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Chapter 1
The Scale of Things: Units and Dimensions

Aside from establishing links among the various sciences, a goal of this class is to help
strengthen some of the skills that are required in all of the sciences, especially quantitative
skills. Working with dimensions and units is one of the most important of these skills.

Historically, one thing that has tended to distinguish biology from the physical sciences
is the extent to which mathematics is used. This distinction is diminishing, but there is
certainly a strong tradition in biology that is very descriptive. The greatest of all biologists
was (arguably) Charles Darwin, who used little or no mathematics.

What is so good about using mathematics in science? Is there anything that Darwin
should have used math for? Two major things that math brings to biology and other
sciences are that:

• Math provides a way to formalize a description, or “model” a phenomenon.

• Mathematical models have the power of prediction, both to test the theory and make
useful predictions. Predictions are at the heart of the current debate about climate
change (at least at one level). How good are the predictions?

Interestingly, Darwin’s successors, evolutionary biologists, are among current biologists who
use math most extensively. For instance, determining the evolutionary relationships among
different species using DNA sequence data is a major application.

Most, but not all, applications of math in science involve measurable quantities, such as
length, area, volume, mass, time, or concentration. Thus, working with the units of these
measurements is one of the most important basic math skills for scientists, and you have,
no doubt, had experience with this in many of your classes. None the less, many students
continue to find this kind of calculation challenging, and I want to spend some time on this
subject before moving on in the class. Even if you are already comfortable with this kind of
calculation, you may find that there are some interesting subtleties that you may not have
thought about before.

1.1 Measurements as comparisons

Although most measurements are expressed in terms of units, such as meters, grams, liters,
etc., mathematics usually deals just in numbers. How do we bridge measurement and num-
bers? To start, it is useful to consider that nearly all measurements involve comparisons.
For instance, we measure length by comparison with some sort of ruler, as illustrated in
Fig. 1.1A. Similarly, we measure mass by comparing the gravitational force on an object (its
“weight”) with the gravitational force of a reference mass (Fig. 1.1B).

1
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1 g

1 g

1 g?

A. B.

10 20 30
cm5 15 25

Figure 1.1 Measurement of the diameter of a basketball (A) and the mass of a cube of something (B).
In each case the measurement is based on a comparison with some reference object.

The object that we use for comparison then defines the units for the measurement. What
is the most natural unit for length? A human body or part of a human body! In the United
States, we still use the foot as a unit of length, and the basic unit of length in the metric
system, the meter, is on the order of the length of human body.

The somewhat arbitrary nature of unit definitions is illustrated by a famous prank played
at the Massachusetts Institute of Technology (MIT) in 1958. A fraternity at MIT decided
to use the body of a freshman pledge, Oliver Smoot, to measure the length of the Harvard
Bridge, which connects Cambridge, near the site of MIT, to Boston on the other side of
the Charles River (and isn’t actually close to Harvard University). To do so, they laid
Smoot down with his feet at one end of the bridge and his head pointed towards the other.
They then made a mark indicating the position of the top of his head, moved his feet to
this position and repeated the process until his head reached the other side of the bridge.
From this process, the length of the bridge was determined to be 364.4 smoots, ±1 ear1 , as
commemorated in a plaque shown in Fig. 1.2.

The punch line to this story is that Oliver Smoot went on to a distinguished career
in the discipline of metrology, the science and technology of measurement. He served as
both chairman of the American National Standards Institute (ANSI) and president of the
International Organization for Standardization (ISO), the U.S. and international agencies
that define the standards of measurement.

Although any unit for length, as an example, can be used as a reference for length at any
scale, it is convenient to have units that are appropriate for different ranges. In addition, it
is very helpful to have your own “internal rulers” to aid in thinking about the very different
scales that we encounter in the sciences, especially when we can’t directly experience them
on the scales of our body. Fig. 1.3 shows a few examples of biological and manufactured
objects on a wide range of length scales. In this figure, lengths are indicated both in meters
(at the top) and in units derived from the meter.

1The names of units are never capitalized, even when they are derived from a person’s name, such as the
newton or tesla (a unit of magnetic field strength, not the car). On the other hand, the abbreviations of
these names are capitalized, such as N, T or (I presume) S.

2



1.1. MEASUREMENTS AS COMPARISONS

Figure 1.2
The plaque commemorating the
measurement of the the length of the
Harvard Bridge in smoot units.

https://en.wikipedia.org/wiki/Smoot

https://alum.mit.edu/news/

AlumniNews/Archive/smoots_legacy

Some typical lengths that are relevant in biology are:

• 1meter (m) ≈ length of an adult human arm

• 1millimeter (mm) = 10−3m ≈ length of some of the smallest multicellular animals,
e.g., the nematode C. elegans. Also about the diameter of a sharp pencil point.

• 1micrometer (µm or just µ) = 10−6m ≈ length of a bacterial cell.

• 1 nanometer (nm) = 10−9m ≈ radius of a small protein molecule.

• 1 angstrom (Å) = 10−10 m = 0.1 nm ≈ length of a covalent chemical bond.

All but the last of the units of listed above use the meter and one of the standard prefixes
defined in the metric system. (We will get more specific about what we usually mean by the
term “metric system” shortly.) The same prefixes are used for nearly all metric units and,
you should be or become fluent in using the ones listed in Table 1.1 on the following page.

Although it may seem an arcane subject, the definition of units and the establishment of
standards is of immense practical importance for science, technology and commerce. In the
United States, Article 1, Section 8 of the Constitution gives Congress the power (among other
things) “To coin Money, regulate the Value thereof, and of foreign Coin, and fix the Standard
of Weights and Measures.” To fulfil this responsibility, in 1830 Congress established the Office
of Standard Weights and Measures, as part of the Department of the Treasury. This office
was replaced 1901 by the National Bureau of Standards (NBS). Over time, the NBS took
on a broader range of activities, and in 1988 it was replaced by the National Institute of
Standards and Technology (NIST) and is now part of the Department of Commerce. Other
nations have comparable agencies, and they collaborate to establish international standards
through the International Organization for Standardization (ISO)2

2In English speaking countries it is often believed that ISO stands for International Standards Orga-
nization and should be pronounced “eye-ess-oh”. But, ISO is defined by the organization as an official
abbreviation to be used in all languages and pronounced “iso”, which is derived from the Greek word for
equal, isos. (I usually forget and say “eye-ess-oh”, but it’s wrong!)
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
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1 10-3 10-6 10-9meters

mm nm

Dog Flea Bacterium Protein

Bicycle Watch parts Microfabricated

devices

Quantum

Dots

m

Figure 1.3 Some examples of biological and fabricated objects on a wide range os size scales.

Table 1.1Standard prefixes for units in the SI metric system. See http://physics.nist.gov/cuu/

Units/prefixes.html for prefixes covering the range from 10−24 to 1024.

prefix abbreviation multiplier examples

nano n 10−9 nm, ng

micro µ 10−6 µm, µg

milli m 10−3 mm, mg

centi c 10−2 cm, cg

deci d 10−1 dm, dg

kilo k 103 km, kg

mega M 106 Mm, Mg

4
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1.2. UNITS VERSUS DIMENSIONS AND A BRIEF HISTORY OF THE METRIC SYSTEM

1.2 Units versus dimensions and a brief history of the

metric system

The types of quantities described in the previous sections imply a built in reference object
for comparison, such as an object 1m long. These quantities are called units and they are
distinguished from another kind of quantity called dimensions. A dimension is a quantity
like length, mass etc. that can be expressed in different, but interchangeable, units. We
can compare 1 m and 1 smoot, but we can’t compare 1 m and 1 g. (In principle we could
have a unit of mass defined as the mass of Oliver Smoot, but this would be very confusing!)
Quantities that can be compared directly, such as length, have the same dimension, even if
they are given in different units, such as 1 km and 1mile.

Modern systems of measurement recognize (a minimum of) 5 basic dimensions:

• Length, L

• Mass, M

• Time, T

• Temperature, Θ

• Electric charge, Q, or current, I

Note that the symbols for these quantities are written with italic (or Greek) characters,
which follows the mathematical typesetting convention that most variables are represented
in this way. The dimensions are usually used in more abstract expressions where specific
values are not assigned.

Other dimensions can be derived from the five listed above. Some examples are listed
below.

• Area: A = L2

• Volume: V = L3

• Velocity: distance per unit time: v = L/T

• Acceleration: change in velocity per unit time: a = (L/T )/T = L/T 2

• Force: defined by Newton’s second law of motion, f = m · a: f =ML/T 2

Notice that the dimension of volume is defined in terms of length, as L3, but the liter (L) is
a unit of volume. This is a particularly tricky case where it is important to make sure we
are talking about a unit or a dimension. Also, the liter is somewhat of an oddity, because
its abbreviation is an upper-case letter but is not derived from a person’s name.

For most of history, measurements have been made using a mish-mash of units chosen
for different purposes, such as cubits, furlongs, feet, miles, etc.. This is still true to a degree,
but far less so.

5



CHAPTER 1. THE SCALE OF THINGS: UNITS AND DIMENSIONS

Figure 1.4
The original definition of the meter
(1795) as as one ten-millionth (10−7) of
the distance from the Equator to the
North Pole, along the meridian passing
through Paris. Illustration from:
https://en.wikipedia.org/wiki/

Metric_system

1.2.1 Early metric systems

Although there were earlier precedents, the origins of our current metric system lie in the
French Revolution of 1789–1799. Although you might not think that the details of measure-
ment would be an important issue in a political revolution, one of the grievances that led
to the revolution was inconsistency among tax collections in different parts of France and
with other countries, in part because of the use of numerous different units for measurement
of goods. The leaders of the French Revolution also placed a high value on rationality (as
they saw it) and wanted a measurement system based on powers of 10. They even went so
far as to introduce a decimal calendar and clock. Although the decimal time system didn’t
catch on, the decimal metric system definitely did, and the United States is now one of just
a few countries that use derivatives of what are commonly called “English” units (which,
themselves, are not entirely consistent among the countries that use them).

In the 1790s, the French defined two basic (as we would consider them now) units, the
métre (meter in English) and the gramme (gram). Traditionally the definition of any unit
has required some standard object that can be used for comparison, and the best standard
objects are the most universal ones, so that they are accessible, in principle, to anyone. In
this vein, the French chose the Earth itself as the reference object for length, and they defined
the meter as one ten-millionth (10−7) of the distance from the Equator to the North Pole,
along the meridian passing through Paris, as illustrated in Fig. 1.4. The gram, in turn, was
defined as the mass of water in a volume defined by the meter, specifically 1 cm3 = 10−6m3.

Although these definitions are clear and based on well-defined physical objects, the defini-
tion of the meter, especially, is obviously problematic for practical measurements of, say, the
height of a house. Not only is the specified distance along the surface of the Earth absurdly
impractical for comparison to a house, the distance was not very well-determined at the time.
To address the latter problem, a survey expedition was commissioned to measure a fraction
of a meridian that almost passes through Paris (from Dunkirk, France to Barcelona, Spain).
This turned out to be a rather heroic endeaver that lasted seven years, and the calculations
ignored what are now recognized to be significant asymmetries in the shape of the Earth.
None the less, the survey produced a defined distance. To create a practical reference for
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the meter, a platinum bar, the mëtre des Archives, based on the meridian measurement was
fabricated and placed for safekeeping in the French National Archives. This reference was
then used to create secondary references, which were then used to make additional references,
and so on. As it turned out, the platinum bar was about 0.02m shorter than defined by
the meridian, but it remained the standard reference for many decades, probably because
everyone was so tired of the whole business by then!

