy than if all of the possible conformations had
equal probabilities.

IV. Entropy and information

There is another way of thinking about entropy that comes from a quite different dis-
cipline, information theory, which is concerned about how to efficiently and accurately
transmit and manipulate information. This was a subject that was developed during
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5.2. ENTROPY AND THE SECOND LAW

the middle decades of the 20th Century, largely at the late great Bell Laboratories,
which did basic research for the major U.S. telephone company of the time (AT&T).

In this view, entropy can be described as the amount of information required to specify
the exact state of a system. So, for instance, a crystal of a pure substance can be
described with relatively little information, because each molecule is in an equivalent
position of the crystal. If we know the structure of the molecule and the parameters
describing the crystal lattice, then we can completely reconstruct the structure of the
crystal. On the other hand, to completely describe a gas of the same molecules requires
that we individually specify the position, orientation and momentum of each molecule.

This idea can be quantified, to give a function that calculates, for instance, the number
of bits required to transmit a particular message or other information such as images
or audio signals. Some messages contain a great deal of repetition and so can be
encoded with relatively few bits, meaning that they have low entropy. A message
composed of randomly-chosen letters has a high entropy and requires more bits to
communicate. The equations for calculating information content have exactly the same
form as the statistical definition of thermodynamic entropy, and information content
is often described as information entropy.

The science of information theory has become very important in the digital age, as
it defines the minimum amount of resources (including time) required to transmit a
message or other information. The algorithms that are used to compress computer files,
images and mobile-phone transmissions take advantage of the fact that the information
is not random, i.e., has a relatively low entropy, to represent it with less data.

There is another interesting aspect to the relationship between information and entropy.
Reducing thermodynamic entropy requires work, or energy. Similarly, manipulating
information and reducing its entropy (such as in compressing it) requires work. There
are people working on the theory of quantifying exactly what is the minimum amount
of energy required for specific computational tasks.

We don’t always think about it, but the information technologies that we take advan-
tage of use huge amounts of energy. Google is a major energy consumer. In 2009, the
London Times published an article saying that a Google search produced about 1 g of
CO2, and this number is widely cited. This claim was quickly denied by Google, which
a couple of years later released its own estimates of its energy consumption, indicating
that a single search uses 0.3watth (the energy required to power a 60-watt light bulb
for about 20 s, or 3.600 J). If produced by burning coal, this would produce about
0.2 g of CO2, far less than the original estimate. To its credit, Google has also invested
heavily in renewable energy sources.

V. The second law

Now that we have defined this new state function, entropy (twice in fact), we can state
the second law of thermodynamics. There are several equivalent ways to state this law,
but the most common one is probably the following:

For a spontaneous process, the total entropy of the system and its surround-
ings increases.
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This leaves us with two questions, though:

• What do we mean by spontaneous?

• How do we define, measure or calculate the entropy change for the surroundings?

By spontaneous, we mean that the process will occur without any mechanical work
being applied to the system. In other words, w ≤ 0. If w < 0, then we can actually
use the process to do work. A gas expansion is an example of a spontaneous process,
and one that can do work. Compressing a gas, on the other hand, requires work.

For a specified process, the entropy change for the surroundings is defined as:

∆Ssurr = − q

T

The important point here is that q is the heat absorbed by the system for the actual
process, not the maximum-work reversible process. The entropy of the surroundings
is not a function of the state of the system.

The entropy of the surroundings increases whenever heat flows from the system out-
wards. This only occurs when the system is warmer than the surroundings, and the
flow of heat represents an increase in the disorder of the surroundings. If the system
has a lower temperature than the surroundings, heat will flow inward, and the entropy
of the surroundings will decrease. These are the only ways that the system can affect
the entropy of the surroundings.

If there is a net flow of heat from the system to the surroundings, the entropy of the
system can decrease in a spontaneous process.

Consider two cases for the expansion of an ideal gas:

1. Adiabatic expansion with no work. ∆E = 0, q = w = 0.

∆Suniv = ∆Ssys +∆Ssurr = nR ln

(
V2

V1

)
So long as V2 > V1, ∆Suniv > 0, and the process is spontaneous, which we knew
already! But, now we have a way of quantifying the tendency of the gas to expand.

2. Reversible isothermal expansion with maximum work. ∆E = 0, q = qrev

∆Suniv = ∆Ssys +∆Ssurr

=
qrev
T

+
−qrev
T

= 0

So, the reversible process is right on the edge of being spontaneous, which we can
take as the meaning of a reversible process.
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The key thing to keep in mind about the second law is that it refers to the entropy of
universe, not just the system. This means that the entropy of the system can decrease
in a spontaneous process, as long as there is a flow of heat to the surroundings. Heat
flow to the surroundings can only occur if the system is warmer than its surroundings,
and the overall effect is to equilibrate the temperature of the universe, which represents
an increase in entropy of the universe.

Although we can use the second law in this form, this approach becomes quite awk-
ward when it is applied to things like chemical reactions, which is the major context
in which thermodynamics is used in biology. In the next section, we consider the ther-
modynamics of chemical reactions and introduce a more practical way of applying the
second law.

5.3 Thermodynamics of Chemical Reactions

I. E and ∆E reconsidered

Most generally, the change in internal energy for a process, ∆E, is defined by the first
law of thermodynamics, stated as ∆E = q + w, where q is the heat absorbed by the
system and w is the work done on the system. Heat, in turn, is defined as the flow of
energy that can increase temperature (but doesn’t necessarily for a given process), and
work is the integral of force with respect to distance. The internal energy of the system,
E, is a state function, and ∆E is independent of the path taken from the beginning
state to the ending state. The heat, q, and work, w, however, are path dependent.
But, whatever the path ∆E must equal q + w.

Although these definitions stand on their own, it is helpful to have a molecular in-
terpretation. When considering an ideal gas, the only form of energy present is the
translational kinetic energy, and E can be calculated from the relationship Ek = 3kT/2.
Any change in internal energy, ∆E, can only be due only to a change in temperature.

The two distinguishable components of the internal energy are the kinetic energy and
potential energy. In the simplest case, an ideal gas, there is only the kinetic energy
associated with translational motion, and E = 3nRT/2, for n moles at temperature T .
Since the particles making up the gas have no internal structure, there is no potential
energy or internal thermal motions. If the temperature is the same at the beginning
and end of the process, ∆E = 0.

When we deal with real molecules, even in the gas phase, things get more complicated.
There are now internal motions that contribute to the kinetic energy, and the internal
structures of the molecules give rise to potential energy. The potential energy represents
energy that can be converted to heat or mechanical energy if the structures of the
molecules change, such as by forming or breaking chemical bonds. Potential energy
can also be absorbed or released by changes that do not involve covalent bonds, such
as the formation or breaking of hydrogen bonds or other “weak” interactions.

In liquids and solids, there are additional forms of potential energy, due to interactions
among molecules.
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For systems involving real molecules, the first law (∆E = q + w) still holds for any
process, but there may be redistributions of kinetic and potential energy within the
system that do not change the total internal energy, E. These redistributions will not
be reflected in ∆E.

II. Enthalpy (H)

For practical problems involving chemical reactions, we usually apply the second law of
thermodynamics using an approach developed by Josiah Willard Gibbs (1839–1903),
who was arguably the first really great American physical or theoretical scientist.
Gibbs, working mostly on his own, put together the ideas of thermodynamics into
a consistent system. He spent his entire career at Yale College (as it was then called),
and published all of his work in the Transactions of the Connecticut Academy of Sci-
ences. His work was very slow to be fully appreciated, especially in his home country.

One of Gibbs’ major accomplishments was formulating the application of thermody-
namics to chemical reactions. In doing so, he introduced two new state functions,
which we now call enthalpy (H) and the Gibbs free energy (G).

The formal definition of enthalpy is:

H = E + PV

where P and V are pressure and volume respectively. Like E, P and V are state
functions, so H must be also. At first glance, however, determining H or ∆H doesn’t
look any easier than determining E or ∆E!

But, for chemical reactions, especially in relatively dilute solutions, we can often impose
additional restrictions. First, and most important, we can specify that the the process
occurs under constant pressure. Using the subscripts 1 and 2 to indicate the beginning
and ending states, respectively, the change in enthalpy can then be written:

∆H = H2 −H1 = E2 − E1 + PV2 − PV1

= ∆E + P∆V

If ∆V is not zero, the volume change represents work, as we discussed in the case of
gas expansion or compression. For most chemical reactions, this is the only form of
work associated with the reaction.2 If the volume of the system increases, then work
is done by the system, and w is negative. If this form of work is designated wp(the
subscript “p” indicating constant pressure), then we can write:

wp = −P∆V

Assuming that this is the only form of work associated with the process at constant
pressure, and designating the associated heat absorbed qp, we have:

∆H = ∆E + P∆V = qp + wp − wp

= qp

2Notable exceptions are found in the molecular motors in living organisms, as well as some synthetic
systems, but here we are focusing on relatively simple chemical reactions.
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This gives the usual working definition for ∆H: The heat absorbed by the system at
constant pressure. Although q is not, in general a state function, because qp refers to a
specific path between two states, it is a state function. In this respect, the use of qp to
define ∆H is analogous to the use of qrev to define ∆S. This makes it relatively easy
to measure ∆H for a reaction, using a calorimeter.