At the same time, a reference object for the gram, a cylinder of platinum with mass
equal to that of 1000 cm3 of water, representing 1000 g=1 kg, was fabricated and placed in
the French National Archives. This object was designated the kilogramme des Archives. The
French also defined units for area and volume based on the meter.

In 1875, an international treaty, the Convention du Mëtre was signed by 17 nations and
called for replacement of the mëtre des Archive and the kilogramme des Archive with new
standard reference objects, the international prototype meter (IPM) and the international
prototype kilogram (IPK). Like the earlier reference objects, these were made of a platinum
alloy and were based on the French standards. Importantly, however, the meter and the
kilogram were now defined directly in terms of the IPM and IPK, as opposed to the length
of a meridian or the mass of a given volume of water (or other substance). This eliminated
any question of how closely the reference objects matched the the official definitions of the
units. On the other hand, this placed extraordinary importance on the objects themselves,
and the Convention du Mëtre and the organizations it created, established detailed protocols
for maintaining the standards and replicating them. Copies of the IPM and IPK were made
and distributed to all of the treaty signatories, which then used these as references for their
own countries. The Convention du Mëtre also established an international organization
to continue work on refining measurement standards and to organize conferences for this
purpose, the General Conference on Weights and Measures (Conférence générale des poids
et mesures, CGPM). Since then, there have been 26 CGPM meetings.

The IPM remained the definition of the meter until 1960, when the meter was redefined
in terms of the wavelength of light corresponding to a specific electronic transition in krypton
85 atoms. This represented the long-sought goal of a standard that was independent of a
single object and was, in principle, accessible anywhere. However, the IPK continued to
serve as the international standard for mass until 2018, when a major revision of the SI was
adopted, as discussed further below.

During the century following the establishment of the French metric system (and related
ones in other countries), some of the major advancements in the physical sciences were
in the fields of thermodynamics, electricity and (closely related to electricity) magnetism.
These fields required the the development of entirely new classes of dimensions and units.
It took much of the nineteenth century to define the basic quantities for these disciplines,
and even then there were two basic approaches for relating electricity and magnetism to
force as defined by Newton’s second law3. In 1873, a committee of the British Association
for the Advancement of Science proposed a system of units that unified units for electricity
and magnetism with previously defined units for length, mass, time and temperature. This
system came to be known as the centimeter-gram-second (cgs) system, which was widely

3The two approaches differed by whether force was related to electricity in terms of the electrostatic
interaction between two charges or the magnetic interaction between currents flowing through two wires.
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adopted and was the official “metric system” for several decades. Even with the introduction
of the cgs system, however, there were internal inconsistencies involving electrostatic and
magnetic forces. As a consequence, there were actually two branches of the cgs system (each
with further variants). This can still be a source of confusion, especially when reading older
publications and trying to convert values to the modern conventions.

1.2.2 Establishment of the Modern Metric System, the Système
International d’unitès (SI) and Further Revisions

The next major revision to the metric system was enacted in 1960, when the name Système
International d’unitès (SI) was introduced at the 11th CGPM.. Among other things, the SI
finally settled on a single, consistent way of dealing with electricity and magnetism. The SI
also replaced the centimeter and gram as the basic units of length and mass, respectively,
with the meter and kilogram. As a consequence, the SI is sometimes referred to as the MKS
(meter, kilogram, second) system, but this is really a more general designation that includes
some predecessors to the SI.

Rapid developments in physics and electronics (especially the invention of the laser) led
to another redefinition of the meter in 1983. The meter is now defined as the distance
travelled by light in a vacuum during 1/299792458 of a second.

This redefinition of the meter was more profound than earlier changes in units, because
it depended on establishing an essentially arbitrary definition of a fundamental constant of
the universe, the speed of light, as opposed to a measurement of the constant using defined
units. At the same time that the meter was redefined, the speed of light was declared to
be exactly 299792458m/s. The second had previously been defined, in 1967, as the time of
9,192,631,770 cycles of the radiation associated with a specific quantum transition4 of cesium
133 (133Cs) atoms (The frequency of this radiation is designated ∆νCs). Like the speed of
light, the second was defined by setting the value of a physical constant, in this case ∆νCs.
Although the numbers associated with these definitions may seem rather arbitrary and not
very convenient, they were chosen to give the best possible match to the original standards.

The new definition of the meter represented a change from an explicit-unit to an explicit-
constant basis for defining units. Though this indirect approach is admittedly rather awk-
ward, it allows the continuous refinement of numerical values of units by making more precise
physical measurements of the constants. For instance, if the speed of light were to be more
precisely measured, the official value for this constant will remain exactly 299792458m/s,
but the standard for the meter or second would be adjusted to reflect the improved mea-
surement. Furthermore, these measurements can, in principle, be made by anyone in any
location. For instance, it would be possible to for an extraterrestrial civilization to implement
our definition of a meter, provided only that they know our definitions and can measure the
speed of light and the frequency of the 133Cs transition used to define the second.

In contrast to the definition of the meter, the IPK proved to be remarkably difficult to
replace as the standard for mass, which was finally accomplished in 2018. In 2007 the CGPM
called for a complete shift in the definition units to an explicit-constant basis. The 2011
CGPM further decided to base the definition of the kilogram on a fixed value of the Planck

4The ground-sate hyperfine transition
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constant, h, which defines the relationship between the energy of a quantum transition,
E, and the frequency, ν, of the electromagnetic radiation absorbed or released during that
transition

E = hν

As discussed below, the units of energy are expressed in SI units as kg ·m/s2, so that the
units of the Planck constant are given by:

h =
E

ν
=

kg ·m/s2

s−1
= kg ·m/s

Once the Planck constant is given a fixed value (along with the defined values for the meter
and second), the kilogram can be defined as:

kg =
h · s
m

The 2011 CPMG defined the value of the Planck constant to be exactly 6.62606×10−34 kg ·m2s−1.
However, the kilogram was not redefined at this time, because there was not yet a method
deemed sufficiently precise for implementing the new definition, which requires being able to
actually make measurements of mass that are directly related to the Planck constant. The
first step in that process was to establish very precise measurements of the Planck constant
in terms of the existing definition of the kilogram. The criteria established in 2011 specified
that the Planck constant be determined by three independent experiments, using two inde-
pendent methods, with uncertainties less than 50 parts per billion (5×10−8). At that time,
there were two methods available for measuring the Planck constant with such precision,
both of which are somewhat round-about.

The first method is based on the value of Avogadro’s number (also called the Avogadro
constant, NA), the number of atoms, molecules or ions in a mole of a substance. Avogadro’s
number is directly related to the Planck constant, through other physical constants that
have been measured with extremely high precision (less than one part per billion). Thus, a
measurement of Avogadro’s number is equivalent to a measurement of the Planck constant.
Prior to 2019, Avogadro’s number was defined as the number of atoms in 12 g of pure carbon
12 (12C). But, determining an actual value for NA directly from that definition is highly
problematic, because carbon readily undergoes a variety of chemical reactions and even pure
carbon can exist in multiple forms. Instead silicon, which forms very stable and well defined
crystals were used.

The method used to determine Avogadro’s number is referred to as an x-ray crystal
density (XRCD) measurement and used crystals of silicon highly enriched (99.995%) in 28Si.
Implementation of the XRCD method involved machining two spheres of crystalline silicone
28Si (to provide two of the three independent measurements called for). The sphere is the
three-dimensional shape that can be most precisely manufactured (using a lathe), and its
size is defined by a single measurable length, the diameter. The spacing between atoms in
the crystal can be determined with very high precision by x-ray crystallography, so that the
number of atoms in the sphere can be determined with very low uncertainty. However, to
correlate the number of atoms with the mass of the crystal, it was also necessary to determine
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Figure 1.5
One of two silicon spheres, 99.995%
enriched in 28Si, used to establish
Avogadro’s number. A reflection of an old
kilogram standard can be seen in the
surface of the sphere. Illustration from:
Cho, A. (2018). World poised to adopt
new metric units. Science, 362, 625–626.
http://doi.org/10.1126/science.362.

6415.625 Photograph from the
Physikalisch-Technische Bundesansttalt
(PTB), Germany.

Figure 1.6
Schematic diagram of a Kibble (or
moving-coil watt) balance. The
gravitational force acting on the mass to
be determined (on the left) is balanced by
the magnetic force between a stationary
magnetic field and the field generated by
electric current passing through the coil
attached to the right-hand side of the
balance. The electric current required to
balance the two forces is measured and
used to calculate the mass of the object.
Adapted from:
Cho, A. (2017). Plot to redefine the
kilogram nears climax. Science, 356,
670–671. http://dx.doi.org/10.1126/
science.356.6339.670

precisely the isotopic composition of the silicon, which was done by mass spectrometry. Over
a period of several years, measurements of the dimensions and isotopic composition of these
spheres were refined, until the reproducibility could be established to be 1 part in 50 million.
Among other precautions, this required extensive polishing to remove virtually all traces of
contamination from the surface. These spheres have been described as “the world’s roundest
objects”, and a photograph of one of them is shown in Fig. 1.5. From the measurements of
the silicon spheres, the value of Avogadro’s number was defined, at the 2018 CGPM, to be
exactly 6.02214076×1023.

The second method for measuring the Planck constant uses a special electronic balance
called a Kibble balance, illustrated in Fig. 1.6. In this device, the force of gravity acting
on the object to be weighed is balanced by the magnetic force generated by a coil of wire
in a magnetic field, and the mass is determined by the electric power, expressed in watts,
required to balance the two forces. Although this basic idea for a balance is not new (and
is commonly incorporated in electronic laboratory balances), an important refinement was
introduced in 1975 by Bryan Kibble, who devised a method to internally calibrate the coil
and magnetic field. Kibble died in 2016, just before his invention was expected to enable a
new definition of the kilogram, and the device (previously described as a moving-coil watt
balance) was named in his honor.
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The power required to balance the mass represents the product of the electrical current,
measured in amperes (A) passing through the coil and the electrical potential across the
coil, measured in volts (V). The current and potential can be directly related to the Planck
constant through measurements of two quantum-mechanical phenomena, the quantum Hall
effect and the Josephson effect. Using a kilogram standard (as then defined), it was possible
to precisely measure the Planck constant in a way that is independent of the XRCD analysis
of the 28Si spheres.

By 2018, the criteria established in 2011 for measuring the Planck constant, with an
uncertainty of less than 50 parts per billion, had been met by multiple experiments using
both XRCD method for determining Avogadro’s number and the Kibble balance. This
milestone, then enabled the 2018 CGPM to finally redefine the kilogram in terms of the
Planck constant, the second (defined by ∆νCs) and the meter (defined by the second and
the speed of light). At the same time, Avogadro’s number was redefined to be exactly
6.02214076×1023.

In principle, internally calibrated Kibble balances can now be used to independently
measure masses in laboratories, or more practically, Kibble balances can be used to measure
reference masses that can be used as secondary standards. Alternatively, spheres of 28Si
characterized by XRCD could be used a mass references. At present, however, both of these
techniques are very challenging in practice, and only a few nations have the resources to
implement them. The XRCD method is particularly difficult to implement, and for the near
future the Kibble balance is expected to be used to calibrate secondary standards, including
the IPK, which will be used to calibrate additional reference masses. As a consequence,
the redefinition of the kilogram will have practical consequences at only the highest level of
metrological standardization. It should also be noted that the Kibble balance is actually a
bit less precise (about 20µg/kg) than the best conventional balances (with precisions as low
as ( 1–2µg/kg), so that reference objects calibrated with the new method are expected to be
slightly more variable than before. To place this in perspective, however, the uncertainties
from the Kibble balance are on the order of one millionth of one percent.