With the above restrictions, we can also express ∆H in terms of ∆E:

∆H = ∆E − wp

III. ∆G, the change in Gibbs free energy.

The free energy function named for Gibbs, G, is defined as:

G = H − TSsys

and the change in G at constant temperature is:

∆G = ∆H − T∆Ssys

As noted earlier, the term T∆Ssys represents the heat absorbed during the reversible
path. As argued above, ∆H is the heat absorbed by the process at constant pressure,
and with no work other than wp. Recall that the entropy change for the surroundings
for a specific process is defined as:

∆Ssurr = − q

T

For the constant pressure process (again assuming constant temperature):

∆Ssurr = −qp
T

= −∆H

T

and, for any constant temperature process:

∆Ssys =
qrev
T

If we then restrict ourselves to processes where both pressure and temperature are
constant, the total entropy change for the universe is:

∆Suniv = ∆Ssurr +∆Ssys = −∆H

T
−∆Ssys

= −∆G

T

This result demonstrates that the sign of ∆G indicates whether or not the process
is spontaneous: If ∆G is negative, ∆Suniv is positive and the process is favorable. If
∆G is positive, ∆Suniv is negative and the process is unfavorable. Because ∆G is a
state function, as are ∆H, T and ∆S, we can determine whether or not a process is
spontaneous without consideration of the surroundings, given the constraint of constant
pressure. (Here we are assuming that temperature is also constant, but this assumption
is not necessary in order to use the Gibbs free energy to determine if a process is
spontaneous; The math just gets more complicated if temperature changes.)
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IV. Free energy and available energy for work.

Earlier (page 141), another free energy function, the Helmholz free energy, was intro-
duced and identified with the work associated by a process carried out along a reversible
pathway:

∆F = wrev

Since the reversible process yields the maximum amount of work obtainable from a
transition between two states, −∆F is the maximum work available from a favorable
process. For an unfavorable process, ∆F is the minimum amount of work required to
drive the process.

Though it’s not very obvious from the relationship above, the Helmoltz free energy, F ,
is closely related to the Gibbs free energy, G. From the first law, we can write:

∆E = qrev + wrev

wrev = ∆E − qrev

Therefore:

∆F = ∆E − qrev

Recall that ∆S, for a process at constant temperature, is qrev/T . Substituting, we
have:

∆F = ∆E − T∆S

The formal definition of the Helmholtz free energy is:

F = E − TS

For comparison, the definition of the Gibbs free energy is:

G = H − TS

and the change in Gibbs free energy at constant temperature is:

∆G = ∆H − T∆S

Thus, the difference between F and G is the difference between E and H. From before,
the definition of H is:

H = E + PV

where P and V are the pressure and volume, respectively. For a process at constant
pressure:

∆H = ∆E + P∆V
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Therefore, ∆G and ∆F are related according to:

∆G = ∆F + P∆V

The term P∆V represents the work due to any change in volume, and can be either
positive or negative. Since −∆F is the maximum amount of work available from a
process, −∆G is that amount of work minus any work due to a volume change.

If the the volume change is negligible, then ∆H = ∆E, and ∆G = ∆F . With this
provision, ∆G can be interpreted as the minimum work required to drive an unfavorable
process (for ∆G > 0) or the negative of the maximum work that can be obtained from
a favorable process (∆G < 0). This condition is often satisfied for chemical reactions
in dilute solution and is frequently assumed to be valid for such reactions.

V. Free energy changes for chemical reactions

Most of the transformations of energy in biology involve chemical reactions. When
we considered gas expansion problems, one of our underlying assumptions was that
the internal energy of the system was only a function of temperature. But, when
chemical reactions are involved, there is usually a change in the internal energy of the
molecules. Forming and breaking chemical bonds almost always involves a change in
potential energy. Bonds form because the atoms involved find a lower energy state
in which they “share” electrons. The changes in internal potential energy must be
accompanied by either changes in the thermal (kinetic) energy of the system, heat flow
to or from the surroundings or mechanical work, or some combination of the above.