1.2.3 The base dimensions of the SI and their current definitions

The SI defines seven “basic” dimensions and their standard units, as summarized in Table 1.2.
Of the seven basic units, the first five in the table are independent of one another. However,
the amount of a substance (mole) and luminous intensity (candela) can be defined in terms
of the the other five basic dimensions and are not strictly necessary for a complete set of
units. They are included in the SI largely as a matter of convenience and consistency with
older definitions.

The luminous intensity and its SI unit, the candela, may be the dimension and unit
that are least familiar. As suggested by its name, luminous intensity is a measure of the
brightness of visible light sources and, specifically the intensity along a specific direction.
The origin of the candela, and its name, is reflected by the fact that the luminous intensity
of a conventional wax candle is approximately 1 candela. (The Latin for candle is candela.)
Until 1948, various countries had different defined units of luminous intensity defined in
terms of very specific light sources, including in some cases a wax candle of defined size and
composition. The dimension of luminous intensity (and the several other quantities related
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Table 1.2 The seven basic dimensions and units defined in the SI. For details, see http://physics.

nist.gov/cuu/Units/units.html

Dimension SI base Unit Abbreviation

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamics temperature kelvin K

amount of substance mole mol

luminous intensity cendela c

to light intensity) are also unusual because they were originally used to express a human
response to a stimulus, rather than a specific amount of light, as measured for instance by
the number of photons of a specified energy.

By 2019, all of the SI basic units were defined by the values of seven physical constants,
which are now set to exact values, as listed in Table 1.3. There is not a simple one-to-one
relationship between the basic SI units and the constants listed in Table 1.3, as several of
the units are defined in a somewhat hierarchical way, as listed in Table 1.4.

From the seven basic units, there are an almost limitless number of derived units that can
be used to specify any measured quantity that has so far been conceived. Some examples of
derived SI units are listed in Table 1.5.

Although the the basic units in the SI now well established as the foundation for mea-
surement throughout the world, the system continues to be updated to incorporate new
technologies and new applications. Going forward, this will involve making decisions about
when to update the numerical values used to define the basic units, while keeping the the
seven physical constants fixed to their standardized values.
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Table 1.3 The seven physical constants used to define the SI basic units, and the their exact, defined
values. For details, see http://physics.nist.gov/cuu/Units/units.html

Constant Symbol Exact value

The ground-state hyperfine transition fre-
quency of 133Cs

∆νCs 9.192631770× 109Hz

The speed of light in vacuum c 2.99792458× 108m/s

The Planck constant h 6.62607015× 10−34 J · s

The elementary charge e 1.602176634× 10−19 coulomb

The Boltzmann constant k 1.380649× 10−23 J/K

The Avogadro constant NA 6.02214076× 1023mol−1

The luminous efficacy of monochromatic
radiation of frequency 540× 1012Hz

Kcd 683 lm/W
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Table 1.4 Definitions of the basic SI units in terms of the seven physical constants listed in Table 1.3.
For details, see http://physics.nist.gov/cuu/Units/units.html

Unit Defined by:

second (s) Setting ∆νCs to be 9.192631770×109 in units of s−1.

meter (m) Setting the speed of light (c) to be 2.99792458×108 in
units of m/s, with the second defined in terms of ∆νCs.

kilogram (kg) Setting the value of the Planck constant to
be 6.62607015×10−34 in units of kg ·m/s,
with the meter and second defined in terms
of ∆νCs and c.

ampere (A) The relationship 1A = 1 coulomb/s, with the coulomb
defined so that the elementary charge (e) has the exact
value 1.602176634×10−19 coulomb, and the second is de-
fined in terms of ∆νCs.

kelvin (K) Setting Boltzmann’s constant (k) to be 1.380649×10−23

when expressed in units of kg ·m2s−2K−1, with the kilo-
gram, meter and second defined in terms of ∆νCs, c and
h.

mole (mol) Making 1mol equal to Avogadro’s number of elementary
entities.

candela (cd) Setting the value ofKcd to be 683 when expressed in units
of lm/W, which is equivalent to units of cd ·m−2kg−1s2.

Table 1.5 Examples of derived SI units.

Dimension SI unit

Area m2

Volume m3

Acceleration m/s2

Force newton (N) = kg ·m/s2

Energy joule (J) = N ·m = kg ·m2/s2

Electric charge coulomb (C) = A · s
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1.2.4 Other Units

The non-metric units still used in the United States for consumer products and some other
purposes are sometimes referred to informally as “English units”, but this term, like “metric
system”, actually covers several historic and closely related systems. The units used in the
United States are more properly designated the “United States customary units”. The other
major system of English units is the Imperial system, which was officially established in
1824, and still has limited use in the United Kingdom, Canada and a few other British
Commonwealth nations. The United States customary and Imperial systems are largely
similar, but with some distinctions.

In order to simplify conversions with the SI, while not deviating too noticeably from
the traditional definition of length units, the U.S. Customary yard is defined directly in
terms of the meter, as exactly 0.9144m, which makes the inch exactly 0.0254m = 25.4mm.
Similarly, the U.S. customary pound is defined as exactly 453.59237 g,5 and the US gallon
(for liquid measure) is defined as exactly 3.785411784L. There are also more informally
defined “English” units of fluid and dry volume, as typically found in food recipes. These
are not so formally defined, and probably don’t need to be.

1.3 Using units in calculations

For students and practitioners of science, the important point about units and dimensions
is that their proper use is a critical skill! Although students in this course should have had
lots of experience in this already, I often find that many are rather rusty.

The simplest problems involving dimensions often have the form, “How many feet are
there in a kilometer?”, and one can find tables that provide instructions such as, “To covert
kilometers to miles, multiply by 0.621371.” Instructions like this one are often called con-
version factors and there are many published tables and websites with conversion factors
for different units. Most of these are probably correct, though care is sometimes required,
especially when the same word is used for different measurements; “ounces” is a particularly
confusing one. One convient and quite comprehensive website for conversions is:

http://www.digitaldutch.com/unitconverter/

But, I can provide no guarantee for the reliability of the information on this site! One can
also use Google and other web-search engines to quickly look up conversions, with queries
such as:

Miles to feet

More authoritative references for conversion factors are provided at the end of this chapter.
The use of units in calculations has a fancy name, Dimensional Analysis. The basic idea

of dimensional analysis is to treat units as part of the algebraic terms representing quantities.

5More specifically, this defines the pound avoirdupois (derived from a French phrase for “weights and
measures”) in the U.S. Customary system. There are actually two groups of units for mass in this system,
the other being the Troy system, which is still sometimes used for precious metals, and even more are found
in other English systems.
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This idea can be developed quite formally, but for practical purposes this is not necessary.
We can think of conversion factors as recipes, such as “To convert kg to g, multiply by
1,000.”. But we can also write them as equations, such as

1 kg = 1000 g

We can re-write this equation as

1 kg

1000 g
= 1

or:

1000 g

1 kg
= 1

Remember that any number multiplied by 1 (or divided by 1) is itself. This is expressed
more formally by the statement, “Multiplication by 1 is an identity operator.” So, if we
want to convert 37 kg to g, we can write this algebraically as:

37��kg ×
1000 g

1��kg
= 37000 g

This isn’t very exciting, but the important point is that the units are treated just as any
other algebraic term, like a variable x or a, would be. We know that we did things properly
because the kg units cancel out properly to give us an answer in g. If we had divided instead
of multiplied we would get:

37 kg × 1 kg

1000 g
= 0.037 kg2/g

Mathematically, this is correct, but the answer we get doesn’t make sense in terms of the
units we are looking for.

As a potentially more interesting example, consider the scale and dimension of a bacterial
cell. One of the major bacterial species in our gut is Escherichia coli, and the cells of this
species can be approximately described as cylinders 2µm long and 1µm in diameter, as
illustrated in Fig. 1.7.

Expressing the relationship in terms of dimensions (as opposed to specific units), the
volume of a cylinder is calculated as:

V = L× A

where L is the length of the cylinder and A is the area of the “caps” at each end. From the
equation for area of a circle,

V = LπR2

where R is the radius of the cylinder. For our bacterium, L=2µm and, R=0.5µm, so that
we can replace the dimensions with values with specific units:

V = 2µm · π · (0.5µm)2

= π · 0.5µm3

≈ 1.57µm3
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A.

B.

Figure 1.7
A. Light-microscope image of an E. coli
bacterium, from http:

//eduspace.free.fr/ibbiology2007_

14/02_cells/e_coli.html.
B. Approximation of the bacterial cell as a
cylinder.

So the answer is ≈1.6µm3, but cubic micrometers are not units of volume that are very easy
to relate to!

A more conventional unit of volume is a liter. So, how do we get from µm3 to L? An easy
to remember conversion factor for volume is based on the cubic centimeter, or “cc”, which
is equal to 1mL. We can use this to derive a conversion factor from mL to m3.

1 cm = 0.01m

(1 cm)3 = (0.01m)3

1 cm3 = 10−6m3

1mL = 10−6m3

Notice that we start with a relationship between two units of linear distance and raise both
sides of the equation to the third power to obtain a relationship between units of volume.
Importantly, the entire expression on each side of the second line is raised to the third power,
not just the units. This follows the standard rules of algebra, and raising only the units to
the third power will lead to an incorrect result. We can then manipulate this result further
to obtain the relationship between 1L and m3.

1mL× 1000 = 10−6m3 × 1000

1000mL = 10−3m3

1000��mL× 1 L

1000��mL
= 10−3m3

1 L = 10−3m3

This conversion factor is one that is worth committing to memory, as we will frequently want
to relate volumes to lengths on a range of scales.
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For the case of the bacterial cell, we can use this factor to express the volume in liters:

1.6 µm3 ×
(
10−6m

1 µm

)3

= 1.6× 10−18m3

1.6× 10−18m3 × 1 L

10−3m3
= 1.6× 10−15 L

A typical laboratory culture of E. coli contains about 109 (1 billion) bacteria per mL.
The total volume of these bacteria is:

109 bacteria× 1.6× 10−15 L/bacterium = 1.6× 10−6 L

1.6× 10−6 L× 103mL/L = 1.6× 10−3mL

So, about 0.2% of the culture volume is occupied by bacteria.

1.4 Units of Concentration

The concept of concentration is central to chemistry and is critical to much of biology and
physics. The particular issues that arise in dealing with units of concentration are thus
deserving of some review here. There are a variety of different ways that concentrations can
be expressed, but we will focus on the ones that are most common and appropriate for the
topics we will cover in this course.