In biological systems, the energy changes associated with reactions are frequently cou-
pled to other processes. In that way, the energy change for a favorable process can be
used to drive an unfavorable one. The most commonly used tool for keeping track of,
and understanding, these energy conversions is the Gibbs free energy.

For the simple case of the interconversion of one compound to another, we can write a
generic chemical reaction as:

A −−⇀↽−− B

In principle, any chemical reaction is reversible, in that there is a finite probability
that it can occur in either direction. The probability that any molecule of A will be
converted to B is the same as for any other molecule of A. As a consequence, the total
rate of conversion of A to B will be proportional to the number of A molecules, or
equivalently, their concentration. Similarly, the rate of conversion of B to A will be
proportional to the concentration of molecules of B. The net rate in the change in the
concentration of A will be the difference between these two rates, which we can write
as a differential equation:

d[A]

dt
= −kf [A] + kr[B]

where kf and kr are rate constants that relate the probability of each reaction to the
concentration of the molecules. The net rate of conversion from B to A is the negative
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of the rate of conversion from A to B, which we can write as:

d[B]

dt
= −d[A]

dt
= kf [A]− kr[B]

We won’t worry about solving these equation, except to note that if we start out with
all A, some of it will be converted to B. As the concentration of A decreases, the rate
of conversion to B will decrease, and the rate of conversion of B to A will increase.
At some point, the flow in each direction will be equal, and the rate of change in
concentration will be zero. At this point:

d[A]

dt
= 0

kf [A] = kr[B]

[B]

[A]
=

kf
kr

At this point, we say that the reaction is at equilibrium, and we can define an equilib-
rium constant:

Keq =
kf
kr

=
[B]eq
[A]eq

where the subscripts indicate that the concentrations are those that are measured at
equilibrium. This is not the most rigorous derivation of an equilibrium constant, but
it will do.

One of the implications of the equilibrium state is that there is no way in which to
obtain work from the reaction. If the system is at equilibrium, then an infinitesimal
amount of work could shift it in either direction, by an infinitesimal amount. Looked at
another way, if we were to have an immense volume of the reactants at the equilibrium
concentrations, one mole of A could be converted to one mole of B (or vise versa)
without doing any work, provided that the concentrations didn’t change significantly.
Therefore, the free energy change for the reaction must be zero.

Suppose, though, that we were to change the concentrations from their equilibrium
values, say by adding one or the other of the reactants. Then, we would expect the
concentrations to shift towards those that would satisfy the equilibrium constant, and
during this process we could, at least in principle, extract some work. At concentrations
that do not satisfy the equilibrium conditions, ∆G is negative if the concentrations
favor the forward reaction, and ∆G is positive if the concentrations favor the reverse
reactions.

For any set of reactant and product concentrations, ∆G is defined as the free energy for
converting one mole of reactants to one mole of products, A to B in the example used
here, in a volume large enough that the concentrations do not change significantly.
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We can derive an expression to calculate ∆G for an arbitrary set of concentrations by
considering the sum of three processes:

1. A([A]eq) −−→ B([B]eq)

2. A([A]) −−→ A([A]eq)

3. B([B]eq) −−→ B([B])

where the concentrations of A and B in the three processes are indicated in the paren-
theses: [A]eq and [B]eq represent the equilibrium concentrations and [A] and [B] are
the concentrations at which ∆G is to be calculated. The sum of the three reactions is:

4. A([A]) −−→ B([B])

A general principle of chemical thermodynamics states that the changes in state func-
tions (including ∆E, ∆H, ∆G and ∆S) associated with individual reactions can be
added to yield the change in state functions for the corresponding sum of the reactions.
Thus, we can write:

∆G4 = ∆G1 +∆G2 +∆G3

Since process 1 represents the equilibrium condition, ∆G1 = 0. Process 2 represents a
change in the concentration of A, from the concentration of interest, [A], to the equi-
librium concentration, [A]eq. If we assume the results for ideal gasses can be extended
to the reaction in dilute solution, the reversible work for the change in concentration,
wrev, is calculated as:

wrev = RT ln
[A]eq
[A]

If we further assume that the volume change at constant pressure is negligible, then
wrev = ∆G, and we can write the free energy change for process 2 as:

∆G2 = RT ln
[A]eq
[A]

From analogous arguments, the free energy change for process 3 is:

∆G3 = RT ln
[B]

[B]eq

The free energy change for process 4, the reaction at concentrations [A] and [B] is then
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given by:

∆G4 = ∆G1 +∆G2 +∆G3

= 0 +RT ln
[A]eq
[A]

+RT ln
[B]

[B]eq

= RT ln
[B][A]eq
[A][B]eq

= RT ln
[B]

[A]
−RT ln

[B]eq
[A]eq

= RT ln
[B]

[A]
−RT lnKeq

In order to define and calculate the free energy change for a reaction at different
concentrations, it is useful to define a standard state for measuring and reporting free
energy changes, and the most widely used standard is to specify that all of the reactants
and products are at 1M concentration. (Or, for the gas phase, that the pressures of
each component is 1 atm.) The free energy change under these conditions is defined
as the standard free energy change, ∆G◦. From the equation above, the standard free
energy change is calculated as:

∆G◦ = RT ln
1M

1M
−RT lnKeq

= −RT lnKeq

This then provides a link between the standard free energy change and the equilibrium
constant. Both represent essentially the same thing: the extent to which one side of
the reaction is favored. If the forward reaction (A −−→ B) is favored, then Keq > 1
and ∆G◦ < 0. A negative value of ∆G◦ also implies that work can be obtained from
the reaction if the reactants are initially at their standard-state conditions.

Measuring the equilibrium constant is generally the most straight forward way of mea-
suring ∆G◦. Once this value is known, the free energy change for other concentrations
can be easily calculated. If ∆H is also know, for instance by measurement with a
calorimeter, the entropy change, ∆S, can then be calculated from the relationship
∆G = ∆H − T∆Ssys.

The commonly used form of the equation for calculating the free energy change at
concentrations other than the standard state ones is:

∆G = ∆G◦ +RT ln
[B]

[A]

Especially for reactions that involve more than one reactant or product, it is convenient
to introduce a quantity called the reaction quotient, Q. This quantity is defined as the
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product of the reaction product concentrations divided by the product of reactant
concentrations. For the reaction:

aA + bB −−⇀↽−− cC + dD

The reaction quotient is:

Q =
[C]c[D]d

[A]a[B]b

When the reaction is at equilibrium, Q is equal to the equilibrium constant, Keq, and
the free energy associated with the reaction is zero. At other concentrations, the free
energy change is calculated as:

∆G = ∆G◦ +RT lnQ

VI. Concentrations and standard states

Things become a little more complicated when the number of reactant and product
molecules are not equal. For instance, consider the reaction:

A + B −−⇀↽−− C

We can write an equilibrium constant:

Keq =
[C]eq

[A]eq[B]eq

And the expression for the free energy change is:

∆G = ∆G◦ +RT ln
[C]

[A][B]

But, there are some funny things here:

• The equilibrium constant has dimensions of inverse concentration. If different
units are used for concentration, the value of the equilibrium constant will change.

• The reaction quotient (Q) also has units of inverse concentration. How can we
take the logarithm of a quantity with units?

• The value of ∆G will also depend on the concentration units chosen.

We can solve the problem of the logarithms by stipulating that the reaction quotient
should be written in terms of the ratios of the actual concentrations and the standard
state concentrations. If the standard state concentrations are 1M, the the reaction
quotient is written as:

Q =
[C]/1M

([A]/1M)([B]/1M)
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Now, Q is dimensionless, and it is OK to take a logarithm. But, it is still true that
Keq, ∆G and ∆G◦ will all depend on the units of concentration chosen.

The underlying reason for this is that when the number of molecules changes in a
reaction there is an intrinsic change in entropy. In the example above, there will be a
reduction of entropy when two molecules are converted to one, and this will disfavor
the reaction. If the standard state is, for instance, 1mM instead of 1M, then the
loss of entropy will be larger, and this will be reflected in the numerical value of the
equilibrium constant and the free energy change.

VII. Calculating the entropy change for a bimolecular reaction.

Following the approach used when considering the expansion of a gas (pages 144–145),
we can use the statistical definition of entropy to estimate the entropy loss due to
converting two molecules into one.

As in the example of gas expansion, we begin by dividing up the volume of interest
into small cubes with volume Vc. The total volume is NcVc, where Nc is the number
of small cubes.

Considering just one molecule each of A and B, the number of ways of placing these
two molecules in the lattice of cubes, ΩA,B is N2

c . This again assumes that the number
of cubes is much larger than the total number of molecules. Because, the two molecules
are assumed to be different, N2

c is not divided by two, since swapping the positions of
A and B results in a distinct arrangement. If the two reacting molecules were identical,
then ΩA,B would equal N2

c /2

The number of arrangements of a single molecule of C in the volume is ΩC = Nc.