1.4.1 Different ways of expressing concentration

For most purposes, the most convenient units of concentration are those that express the
amount of solute present in a given total volume of solution. This amount of solute might
be expressed as a mass or as the number of moles, to give units, for instance, of g/L or
mol/L (M). In practical terms, these definitions mean that we would make, for instance, a
10 g/L solution by measuring 10 g of the solute and dissolve it in somewhat less than 1L of
solvent and then add more solvent to make up a final volume of 1 L. At first glance, this
seems like a rather awkward definition and procedure: It would be easier to make a solution
by dissolving 10 g of solute in 1 L of solvent. However, for calculations, it is much easier to
work with concentrations defined in terms of the total volume, rather than the amount of
solvent used. This is because it is straight forward to calculate the amount of solute in a
given volume of solution, or conversely the volume that would contain a given amount of
solute. For instance, if we have 50mL of a 50 g/L solution of glucose in water, we can readily
calculate the number of grams in the solution as follows:

50��mL× 1 L

1000��mL
= 0.05 L

50 g/��L× 0.05��L = 2.5 g

Consider, on the other hand calculating the number of grams in a solution made up by dis-
solving 50 g of glucose in 1 L of water. We would expect that the total volume of this solution
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would be greater than 1L, but knowing how much more requires additional information, and
this is not a simple calculation! When compounds, even as liquids, are mixed together in
a solution their volumes do not necessarily add together in a simple way. The balance of
interactions among the different kinds of molecules can bring some pairs closer together and
lead to repulsions between others. As a consequence, the final volume can be either smaller
or greater than the sum of two volumes of different liquids. When a solid is dissolved in a
liquid, the problem is even more complicated. Furthermore, water, the solvent most relevant
to biology, is a particularly complicated liquid, a point that we will return to later in the
course. So, if we were to make up a solution by mixing a given amount of solute with a given
amount of solvent, we would probably have to measure the final volume in order to relate
volume to the amount of solvent. (For a few, particularly well-characterized solute-solvent
pairs, very precise measurements have been made that can be used to predict volumes and
densities of solutions.)

There are some special applications for which it is advantageous to use units of concen-
trations based on the amounts of solute and solvent, rather than total volume. In particular,
molal units are used often in chemical thermodynamics. A 1molal solution is prepared by
dissolving 1mole of solute in 1 kg of solvent. The advantage of a concentration defined this
way is that it does not change with temperature or pressure; the masses of solute and sol-
vent remain the same. In contrast, a change in temperature or pressure can change the
total volume of a solution and, therefore the molar concentration. The behaviors of the two
solutions aren’t really different, it’s just that the definition of a molar concentration depends
on volume, and the molal concentration doesn’t. As in many things, it is a matter of what
is most important to keep track of for a particular purpose.

Now, it should also be noted that the practical difference between solutions defined by
the amount of solvent versus a given total volume depends greatly on just how concentrated
the solutions are. If, for instance, the solute makes up less than 1% of the total volume of
the solution, just mixing the solute with, say, 1 L of solvent may not introduce a significant
error for many purposes. In biochemistry labs, solutions are often made up to quite small
volumes (usually because the reagents are very expensive), and this kind of error is frequently
considered acceptable. On the other hand, the solute may make up as much as half of the
total volume of some solutions, and the difference between, say, a 5M solution and a 5molal
solution is very significant, indeed.

In some situations, solution concentrations are expressed as percentages, and here there is
also an important distinction. Percentage solutions can be specified as either mass per volume
or volume per volume. A percent mass/volume,%(m/v), concentration, sometimes identified
as %(w/v), is defined as the number of grams of solute dissolved in enough solute to make
100mL total volume. As with molar concentrations, it is easy to calculate the amount of
solute in a given volume of solution for a %(m/v) solution. Percent volume/volume, %(v/v),
concentrations are usually used for solutions made by mixing volumes and are defined by
the number of mL of one liquid mixed with a second liquid to give a final volume of 100mL.
Depending on the densities of the liquids, there may be a significant difference between the
percent concentrations expressed as m/v and v/v for the same solution.
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1.4.2 Units of atomic and molecular mass

A variety of terms are used to describe the masses of atoms, ions and molecules, and there
is a bit of confusion and inconsistency in their definitions and use. At first glance, it might
seem that atomic and molecular masses should be expressed in the usual SI unit of mass,
the kilogram. But, the mass in kilograms of a single atom or molecule is a very small and
awkward number for most uses. So, instead we have a special unit, which goes by different
names in different contexts. Both of the following refer to the same unit:

• Unified atomic mass unit, abbreviated as u or amu

• dalton, abbreviated as Da

Niether of these equivalent units is defined in the SI, but are defined by the International
Union of Pure and Applied Chemistry (IUPAC). The term amu is widely used in the field
of mass spectrometry (where molecular masses are sometimes measured with precision of a
fraction of an amu), whereas the dalton is more widely used in the molecular biosciences.

These two equivalent units are defined as the mass of an atom, ion or molecule divided by
the mass of an atom of carbon 12 (12C) divided by 12. By this definition, then, an atom of
12C has a mass of exactly 12Da. 1 amu, or 1 da is approximately equal to 1.66054×10−27 kg.

Although we tend to think of the atomic mass of an atom as being an integer, equal
to the total number of protons and neutrons in the nucleus, the masses of the protons and
neutrons do not add exactly, because of the presence of other subatomic particles. So, the
masses of atoms other than 12C generally differ slightly from an integer. In addition, when a
sample of an atomic or molecular species is considered, there are usually more than a single
isotope present, with different masses, so that the average atomic or molecular mass of the
species usually deviates significantly from an integer. The molecular masses that are usually
cited in articles, books and on the labels on bottles of chemicals are based on the average
ratios of the various isotopes found in nature (on our planet). But, these ratios can differ
slightly for natural reasons and can be altered greatly by artificial enrichment.

Because the amu and dalton are defined as the ratio of two masses, they are really units
without dimensions, and is common and legitimate to represent atomic and molecular masses
as pure numbers without units. To emphasize the relative nature of atomic and molecular
masses, IUPAC defines the terms relative atomic mass and relative molecular mass, with
the symbols Ar and Mr, respectively. The terms atomic weight and molecular weight are
also deeply ingrained in many of us, but aren’t strictly correct, since weight is a measure of
(gravitational) force, rather than mass.

Two other commonly used terms are molar mass and relative molar mass, both of which
refer to the mass of one mole of a substance6. Logically, molar mass would simply have
the units of g or kg, but it is usually expressed as g/mol, which is a bit redundant. The

6The definition of the molar mass has been muddied somewhat by the redefinition of the mole in 2019,
but not in a way that is likely any to have any practical differences. Prior to 2019, the mole was defined as
the number of 12C atoms in exactly 12 g. This meant that, by definition, the molar mass of 12C was exactly
12 g/mol, and the molar masses of other entities were similarly linked exactly to their atomic or molecular
masses. With the mole now redefined as exactly 6.02214076×1023 particles, the direct connection to the
atomic mass and molar mass of 12C is broken. But, any discrepancy is on the order of parts per billion!
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relative molar mass is defined by IUPAC as the molar mass divided by 1 g/mol, making it
dimensionless and equal to the relative molecular mass, Mr.

So, we have the following terms (for molecules) which all have the same numerical values
and convey the same information:

• Molecular mass (or weight), with units of daltons (da) or unified atomic mass unit (u
or amu).

• Relative molecular mass (or weight), without units and represented as Mr.

• Molar mass, with units g/mol.

• Relative molar mass, without units and equivalent to relative molecular mass.

These distinctions are all rather picky, but for clarity one should be careful to use the
appropriate units when using one of these terms. The important point, for practical purposes
is this: Given the molecular mass in any of these forms, one has in hand the conversion factor
for converting between mass in grams and the number of moles. If we have a molecular species
with a relative molecular mass, Mr, we can write:

1mole =Mrg

Mrg/mol = 1

So, for instance, if we have 30.0 of glucose with a molecular mass of 180.16Da, we can
calculate the number of moles as:

30.0 g ÷ 180.16 g/mol = 0.166mol

1.4.3 Special units of concentration for hydrogen and hydroxide
ions

There are two ionic species that receive special attention whenever water is involved, and
these are the hydrogen (H+) and hydroxide (OH– ) ions. These two are always present,
though usually at quite low concentrations, in aqueous solutions because water itself has a
tendency to dissociate to produce both:

H2O −−⇀↽−− H+ +OH–

The forward dissociation reaction rate is actually quite slow, so that the average time for
a given water molecule to dissociate is about 11 h. However, even a small volume of water
contains a large number of water molecules, and re-association of H+ and OH– is very
fast, occurring essentially instantaneously once the the two ions colide in solution. As a
consequence the forward and reverse reactions reach a balance in a fraction of a second.
We will discuss equilibrium constants in more depth later in the course, when we study
thermodynamics, but for now it is sufficient to say that the reaction quickly reaches an
equilibrium state such that the concentrations of H+ and OH– are related to one another
according to:

[H+]eq[OH−]eq = 10−14M2
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where [H+]eq and [OH−]eq are the equilibrium concentrations of the two ions. Because the
dissociation reaction reaches equilibrium very rapidly, we generally assume that the con-
centrations of H+ and OH– in a solution satisfy the equilibrium condition. An important
consequence of this relationship is that if the concentration of either H+ or OH– is known,
the concentration of the other is also determined. In an absolutely pure sample of water,
the dissociation reaction should be the only source of H+ and OH– , and their concentrations
should be equal. This defines what we describe as a neutral solution, and the equilibrium
expression is satisfied under these conditions when the concentrations of H+ and OH– are
10−7M.

Because the concentration of H+ and OH– can vary over a wide range, it is convenient
to use special representation for their concentration, pH and pOH, respectively. The pH and
pOH of a solution are defined by”

pH = − log [H+]

pOH = − log [OH−]

From this definition and the discussion above, you should be able to readily demonstrate
that the pH and pOH of a neutral aqueous solution are both equal to 7 and that the sum
of pH and pOH is equal to 14 for any solution. Although either pH or pOH can be used
to describe the equilibrium concentrations of H+ and OH– in a solution, pH is, by far, the
more commonly used parameter.

Earlier, we estimated the volume of an E. coli bacterium to be about 10−15 L. An
interesting implication of this very small volume is that the number of some molecules and
ions in a single cell are surprisingly small. For instance, we can ask: How many hydrogen
ions are in a bacterium? If the pH in the cell is 7, then the concentration is

[H+] = 10−pHM = 10−7M = 10−7moles/L

The number of moles of H+ ions is then calculated as

10−7moles/L× 1.6× 10−15 L = 1.6× 10−22moles

To calculate the number of ions, the number of moles is multiplied by Avogadro’s number,
which can be thought of as having the units of particles/mole

1.6× 10−22moles× 6.02× 1023 ions/mole ≈ 100 ions

That’s not very many!
There are also bacteria that grow at pH 9. How many hydrogen ions are present in one

of these bacteria?
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1.5 Further reading

For an authoritative reference on the SI units and conversion factors, see:

• Thompson, A. & Taylor, B. N. (2008). Use of the international system of units
(SI). NIST Special Publication 811, National Institute of Standards and Technology,
Gaithersburg, MD.
http://physics.nist.gov/cuu/Units/bibliography.html

A convenient online unit conversion tool:

• http://www.digitaldutch.com/unitconverter/

Keep this disclaimer in mind: “While we try really hard to make all calculations
accurate, we do not guarantee that the results you get are correct. If you do find any
bugs I highly appreciate it if you email us at info@digitaldutch.com”

Wikipedia contains a number of good articles on the metric system, including its history
and the current SI. As a publicly edited secondary source, some caution is always advised
when using Wikipedia (or any source, really), but these articles are well referenced, so that
the primary sources can be checked.