The entropy change for a single pair of A and B molecules being converted to C is then
given by:

∆S = k ln

(
ΩC

ΩA,B

)
= k ln

(
Nc

N2
c

)
= −k lnNc

This result indicates that the entropy decreases for the reaction, as we expect. But,
the result is also somewhat problematic, because the number of cubes, Nc, does not
cancel out, as it did for the example of a gas expansion. Therefore, the size of the
cubes does matter in this case.

Though there is no absolutely certain way to define the size of the cubes, we can at
least make a reasonable estimate. The cubes should be just big enough to hold one
of the reactant or product molecules. The product is probably larger than either of
the reactants, making it difficult to specify a single size, but a reasonable estimate
would be a cube 1 nm on each side, or a volume of 1 nm3. The number of cubes is then
calculated by dividing the reaction volume, V , by the volume of a single cube, Vc. We
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will specify that the total volume is given in liters. Taking into account the necessary
conversion factors, Nc can be expressed as:

Nc =
V (L)

1 nm3
× 103m3

L
×
(
109 nm

m

)3

≈ V (L)× 1024

The entropy change is then:

∆S = −k ln(Nc) = −k ln(V (L)× 1024)

Note that the entropy change is closely related to the reaction volume, V , and becomes
more negative with larger volume. This can be understood by recognizing that all of the
molecules gain entropy when the volume is increased, but the two reactant molecules,
together, lose more than the single product molecule.

For one mole each of A and B converted to C, the result above is multiplied by Avo-
gadro’s number:

∆S = −NAk ln(V (L)× 1024)

= −R ln(V (L)× 1024)

If the volume is specified as 1 L, a numerical result can be calculated:

∆S = −R ln(1024) = −8.31 J/K× 53

= −460 J/K

The contribution to the free energy change at 298K is:

−T∆S = −460 J/K× 440 J/K = 140 kJ

In order for the reaction to be favorable, this large contribution would have to be
compensated for by other factors, such a favorable enthalpy change due to covalent
changes in the molecule or other entropic factors.

This simple calculation shows that the change of entropy associated with a reaction
in which the number of molecules changes can be very significant. It is particularly
significant in the context of biological systems, where very large molecules, such as
proteins, nucleic acids and polysaccharides, are assembled from small building blocks
(amino acids, nucleotides and sugars). However, accurately calculating these entropy
changes is challenging and a source of some controversy. The calculation above consid-
ers only the loss of translational degrees of freedom, and a large reduction in rotational
freedom is also to be expected in a bimolecular reaction. Other factors, including
the changes in internal motions (bond rotations and vibrations) and interactions with
solvent molecules may also contribute to the total entropy change. Among various
estimates, the one above represents the lower range of calculated entropy changes for
the association of two molecules.
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VIII. Activity versus concentration

The expression relating the free energy and concentrations is strictly valid only for
ideal gas molecules. If there is any tendency for the molecules to interact with one
another or with solvent molecules, this can affect the free energy change. The formal
way of dealing with this problem is to replace the concentrations with “activities” for
each of the reactants and products:

∆G = ∆G◦ +RT ln
aAaB
aCaD

The activities are dimensionless quantities, but they are defined relative to a specific
standard state (e.g., 1M). At relatively low concentrations, the activities are often
close to being proportional to concentration and are often expressed in terms of activity
coefficients, γ:

aA = γA[A]

The activity coefficient can depend on concentration. If γ = 1/(1M), then the species
behaves ideally, and the activity is equal to the concentration divided by the standard
state concentration.

For most biochemical reactions, at relatively low concentrations, the deviations from
ideal behavior are not very large (or at least we hope that they aren’t), and we rarely
worry about them. As a practical matter, we usually assume that we can use concen-
trations in the equilibrium expression.

5.4 “Chemical Energy” and Metabolism

It is common to hear people talk about “chemical energy” or refer to certain compounds as
having “high energy” or “high energy bonds”. We can even eat “energy bars” and drink
“energy drinks”. This language can be rather vague, or even misleading. Here we consider
some specific examples of biochemical processes and the meaning of chemical energy in this
context.

I. Glucose oxidation

The most useful measure of chemical energy is the free energy change. For instance,
the oxidation of glucose by molecular oxygen is written as:

C6H12O6 + 6O2
−−⇀↽−− 6CO2 + 6H2O

Like any reaction, this reaction is reversible and has an equilibrium constant. The
extent to which it is favorable depends on the concentrations of all of the reactants and
products. The standard free energy change for this reaction is about −2.700 kJ/mol,
meaning that it is an extremely favorable reaction when all of the reactants are at
their standard states (1 M or 1 atm). But, if the O2 concentration is very low, the
reaction is much less favorable. Prior to about 2.5 billion years ago, the concentration
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of oxygen in earth’s atmosphere was about 105-fold less than it is now. Under those
conditions, the oxidation of glucose was not favorable at all. Glucose was used as a
source of “energy” through glycolysis (a partial enzymatic breakdown of glucose), and
this is still an important metabolic reaction. But glycolysis is a much less favorable
overall reaction than complete oxidation (at the present atmospheric concentrations
of O2 and CO2), meaning that glucose or other carbohydrates can provide much less
“energy” under anaerobic conditions.

The nutritional calories that are listed for foods are not free energy changes. They are
measured by burning the foods (or their digestible ingredients) and directly measuring
the heat in a calorimeter at constant volume, with an excess of oxygen. So, these
calories actually represent ∆E. For glucose, the dietary value is about 4 kcal/g, which
corresponds to about 175 kJ/mol, much less than the standard free energy change.
This is because there is a large entropy change in the reaction as well, as 7 molecules
are converted to 12.

The nutritionists then estimate how much work must be done by the body in order to
offset the metabolism of, for instance, 1 g of sugar. Most of the free energy is lost as
heat. Relating food calories to free energy changes is not straight forward (to me at
least!)

The important point is that in our atmosphere, the oxidation of glucose and related
molecules is very favorable, and organisms can couple this very favorable reaction to
processes that otherwise would not be favorable.

The synthesis of glucose and related molecules is unfavorable and depends on coupling
to other favorable reactions, which are driven by absorbing the energy of light from
the sun.

For our cars and some electric power plants, we (mostly) use as a fuel hydrocarbons
or coal, which also are oxidized with a large negative free energy change. All of the
energy in hydrocarbons and coal, was originally captured by photosynthesis. Plants
and animals that ate plants died and the carbon was converted into the forms we now
extract and burn. We are quickly consuming the vast amounts that were accumulated
over billions of years, and we are moving the carbon into the atmosphere.
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II. ATP hydrolysis

Another compound that is often described as having “high energy” is ATP, with the
hydrolysis reaction shown below:
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The bond linking the second and third phosphate groups is often described as a “high
energy bond”. In fact, there is nothing very special about this bond. What is impor-
tant is that the reaction has a large negative free energy change under physiological
conditions, about −30 kJ/mol.

We won’t worry for now how this compound gets made in the first place. Basically, ATP
serves as a kind of energy currency, it is formed during the oxidation of glucose (and
other favorable reactions) and it is hydrolyzed to provide energy for other processes.

In considering why this reaction is so favorable, the first thing to emphasize about this
reaction is that it occurs in the presence of water, and water is one of the reactants.
We will talk more about water later, but for now, the important thing is that water is
a polar molecule, meaning that the electrons of the molecule are unevenly distributed
leading to partial charges on the hydrogen and oxygen atoms:

The partial charges of the water molecule can interact with charges on other molecules
making the charged forms much more stable than they would be otherwise.

ATP, as suggested by its name, has three phosphate groups:
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In water, at neutral pH, one or more of the oxygen atoms will be in an ionized, nega-
tively charged, state. In ATP, there are four negative charges on the three phosphates
(one each on the first and second and two on the third phosphate). This results in a
quite high density of negative charge. When the third phosphate is removed by hy-
drolysis, the charges are not so close together and are shielded by the water molecules,
leading to a reduction in potential energy. There are other factors, but this is the
major one. Further hydrolysis, of the remaining phosphate-phosphate ester bond, is
also favorable, but not by quite so much.

Even if a reaction is thermodynamically favored, it may not occur very rapidly. This
is obviously true for oxidation of glucose, and it is also true for ATP hydrolysis, for
which the half time is about 20 days at neutral pH and 60 ◦C.

It’s useful to represent the relationship between thermodynamics and kinetics as a
reaction coordinate, or energy profile:

ATP

ADP + Pi

[transition state]

The central idea here is that the molecules have to acquire a high energy state in order
for the reaction to proceed. This high energy state is called a “transition state” or
“activation complex” and is a bit of a mythical beast. It is imagined to be in equilibrium
with the products and reactants, but present at only very low concentrations. As soon
as it forms, it breaks down to either products or reactants, with equal probability. The
higher the transition-state energy, the slower the reaction.