• https://en.wikipedia.org/wiki/Metric_system

• https://en.wikipedia.org/wiki/Metre

• https://en.wikipedia.org/wiki/Kilogram

• https://en.wikipedia.org/wiki/International_System_of_Units

• https://en.wikipedia.org/wiki/2019_redefinition_of_the_SI_base_units

Wikipedia articles on English measurement systems:

• https://en.wikipedia.org/wiki/English_units

• https://en.wikipedia.org/wiki/Imperial_units

• https://en.wikipedia.org/wiki/United_States_customary_units

Articles on the redefinition of the kilogram and mole with new technologies:

• Cho, A. (2018). World poised to adopt new metric units. Science, 362, 625–626.
http://doi.org/10.1126/science.362.6415.625

• Cho, A. (2017). Plot to redefine the kilogram nears climax. Science, 356, 670–671.
http://dx.doi.org/10.1126/science.356.6339.670

• Robinson, I. A. & Schlamminger, S. (2016). The watt or Kibble balance: a technique
for implementing the new SI definition of the unit of mass. Metrologia, 53, A46.
http://dx.doi.org/10.1088/0026-1394/53/5/A46

• https://www.nist.gov/physical-measurement-laboratory/

silicon-spheres-and-international-avogadro-project
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Chapter 2
Probability

2.1 An example of a random process: Brownian Mo-

tion

I. Some history

Although we tend to think of biological movement, especially that of animals, as being
rather directed, at microscopic scales motion in both living and non-living systems can
be quite random. The discovery of this kind of motion is credited to a Scottish botanist,
Robert Brown (1783–1858). Brown served on a expedition to Australia in 1801–1805
and spent many years afterwards characterizing the plants that he collected on this
expedition. Brown was a particularly skilled microscopist, and in 1826 described the
motion of tiny particles within pollen grains. He was not the first to observe this kind
of motion, but others who had seen it assumed that it reflected some kind of living
process. By carefully describing the motions and showing that they could be seen in
materials that were clearly not living (like particles of coal dust suspended in water),
Brown showed that the motions represented a physical process, rather than a biological
one.

A movie of small particles, ≈100 nm diameter, undergoing Brownian motion is available
online:
https://www.youtube.com/watch?v=cDcprgWiQEY

A theoretical model explaining Brownian motion was presented by Albert Einstein in
1905. This was just one of four major papers that Einstein published in his annus
mirabilis (miracle year). The others concerned special relativity and the photoelectric
effect (for which he won the Nobel Prize in 1921). The paper on Brownian motion
would have probably made the reputation of just about any other scientist, but for
Einstein it seems almost a footnote.

Einstein’s explanation for Brownian motion was that particles in a liquid are constantly
being bumped into by molecules, and each collision causes a small motion of the parti-
cle. Every once in a while, an imbalance in the number of molecules colliding from one
side or the other causes a larger movement in a random direction. This is illustrated
in the drawing below:
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This drawing comes from an online simulation of Brownian motion.
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Brownian/

brownian.html

On the left, a large particle moves randomly because of collisions of more rapidly
moving small molecules. On average, the forces on the particle average to zero, but at
any instant, there may be an imbalance of collisions from different directions, leading
to a small motion. The right-hand panel shows the trajectory of the particle over time,
as viewed at lower magnification.

Importantly, Einstein did not just describe this model qualitatively (which others be-
fore him had done), but developed a mathematical treatment that made quantitative
predictions that could be tested by experiments. Experimental confirmation of this
theory provided critical support for the existence of atoms and molecules, an idea that
was still contentious at the beginning of the 20th century.

II. A mathematical description - random walks

1. A detailed, exact mathematical description of this process, with explicit descrip-
tions of the behavior each molecule, would be almost impossible.

2. An important aspect of science is deriving an abstract description of a process
that captures important elements but is as simple as possible. To quote Einstein
(roughly): Theories should be a simple as possible, without being so simple that
they fail to account for important observations.

3. The key element of Brownian motion is that in a given time interval, there is an
equal probability that a particle will move one way or the opposite way.

4. We can describe the overall behavior of a particle undergoing Brownian motion
as a random walk: A process made up of multiple steps separated by random
changes in direction.

5. A one-dimensional random walk:

• Flip a coin.

• If the coin lands heads-up, take a step to the right. If the coin lands tails-up,
take a step to the left.
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• Repeat.

6. The Galton probability machine or ”Galton board” - aka Plinko: A mechanized
demonstration of a one-dimensional random walk, or any process made up of a
sequence of binary random events.

Illustration from http://mathworld.wolfram.com/GaltonBoard.html

• A triangular array of pegs placed on a vertical board. A ball is dropped on to
the top peg and bounces to the left or right with equal probability. At each
row, the ball hits a peg and moves to the left or right. The balls are collected
in bins below the bottom row.

• Devised by Sir Francis Galton, 1822-1911: A cousin of Charles Darwin. Gal-
ton played an important role in developing the mathematical description of
genetic variation and evolution, but was also a major advocate of the idea
that society could be improved by the selective breeding of humans and gave
this idea the name eugenics.

• Also known as a probability machine or “Plinko”.

• Computer simulation:
https://phet.colorado.edu/en/simulation/plinko-probability

2.2 Introduction to probability theory

I. Some introductory comments.

In terms of its relevance to science and every day life, probability is arguably one of the
most important branches of mathematics. But, it is also has a bit of an odd position
within mathematics, and it is, I think, severely under represented in our undergraduate
curriculum. It is also one of the most challenging subjects to learn and teach.

1. Why is probability a misfit in the world of mathematics?
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If you think about the traditional branches of mathematics, they are generally
concerned with the properties of certain kinds of abstract objects:

• Geometry: lines, circles, polygons, planes, spheres, polyhedra, etc.

• Number theory: Integers

• Algebra: Polynomials

• Calculus (or analysis for the purists): Functions that change smoothly (usu-
ally).

Although all of these have applications in the real world, these branches of math-
ematics can be discussed completely in the abstract, and that is the way most
mathematicians like it!

Probability, on the other hand, deals specifically with the description of real events
of a certain type (or models of those events). In particular, probability deals with
events about which we are, to some degree, ignorant. We use probability to
describe things that have uncertain outcomes. If you think about it, there are
lots of things like that!

2. Why is probability so difficult?

A. One problem is that we constantly use the language of probability in our
everyday lives, without necessarily paying attention to exactly what we mean.
Some common expressions of a probabilistic nature:

• It is likely that . . .

• Chances are . . .

• I’ll bet that . . .

We are also accustomed to hearing numbers associated with such statements,
such as “There will be an 80% chance of rain tomorrow.” What do statements
like this mean, and where do they come from?

B. Another problem is that discussions of unpredictable events often have large
emotional component. For instance:

• What are the chances that I will win the lottery?

• What is the probability that I will get cancer?

The probabilities of these events might (or might not) be similar to the prob-
ability of rain tomorrow, but our emotional responses to them are likely very
different.

C. The calculation of probabilities often involves some rather tricky counting,
and the results often contradict our intuition.

D. The answer to a probability question can depend on exactly how the question
is framed. Make sure that you are answering the right question!

II. A coin toss

A typical probabilistic statement: If I toss a coin, the chances it will land heads-up are
the same as the chances it will land heads-down.

What is implied by this statement?

28



2.2. INTRODUCTION TO PROBABILITY THEORY

• Ignorance: I don’t actually know which way the coin will land.

• Knowledge: If I toss the coin a large number of times, the number of times it
lands heads-up will be approximately the same as the number of times it lands
tails-up.

These answers raise some more questions:

• Why don’t I know which way the coin will land? Isn’t this just Newtonian me-
chanics?

• How many times do I have to toss the coin before the number of heads will equal
the number of tails? Will they ever be exactly equal?

• Can I say anything more specific about the expected pattern of heads and tail?

For now, we will try to address just one of these questions: Why can’t I predict the
outcome? The answer is that the final outcome (heads or tails) is extremely sensitive to
a large number of small factors that we usually don’t have control over. These factors
include the exact force applied to the coin, the angle at which the force is applied, any
air currents that affect the coin, exactly how the coin hits the surface when it lands. In
principle if all of these factors could be controlled and measured, it should be possible
to predict the outcome of the toss.

To some degree, the uncertainty of a coin toss is tied to the structure of the coin: The
thin edge makes it almost certain to fall one way or the other, and the (near) symmetry
makes it equally likely to fall either way. Of course, the coin may be bent or otherwise
altered so that the probabilities of heads and tails are not equal.

III. A bit of mathematical formalism.

In order to develop a mathematical theory of probability, we have to make some careful
definitions of quantities that we can manipulate. This will seem a bit much for a simple
coin toss, but the definitions are important for keeping us straight as we move on to
more complicated cases.

1. Outcomes For a given experiment, we define a set of distinct outcomes. For
the coin toss, we define two outcomes, heads (H) and tails (T ). Now, we could
also consider other outcomes, like dropping the coin, but that makes things more
complicated. So, what we usually do is simplify the situation by excluding things
like dropping the coin or that it might land on its edge.

2. Probabilities For each of the possible outcomes, we define a probability, a number
(p) constrained such that:

• p for any given outcome must lie between 0 and 1, inclusive.

• The sum of the probabilities for all of the possible outcomes is 1.

For the coin toss, our experience and intuition says that:

p(H) = 1/2

p(T ) = 1/2
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What, exactly do we mean by this? This is not quite as obvious as it sounds, and
there are actually two major ways of interpreting probabilities, reflecting some
rather deep philosophical differences among probabilists. We will use the more
intuitive and traditional view, called a “frequentist” interpretation.

A. The frequency interpretation of the statement, p(H) = 1/2, is simply that
if a “fair” coin is tossed a large number of times, the fraction of times it
lands heads-up will be approximately 1/2, and the fraction will, over time,
get closer to 1/2 as the number of tosses is increased.
This general trend is called the “law of large numbers”.

B. The alternative interpretation of probabilities is called “Bayesian”, referring
to Thomas Bayes, an 18th century cleric and mathematician, who devised a
very important equation concerning the probabilities of related events. Fre-
quentists do not dispute Bayes’ equation, but the Bayesians interpret and
apply it more broadly. In brief, the Bayesian approach is used for situations
in which we are asking questions for which there are not enough data to make
a frequency estimate, such as, “What is the probability that it will rain to-
morrow?” Since there has never been even one day exactly like tomorrow,
there is no way to know the frequency of rain on such days. But, if we have
an initial estimate of the probability, called a prior probability, additional
information can be used with Bayes’ equation to refine the initial estimate
to create a posterior probability. The Bayesian approach is somewhat con-
troversial, but it has become a very important tool in areas in which exact
probabilities are not known, but there is a large amount of data with which
to refine the estimates. One common example is filtering e-mail messages for
spam.

For our purposes, the frequency interpretation is most useful. It has a rela-
tively intuitive basis, and most of the problems we will be considering, such
Brownian motion and diffusion, involve large numbers of random events.

3. Sample spaces We call the set of all possible, distinct outcomes for a given
experiment a sample space, S. For a single coin toss:

S = {H,T}

We will use curly braces, as above, to enclose the elements of the set. This gets a
little more complicated when we consider more complicated experiments, such as
multiple coin tosses. For two coin tosses, there are four possible outcomes, and
we will define the sample set as:

S = {(H,H), (H,T ), (T,H), (T, T )}

where the outcomes are defined as ordered pairs, in parentheses, representing the
results of the two independent coin tosses.

This is a little bit arbitrary. We could define three outcomes defined in terms of
the total number of heads or tails, irrespective of the order:
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• Two heads: 2H

• Two tails: 2T

• One heads, one tails: 1H1T

But, the case of 1H1T is actually the combination of two outcomes, (H,T ) and
(T,H), as initially defined.

The major difference between these two ways of defining the outcomes is that the
probabilities of the individual outcomes are all equal for the first definition, but
not for the second.

In general, we try to define the outcomes and the sample set to make assign-
ing probabilities as simple as possible. This doesn’t necessarily mean that the
probabilities are all equal, though.

For the plinko, we would define the sample set as the set of all distinct paths
through the pegs, not the set of all possible final bins.

Although there might be different ways of defining a sample space for a particular
experiment, it must satisfy two requirements:

• The set must be complete, i.e., it must include every possible way that things
can end up.

• The items in the set must not overlap.

A consequence of these two requirements is that the sum of the probabilities of
the outcomes must be exactly 1.

4. Events Formally, an event is defined as a subset of the sample set, i.e., a set of
zero or more of the possible outcomes.

For example, with two coin tosses, we could define the events that we considered
above:

• Two heads: 2H = {(H,H)}
• Two tails: 2T = {(T, T )}
• One heads, one tails: 1H1T = {(H,T ), (T,H)}

For the plinko, we could define an event as the ball falling into a given bin.

As noted above, we generally try to define outcomes so that the probabilities can
be easily calculated, and then use those probabilities to calculate the probabilities
of events, or groups of outcomes.

The choice of words, “outcomes” and “events”, is pretty arbitrary, but the dis-
tinction between the two kinds of groupings is important. The outcomes of an
experiment are events, but there are usually other events that can be defined as
groups of outcomes. The outcomes defined in the sample space must satisfy the
requirements specified earlier: They must include all possible outcomes of the
experiment, and the sum of their probabilities are one, while there are no general
requirements for events.

We can often define a variety of different events, some of which may overlap. For
instance we could define an event such that there is at least one heads.

1+H = {(H,T ), (H,H), (T,H)}
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This event overlaps the events 2H and 1H.

There is no requirement that a set of events be complete or non-overlapping.

Often, it is the probabilities of events, as defined here, that is most important.
For instance, we care about which bin the plinko ball falls in, but not necessarily
the specific path it takes there. Thus, we often want to be able to calculate the
probabilities of events from the probabilities of outcomes.

IV. Multiplying and adding probabilities.

Provided that we are careful in defining the sample space, the rules for calculating the
probabilities of other events are relatively simple. For this discussion, it is useful to
introduce another term, trial, to indicate a single probabilistic process or experiment.
A trial that can have only two outcomes is referred to as a binary trial or Bernoulli
trial, for the Swiss mathematician Jacob Bernoulli (1665–1705). It is also natural to
refer to individual trials as events, but this leads to confusion with the definition of
events as subsets of the sample set.

1. Sequential independent trials - the product rule.

We can think of the experiment composed of two coin tosses as two sequential
experiments, or trials, each with the sample space, S = {H,T}. In fact, just
about any complicated process can be broken down in this fashion. It is often
useful to draw a tree representation of the sequential trials, like the one below:

(H,H) (H,T) (T,H) (T,T)

H T

It’s not a coincidence that this looks like the plinko, but there is an important
difference: All of the different outcomes are kept separate.

For the first coin toss, p(H) = p(T ) = 1/2. Therefore, if we do this experiment
many times, we expect heads for the first toss half of the time. Consider just this
half, for a moment. For the second toss, we also expect heads half of the time. So,
out of all of the two-toss experiments, we expect the outcome (H,H) 1/2 × 1/2
of the time. Therefore, p(H,H) = 1/4. The same argument can be made for all
of the outcomes of this experiment.

The general statement of this result is that if we have two sequential and inde-
pendent trials, then we can calculate the probabilities of the final outcomes of
the compound experiment as the products of the individual probabilities. We call
this the product rule. We can extend it to compound experiments of any length.

Application of the product rule is often associated with the word “and.” For
instance, the outcome (H,H) can be described as “heads for the first toss and
heads for the second toss.”

32



2.2. INTRODUCTION TO PROBABILITY THEORY

In this particular case, the product rule leads to the conclusion that all of the
outcomes in the sample space have equal probabilities, 1/4. But this is not always
the case. Suppose that we are playing with a coin that has somehow been messed
with so that the probability of landing heads-up is 0.6 and the probability of
landing tails-up is 0.4. We can still use the same arguments and the product rule:

(H,H) (H,T) (T,H) (T,T)

H T

0.6 0.4

0.40.4 0.60.6

0.36 0.24 0.24 0.16

Notice that the sum of the probabilities is still 1.

2. Groups of non-overlapping events - the addition rule.

A. We have already used this rule implicitly.
Consider the event we defined earlier, 1H1T , i.e., one heads and one tails,
irrespective of order. This event is a composite of two outcomes:

1H1T = {(H,T ), (T,H)}

The probability of 1H1T is calculated as the sum of the outcomes:

p(1H1T ) = p((H,T )) + p((T,H))

Just as we said that the product rule is associated with the word “and”, we
can say that the addition rule is associated with “or”. The event 1H1T can
be described as being the result when (H,T ) or (T,H) is the outcome.
If p(H) = p(T ) = 1/4, then p(1H1T ) = 1/2.

B. What is p(1H1T ) if p(H) = 0.6? What can we say in general about p(1H1T )
if p(H) is not equal to p(T )?
Consider two extreme cases:

• p(H) = 0 and p(T ) = 1. Then:

p(1H1T ) = p((H,T )) + p((T,H))

= p(H)P (T ) + p(T )P (H)

= 0

• p(H) = 1 and p(T ) = 0. It should be apparent that p(1H1T ) = 0, again.

We can write a general expression for p(1H1T ) as a function of p(H), assum-
ing that the two coin tosses are equivalent:

P (1H1T ) = p((H,T )) + p((T,H))

= 2p((H,T ))

= 2p(H)p(T )
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We also know that p(T ) = 1− p(H), so:

p(1H1T ) = 2p(H)(1− p(H))

= 2p(H)− 2p(H)2

A graph of this function:

0 0.5 1

0.5

0.4

0.3

0.2

0.1

0

With a little bit of calculus, you should be able to confirm that 1/2 is the
maximum probability of one heads and one tails. If the coin is biased either
way, the probability is less.
Another example: Consider the event we defined earlier, one or more heads.

1+H = {(H,T ), (H,H), (T,H)}

We calculate the probability of this event as the sum of the probabilities of
the three outcomes it represents:

p(1+H) = p((H,T )) + p((H,H)) + p((T,H))

If the coin is fair, each of the outcomes has equal probability, and p(1+H) =
3/4.
But, there is an even easier way to get this result. The only outcome that
is not included in 1+H is (T, T ). Since the sum of the probabilities of all
outcomes must be 1:

p(1+H) = 1− p((T, T ))

= 1− p(T )p(T )

If the coin is fair, then p(T ) = 1/2 and p(1+H) = 3/4. Sometimes it is
important to consider which probabilities will be the easiest to calculate.

V. A final comment about independent events and the law of large numbers.

Consider the case of a long string of coin tosses. Suppose that 10 straight tosses turn
up heads. Someone offers you a bet: If the next toss turns up tails, she will pay you
$1, if it turns up heads, you pay her $1. Is this a “better-than-even” bet?

The law of large numbers says that eventually the numbers of heads and tails will be
close to equal. So, is it time for the coin to show up tails?
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No! The coin doesn’t know or care about the law of large numbers! Each toss is
independent, so the probability of tails for the 11th toss is the same as for the first toss.

Thinking that “it’s time for a tails” is known as the “gambler’s fallacy”, and has cost
many people lots of money over the ages!

But, is there another way of thinking about this situation? What have we assumed
about the coin (or its tosser)? If that assumption is called into doubt, how does that
change our assessment?

2.3 Plinko probabilities: 6 rows

I. Formulation of the problem

A 6-row plinko:

1 2 3 4 5 60

The white circle represents the ball, and the black circles represent the pegs in the
path of the ball.

For a general n-row plinko, the bottom row of pegs will contain n pegs. Since a ball
can fall to the right or left of each peg, there are n + 1 final positions, or buckets, for
the balls to fall into. For convenience in what comes later, we label the buckets from
0 to n, or 0 to 6 for the 6-row plinko.

II. Outcomes We have some discretion in defining the outcomes and sample set, so long
as we follow the basic rules:

• The outcomes in the sample set must include all possible outcomes.

• None of the outcomes in the sample set can overlap any other outcome.

• The sum of the probabilities of all of the outcomes in the sample set must equal
1.

At first glance, it might make sense to define seven outcomes, corresponding to a ball
falling in bucket 0, 1, 2, 3, 4, 5 or 6. We know already, however, that the probabilities
of these seven outcomes are not equal, and we will find that calculating them is rather
involved. So, instead, we will start by defining the outcomes as all of the possible paths
of a ball through the plinko, which all have equal probabilities. Then, we will use the
elements in the sample set to calculate probabilities for the events corresponding to a
ball landing in each of the buckets.
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A few of the outcomes, individual paths, are shown below:

1 2 3 4 5 60 1 2 3 4 5 60 1 2 3 4 5 60

A. B. C.

Notice that the paths labeled B and C both lead to bucket 2, but we are treating these
as separate outcomes. Notice, also, that both of these paths include two turns to the
right, where as the path to bucket 0 includes 0 turns to the right. More generally, any
path leading to bucket k must include exactly k turns to the right.

First, we calculate the number of outcomes in the sample set and their probabilities.
When the ball hits the single peg in the top row, there are two possible turns, left or
right. Similarly, when the ball hits one of the pegs in the second row, there are two
possible turns. Each of these turns are independent, just like a series of coin flips.
Therefore, the total number of paths is equal to 2n, where n is the number of rows.
For the six-row plinko the number of outcomes is 26 = 64. If the probability of a right
or left turn at each peg is equal (0.5), then the probabilities of all of the outcomes are
equal, and are equal to one divided by the number of possible outcomes. Thus the
probability of each outcome for an n−row plinko is 2−n. For the six-row plinko,the
probability is 1/64.

III. Events

Next, we consider the events corresponding to the ball falling in one of the seven
buckets, which we will call E0, E1, E2, E3, E4, E5 and E6. One way that we could
do this is to write out all of the outcomes (paths) and sort these into those for which
the ball lands in bucket 1, 2 and so forth. This would be quite tedious, however, and
we would like to be able to do this for much larger numbers of steps. Therefore, we
want a more general and efficient way to solve this sort of problem.

1. Paths to buckets 0 and 6

If we consider first the possible paths to bucket 0, we quickly realize that the ball
will reach this bucket only if all of the turns are to the left, as shown in panel A in
the figure above. So, the probability of landing in bucket 0, E0, is 1/64. Similar
reasoning can be applied to conclude that there is only one path to bucket 6, also
with a probability of 1/64.

2. Paths to buckets 1 and 5

In order for the ball to land in bucket 1, the ball must make 1 turn to the right
and 5 to the left. Three such paths are shown below:
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A. B. C.

1 2 3 4 5 60 1 2 3 4 5 60 1 2 3 4 5 60

Since there are six rows, at each of which the single turn to the right can occur,
there must be six different paths to bucket 1, making up the event E1. So, the
probability of E1 is 6/64 = 3/32. The same reasoning can be applied to the paths
to bucket 5, and the probability of E5 is 3/32.

This result can be generalized to say that for an n-row plinko, there are n paths
to bucket 1 and to bucket n− 1.

3. Paths to buckets 2 and 4

Things get more complicated when we consider paths to bucket 2, where we must
enumerate the possible paths that include exactly two turns to the right. The
two turns can occur at any of the six rows, as shown in a few examples:

A. B. C.

1 2 3 4 5 60 1 2 3 4 5 60 1 2 3 4 5 60

In panels A and B, the first turn is to the right, and the second turn to the right
is at row 2 (A) or row 3 (B). In panel C, the first turn is to the left, and the two
turns to the right occur in rows 2 and 3, followed by 3 turns to the left.