The theory for relating reaction rates to energies was developed by Henry Eyring. See
the painting in the lobby of building named for him!

In the absence of a catalyst, the reaction rate under physiological conditions would be
insignificant. This is important: If ATP spontaneously hydrolyzed, it wouldn’t be an
effective way of storing energy. It would be like trying to use a fuel that spontaneously
combusts.

The key to using chemical energy in biology is controlling the reaction by catalysts,
enzymes. Enzyme can increase the rate of a reaction by several orders of magnitude.
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A somewhat glib way of saying what enzymes, or other catalysts, do, is to say that
they lower the transition state energy3:

ATP

ADP + Pi

Uncatalzyed

Catalyzed

How do enzymes increase reaction rates? This is a major sub-discipline of biochemistry,
and there are many different effects, not all of which are fully understood or agreed
on. But, the basic idea is that the enzyme, which is a protein (or sometimes RNA)
molecule, binds to the reactants and creates a local chemical environment that makes
the reaction much more likely to proceed. One important part of this is that the local
concentrations are much higher than they are when the molecules are free in solution.
The enzyme can also help stabilize charges that form in the transition state.

An enzyme cannot alter the thermodynamics of a reaction! If it catalyzes the forward
reaction, it must also catalyze the reverse reaction by the same factor. Any scheme
that suggests that both reactions are not catalyzed equally violates the first law!

III. Enzymatic coupling

An enzyme that simply catalyzed ATP hydrolysis would not be very useful. Essentially
all enzymes that catalyze ATP hydrolysis do so in a way that couples the favorable
reaction with another reaction that would otherwise be unfavorable. The structure
and mechanism of the enzyme is such that the hydrolysis reaction can only occur if
the other reaction also occurs.

Enzyme

ATP ADP + Pi

A B

3The statement is glib because it doesn’t really provide any additional information about the mechanism
of the catalyst. But, considering the transition state and what determines its free energy is a valuable way
of framing mechanistic questions
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The enzyme links the two reactions together so that one can’t occur without the other,
so that the overall reaction is:

A + ATP −−⇀↽−− B + ADP + Pi

The free energy changes for the individual reactions are added together. Even if ∆G
for the second reaction is positive, the overall reaction can be favorable.

The coupled process can be a chemical reaction, but it can also be a physical process
such as movements of molecules across a membrane against a concentration gradient
or the generation of mechanical force, as in muscle.

The details of how this coupling occurs depends on the structures of the proteins that
catalyze the reactions.

The enzyme creatine kinase offers a good example of enzymatic coupling. Like ATP,
creatine phosphate (also called phosphocreatine) has a large negative free energy of
hydrolysis

∆G◦= −43 kJ/mol

The enzyme creatine kinase catalyzes the exchange of phosphate between ATP/ADP
and creatine phosphate/creatine (CP/C):

ADP + CP −−⇀↽−− ATP + C

The standard free energy change for the overall reaction is: −43 kJ/mol + 30 kJ/ml =
−13 kJ/mol

Creatine, creatine phosphate and the enzyme creatine kinase are found in a variety of
animal tissues, including muscle and brain cells, where creatine phosphate serves as a
short-term source of reserve chemical energy.

In resting muscle cells, the typical concentrations are:

4mM ATP
0.013mM ADP
25mM creatine phosphate
13mM creatine

We can calculate the free energy change for the formation of ATP from CP under these
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conditions:

∆G = ∆G◦ +RT ln
[ATP][C]

[ADP][C]

= −13 kJ/mol +RT ln
4mM · 13mM

0.013mM · 25mM

= −13 kJ/mol + 8.314 J/K · 310K ln(160)

= −13 kJ/mol + 13 kJ/mol

≈ 0

The four compounds are at equilibrium, because the enzyme quickly equilibrates them.
But, when there is a large demand for ATP, the concentration of ATP goes down, the
concentration of ADP goes up, and the forward reaction, as written above, becomes
favorable, to restore ATP concentration.

But, the reserve of creatine phosphate is relatively limited and lasts about 4 seconds
in a sprinter. After that, either ATP is restored by oxidative phosphorylation, or
glucose is metabolized by glycolysis. The latter provides much less ATP than oxidative
metabolism and leads to the accumulation of lactic acid.
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