To determine the number of paths to bucket 2, without drawing them all out, we
can calculate the number of paths as follows:

• Consider the number of positions for the first turn to the right. This can
happen at rows 1 through 5. (If the first turn to the right occurs at row 6,
there is no chance for a second turn to the right.) If the first turn to the right
is at row 1, then the second can occur at rows 2 through 6, corresponding
to 5 paths. This is analogous to a 5 row plinko and the number of paths to
bucket 1.

• If the first turn to the right is at row 2, there are only 4 rows left at which
the second right turn can occur.

• Generalizing, the further down the ball moves before the first right turn, the
fewer rows there are where the second right turn can occur. Specifically, if the
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first turn to the right occurs at row i, then there are i− 1 possible locations
for the second turn.

• For a 6-row plinko the total number of paths to bucket 2 is calculated as:

5 + 4 + 3 + 2 + 1 = 15

By considering the number of ways of placing two left turns, we can conclude
that there are also 15 paths to bucket 4.

4. Paths to bucket 3

We can now almost fill a table showing the number of baths to each of the buckets

Bucket Paths

0 1

1 6

2 15

3

4 15

5 6

6 1

Since we have already concluded that the total number of paths to all of the
buckets is 64, and 44 paths are accounted for so far, there must be 20 paths to
bucket 3.

The number of paths and probabilities for all of the buckets can now be listed:

Bucket Paths Probability

0 1 1/64

1 6 3/32

2 15 15/64

3 20 5/16

4 15 15/64

5 6 3/32

6 1 1/64

Though we have been able to solve the problem for the 6-row plinko without too
much trouble, you will likely guess, correctly, that enumerating all of the paths
gets more and more complicated as the number of rows increases. To generalize
the solutions to problems of this type of problem, we need to take a different
approach.
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2.4 Plinko probabilities: The general case for n rows

To keep track of the rows and buckets in the general case of an n-row plinko, we will label
them as shown below:

1 20

1

2

3

Before trying to solve the general form of this problem, it is useful to step back and look
at things a bit differently, and also consider some related probability problems.

I. Another way to count the paths to bucket 2 in a 6-row plinko.

Recall that we concluded that any path to bucket 2 must include 2 turns to the right
and 4 turns to the left. A seemingly sensible (but flawed) way of looking at this would
be to say that the first turn to the right can occur at any of the 6 rows, and the second
turn to the right can occur at any of the 5 rows that are remaining. So, using the
product rule, we would calculate the number of paths to bucket 2 as:

6× 5 = 30

Notice that this is twice the number that we calculated earlier! The reason for this is
that this calculation has ignored the fact that one of the turns to the right has to come
before the other. For instance, for the path that includes right turns at rows 2 and 5,
the turn at row 2 has to come first. But, in our second calculation we included both
this path and one in which the turn at row 5 comes before the one at turn 2, which
is physically impossible! More generally, by simply taking the product of 6 and 5, we
have counted twice each of the 15 paths that we counted earlier. But, if we take this
into account, and divide 30 by 2, we get the right answer.

So a general strategy might be to calculate the number of all possible placements of
the right turns, without worrying at first about the order of the turns, and then correct
for the requirement that order does matter.

For the case of bucket 3, we can start by considering (ignoring order) that there are 6
rows where the first turn to right can occur, 5 where the second can occur and 4 where
the third can occur. So the total number of paths (with over-counting) is:

6× 5× 4 = 120

But, how do we determine how many paths have been over-counted?
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II. Labeled beans in cups

Though the connection may not be apparent just yet, it is useful to consider another
type of problem that is popular among probabilists.

Suppose that we have 3 beans, each labeled with a number; 1, 2 or 3, and six cups.
How many distinguishable ways are there to place one bean in one of the six cups? This
is basically the same as the previous problem: There are 6 possible cups for the first
bean, 5 for the second and 4 for the third. So the number of distinguishable different
arrangements is:

6× 5× 4 = 120

The important point here is that these have not been over-counted, because the three
beans are distinguishable. For instance, the following 6 arrangements are distinct:

1 2 3

2 3 1

3 1 2

1 3 2

2 1 3

3 2 1

A B C D E F

For the general case of k labeled beans in n cups (assuming that k ≤ n), the number
of distinguishable arrangements is:

n(n− 1)(n− 2) · · · (n− k + 1)

You should be able to see where the first part of this product comes from, but it may
not be so obvious that (n − k + 1) is the correct place to end the multiplication. So,
you should try out a few examples to convince your self. For instance if n = 10 and
k = 6, (n− k + 1) = (10− 6 + 1) = 5, and the number of distinct arrangements is:

n(n− 1)(n− 2) · · · (n− k + 1) = 10× 9× 8× 7× 6× 5

= 151, 200

There are six terms in the product, corresponding to the 6 labeled beans, and the final
term, 5, represents the five empty cups available for the last bean. Notice, also, how
quickly the number of possible arrangements has increased with a few more beans and
cups!
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III. The factorial function, permutations and combinations

Products like the ones used above arise frequently in probability and other areas of
mathematics, and there is a function that is particularly useful for working with them.
The factorial function is defined only for the integers greater than or equal to 0 and
the factorial function of integer k is written as k!. The function is defined as:

k! =

{
1, if k = 0

n(n− 1)(n− 2) · · · 2 · 1, if k > 0;

Defining 0! as 1 may seem arbitrary (Why isn’t it 0?), but this is important in order
for the function to behave well when 0! appears.

An immediate application of the factorial function is that n! is the number of ways
arranging n labeled beans in n cups. This represents the special case, with k = n, of
arranging k labeled beans in n cups. From the previous page, the number of distinct
arrangements is:

n(n− 1)(n− 2) · · · (n− k + 1) = n(n− 1)(n− 2) · · · (n− n+ 1)

= n(n− 1)(n− 2) · · · 2 · 1
= n!

A distinct way of ordering all of the elements in a set is called a permutation. The
items might be beans with distinct numbers, marbles with different colors or molecules
with distinguishable covalent structures or conformations. So, we can say, “There are
k! permutations of k labeled beans.” This is written as:

P (k) = k!

Note that we are using the upper-case P here to distinguish permutations from prob-
abilities, written with the lower-case p. Another (mathematically equivalent) example
of a set of permutations begins with k labeled marbles in a bag, and we draw all k of
them from the bag. There are k! different orders in which the marbles can be drawn.

An extension to this idea is to consider the number of ways of drawing k marbles from
a bag starting with n ≥ k marbles. Strictly speaking, these are not permutations
if n > k, because not all n elements are used, but they are often referred to as “k-
permutations” of n, written as P (k, n). The number of sequences is calculated as:

P (k, n) = n(n− 1)(n− 2) · · · (n− k + 1)

Another way of writing this is:

P (k, n) =
n(n− 1) · · · (n− k + 1)(n− k)(n− k − 1) · · · 2 · 1

(n− k)(n− k − 1) · · · 2 · 1
=

n!

(n− k)!

This is equivalent to the problem we considered in the previous subsection, the number
of distinct ways of distributing k labeled beans into n cups, with only one bean per cup.
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Now, we have a nice compact way of writing the result. And, if we have a calculator
or computer programmed to calculate the factorial function, it is quite easy to do the
calculation.

The term permutation is sometimes confused with combination. A combination is a
distinct way of selecting a subset of a collection without regard to order. For instance,
we might have a bag of 10 marbles, labeled 1 through 10, and without looking, choose 3
of them. From above, we know that there are P (3, 10) = 720 distinct ways of choosing
the three marbles, if we treat the different orders of choosing the marbles as distinct
from one another. For instance, there are 6 ways of choosing the marbles labeled 3, 5
and 8:

3 5 8

5 8 3

8 3 5

3 8 5

5 3 8

8 5 3

These represent the 6 permutations (P (3) = 3!) of the chosen marbles. For any other
set of three marbles, there are also 6 permutations. Suppose that, after the 3 marbles
have been drawn, the labels were to disappear. The six permutations of each group of 3
marbles would be indistinguishable, and the order in which they were drawn would no
longer be discernable. So, to calculate the number of combinations in which 3 marbles
can be drawn from a bag of 10, we can do the following:

• Calculate the number of ways in which 3 marbles can be drawn, distinguishing
among the different possible orders. This is calculated as:

P (3, 10) =
10!

3!
= 720

• Calculate the number of ways in which 3 labeled objects can be ordered:

P (3) = 3!

• Divide the number of ways 3 objects can be drawn from 10 (distinguishing different
orders) by the number of ways 3 objects can be ordered:

P (3, 10)

P (3)
=

10!

(10− 3)!
÷ 3! =

10!

8!3!
=

3, 628, 800

5040 · 6
= 120
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To generalize, the number of ways of choosing k objects from a set of n, without
distinguishing the order, is calculated as:

n!

k!(n− k)!

We will come back to say a little more about this function, and its more general
applications on page 46.

In the meantime . . .

IV. Back to the plinko

Back on page 39, we suggested that a general way of calculating the number of paths
to bucket k in an n-row plinko would be:

• Calculate the number of possible placements of the k turns to the right, without
regard to order, realizing that this will lead to over-counting the real number of
paths.
This is is analogous to placing k labeled beans in n cups, with no more than one
bean per cup. We have shown above that this is calculated as:

P (k, n) =
n!

(n− k)!

• Correct the number calculated above by recognizing that, for k turns placed at k
specific rows, only one order is physically possible.

For this part of the calculation, first consider the number of ways of placing k
right turns in k specific rows. This is the number of permutations of k objects,
P (k) = k!. But, we know that only one of these represents a physically possible
pathway through the plinko. So, to get the total number of paths with k right
turns, we divide the number of possible placements of the k turns to the right,
without regard to order, P (k, n), by P (k):

P (k, n)

P (k)
=

n!

k!(n− k)!

Thus, we have the desired result, the number of paths to bucket k in an n-row plinko
is calculated as:

n!

k!(n− k)!

To test this result, you should apply it to the case of the 6-row plinko, for which we
previously calculated the number of paths to each bucket (page 38).

The expression that we have derived for the number of paths to bucket k arises in a
variety of situations and is commonly written as:(

n

k

)
=

n!

k!(n− k)!

and spoken as “n choose k”. It represents the number of ways of choosing k objects
from a set of n, when either:
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• Only a single order is valid (i.e., the plinko) or

• The order doesn’t matter at all (k unlabeled beans placed in n cups, with only
one bean per cup allowed).

The total number of paths through an n-row plinko is calculated by multiplying the
number of alternatives from the single peg in row 1 (2) by the number of alternatives
from a peg in row 2 (2), and then multiplying by the number of alternatives from a
peg in row 3 (2), and so on. Thus, the number of paths is 2n. If, at each peg, the
probabilities of turning right or left are equal, then all of the paths will have equal
probabilities, equal to 2−n.

The probability of landing in bucket k, that is event E(k), is the sum of the probabilities
for all of the paths leading to the bucket. If all of these paths have the same probability,
2−n, then the probability of landing in bucket k is:

p(E(k)) =
n!

k!(n− k)!
2−n

The probabilities for plinkos with 6, 10 and 20 rows are shown as bar graphs in the
figure below:

Some things to note about these graphs are

• Each graph has the familiar “bell-curve” shape that arises frequently in a variety
of contexts.

• As the number of rows, n, increases the maximum probability decreases, as the
balls are spread out into more buckets.

• Also as n increases, it becomes increasingly unlikely that a ball will land in one
of the buckets near the left or right end. As a fraction of the total number of
buckets, the distribution of balls becomes more concentrated towards the center.

We will consider all of these features in more detail as we see the same type of distri-
bution arise in different contexts.

2.5 Biased plinkos

So far, we have assumed that the probability of a ball falling to the left or right at any peg is
equal. This assumption leads to the conclusion that all of the paths through the plinko have
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equal probabilities, and that the different probabilities for landing in the different buckets
are only due to the different numbers of paths leading to the different buckets. But, things
get more interesting when we consider that the probabilities of left and right turns might be
unequal for some or all of the pegs.

Suppose that all of the pegs are not quite round, so that the probability of turning to
the right, pR, is 0.6, and the probability of turning left, pL = (1 − pR), is 0.4. For now, we
will consider a specific case of a 10-row plinko, starting with the paths leading to bucket 3.
The fact that the pegs are biased doesn’t change the number of paths leading to a specific
bucket, which we calculate as(

n

k

)
=

n!

k!(n− k)!
=

10!

3!(10− 3)!
= 120

Now, consider the fact that right and left turns have different probabilities. For each of the
120 paths to bucket 3, there are 3 turns to the right and 7 turns to the left. This represents
an “and” situation: The ball must take 3 right turns AND 7 left turns. So, to calculate the
probability of each path, we have to multiply the probabilities for 3 right turns and 7 left
turns.

ppath(3) = p3R · p7L

Note that the placements of the 3 right turns and 7 left turns does not matter in this context,
and this expression applies to all of the paths that lead to bucket 3. Since a ball can land in
bucket 3 by any of the paths with equal probability (an “or” situation), the probability of
landing in that bucket is the sum of all of the probabilities for the individual paths:

p(E(3)) =
10!

3!(10− 3)!
p3R · p7L

For the case where pL = 0.4 and pR = 0.6, the probability of a ball landing in bucket 3 is
0.0425, compared to 0.117 for the unbiassed plinko. The bias of each turn towards right has
moved the overall distribution of probabilities towards the right, reducing the probabilities
of falling on the left-hand side of the plinko.

The more general expression, for bucket k in an n-row plinko is:

p(E(k)) =
n!

k!(n− k)!
pkR · pn−k

L

The bar graphs bellow show the effects of making the right turns progressively more
favored, for the case of the 10-row plinko.
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As the graph shows, increasing the probability of a turn to the right at each peg, leads to
a progressive shift of the overall distribution to the right. Whereas the probability of a ball
landing in bucket 10 is about 0.1% when there is no bias, this probability increases to about
10% if pR is increased to 0.8.

When the probabilities of right and left turns are not equal, there are two competing
factors that determine the distribution:

• A statistical factor favoring the central buckets, because there are more paths available
toward these buckets than towards the buckets near the left and right hand edges of
the plinko.

• A “forcing” factor that causes a systematic tendency towards one side of the plinko or
the other.

The forcing factor can be adjusted by changing the relative values of pR and pL as shown
in the graphs above. The statistical factor, on the other hand, can be modified by changing
the number of rows in the plinko. For instance, with 10 rows, there are 252 paths to the
central bucket, as compared to 1 for each of the buckets on the edge and 10 for the buckets
one in form the edges. With 20 rows, there are 184,756 paths to the central bucket, as
compared to 1 to each of the buckets on the edge and 20 to the buckets one in from the
edges. Thus, the statistical bias towards the center is much greater for the 20-row plinko.

The graphs below show the effects of increasing biases to the right for a 20-row plinko.

As expected from the arguments above, the distribution is still shifted towards the right, but
the buckets at the far right side are not nearly as favored as they are in the 10-row plinko,
because the statistical “resistance” to the bias is greater.

One can imagine other ways in which the plinko could be biased, with only selected pegs
with unequal values of pR and pL. Think of some examples of this kind and see if you can
calculate the probabilities for these scenarios.

2.6 Binomial coefficients, Pascal’s triangle and the bi-

nomial distribution function

I. Binomial coefficients in algebra

Recall that the general expression that we found for calculating the number of paths
to bucket k in an n-row plinko is:(

n

k

)
=

n!

k!(n− k)!
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This expression arises in a variety of contexts, and the values generated from it are
most commonly called binomial coefficients. This term reflects their appearance in
algebra in the expansion of binomials, which have the general form of:

(a+ b)n

where n is the order of the binomial. The results for expanding the binomial for n =
0 through 6 are shown below

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5

(a+ b)6 = a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

If you examine the coefficients for the 6th-order expanded binomial, you will find that
they are exactly the same as the number of paths to the buckets in the 6-row plinko
(page 38).

This may seem an odd coincidence, but there is an underlying connection. In the
plinko, the number of paths to bucket k reflects the number of ways of combining k
turns to the right with n − k turns to the left, and the most paths are found at the
center (k = n/2 when n is even, or k = n/2−0.5 and k = n/2+0.5 when n is odd). In a
binomial expansion, the coefficients reflect the number of ways of multiplying together
a k times and b (n− k) times, to generate products of the form akbn−k.

The binomial theorem, in its simplest form, is the equation:

(x+ a)n =
n∑

k=0

(
n

k

)
xkan−k

where x and a are real numbers, and n is a positive integer. For a discussion of
extension of the theorem to other classes of numbers, see: https://en.wikipedia.

org/wiki/Binomial_theorem

II. Pascal’s triangle

The binomial coefficients for increasing values of n can be laid out in a triangle as
shown below:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Row

0

1

2

3

4

5

6

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . .

. . . .

. .
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If the rows in the triangle are labeled from zero for the top row, row n contains the
coefficients for the binomial expansion of order n. Although this representation was
known before the 2nd century BC, it was brought to prominence in the western world
by the French mathematician, Blaise Pascal, in a book published in 1665, two years
after his death. It is now most commonly identified as Pascal’s Triangle.

When the coefficients are laid out as a triangle, some interesting patterns become
apparent. For instance, the two diagonals starting from the top of the triangle are
composed entirely of 1s. The next diagonals down from the top are made up of the
sequence of natural numbers: 1, 2, 3, . . . .

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

On the other hand, the pattern for the diagonals two down from the top may not seem
to show an obvious pattern at first:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

In this case the numbers along the diagonals increase as we move downward, and the
increments themseles increase. The series of numbers on each of the diagonals do, in
fact, follow a pattern, described by the figurate numbers, but that is a rather abstract
bit of algebra that we will not pursue. There is, however, an easy way to calculate
all of the elements in Pascal’s triangle. If we go back to the second diagonal on the
right-hand side, we find that each element of the diagonal is the sum of the numbers
above and to the sides of it.

+

+

+

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
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The same is true for the elements in the third diagonal on the left:

+

+

+

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

And, the fourth diagonal:

+

+

+

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Indeed, all of the elements of Pascal’s triangle can be calculated in this way. So, if we
remember only that the outer edges of the triangle are composed entirely of 1s, the
rest of the elements in the triangle, to any depth, can be calculated by taking the sum
of the two elements above and to the sides of it.

III. The binomial probability distribution function: Trials and successes

The equation that we have derived for for calculating the plinko probabilities has con-
siderably wider applications, and it is also representative of a general class of functions
that we call probability distribution functions, or pdf s (not to be confused with portable
document format). In particular, this is a class of pdfs described as discrete probability
distribution functions, which, in general, are used to calculate the probabilities of out-
comes or events, for the kinds of process for which the outcomes are discrete, such as
tossing coins, rolling dice or the plinko. For many other processes, the outcomes are
best described as continuous range of values, for which the probabilities are given by
a continuous probability distribution function, which we will come to shortly.

Discrete probability distribution functions are commonly identified in the form:

p(k; a, b, . . . )

where k identifies a specific event, and a, b . . . represent parameters of describing the
process and probability function. For the binomial distribution function:

p(k;n, ps) =
n!

k!(n− k)!
pks (1− ps)

n−k

In the general formulation, this distribution represents the number of successes (k) in
a series of n successive binary trials, with only two possible outcomes (success and
failure), and ps is the probability of success for an individual trial.

Some of the applications of the binomial distribution are:
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• The plinko. Here each peg the ball hits represents a trial, with the “success” in
this case defined as a turn to the right. In order to land in bucket k, there must
be exactly k successes.

• The number of heads (or tails) in n successive coin tosses.

• The number of successes in prescribing a medication to a series of patients with
the same condition, where p is the probability of success in any individual case.

• The probability of surviving n potentially deadly events. In this case, k = n,
since we are only concerned with the case of surviving all n trials.

2.7 Random variables, expected value, variance and

standard deviation

I. Playing for money

The origins of probability theory are closely tied to games of chance, and this context
still offers one of the most vivid ways to start to think about the subject. To make the
plinko more interesting, I might decide to let people drop a ball into a six-row plinko
and promise to pay them $k if the ball lands in bucket k. Unless I only want to hand
out money, I will need to charge people to play the game. So, I would like to know
how much I need to charge if I want to at least not lose money. In other words how
much, on average, should I expect to pay out to each player?

In this case, there is a relatively simple way to solve the problem:

• The probabilities of the ball landing in buckets 0 and 6 are equal. The average
payout for these two buckets is ($0 + $6)/2 = $3.

• The probabilities of the ball landing in buckets 1 and 5 are equal. The average
payout for these two buckets is ($1 + $5)/2 = $3.

• The probabilities of the ball landing in buckets 2 and 4 are equal. The average
payout for these two buckets is ($2 + $4)/2 = $3.

• The payout for bucket 3 is $3.

So, the overall average payout must be $3, and I should charge the players at least this
much if I don’t want to lose money.

The symmetry of the plinko makes the solution to this problem relatively easy to
recognize, but in order to deal with more complicated problems, we will introduce
some additional concepts, random variables and the expected value. Both of these
concepts have been implicit in what we just did, but more formal definitions are called
for when extending the ideas.

II. Random variables

A random variable is defined as a variable that is assigned a value for each possible
outcome or event from a probabilistic process. Some examples include:
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• For a coin toss, we could assign a random variable, x, the value of 1 for heads and
0 for tails. Or, just as arbitrarily, we could define x = 0 for heads and x = 1 for
tails.

• For n successive coin tosses, we could define x to be the number of heads.

• For the plinko, we could define x to be the number associated with the bin that
a ball falls in.

For all but the simplest process (i.e., the coin toss), there are likely to be a variety of
different random variables that could be defined. For instance, for a series of n coin
tosses, we could define the following random variables:

• xeven: equal to 1 when the number of heads is even, and 0 when the number of
heads is odd.

• x0: equal to 1 when there are no heads and 0 otherwise.

• xrun: equal to the number of successive heads in the longest stretch of heads in
the sequence.

Any of these random variables, or many others, could be used for a game of chance,
and the trick lies in figuring out how to calculate the probabilities associated with
different values for the random variable.

So far for the plinko, we have used the bin number, k as the random variable (without
actually calling it that). Now, we will use the variable x to represent the bin number
and define some additional random variables in terms of x. For instance, we can define
another random variable, ∆x, as the position of a bucket from the central bucket. For
the six-row plinko the two random variables are related to one another as shown below:

-2 -1 0 1 2 3-3

0 2 3 4 5 61

For the six row plinko, the two random variables are related to one another in a simple
way:

∆x = x− 3
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Another random variable for the plinko is |∆x|, which represents the distance (in bucket
numbers) from the central bucket, as illustrated below:

2 1 0 1 2 33

0 2 3 4 5 61

For the six-row plinko |∆x| is related to x according to:

|∆x| = |x− 3|

We could use ∆x or |∆x| as the basis for gambling. For instance, I could offer to
pay players $∆x or $|∆x| when the ball falls in bin x. These games will lead to very
different transactions than when I just paid $x. For instance, the negative values of
∆x imply that the players will sometimes pay me. This means that I should reconsider
how much to charge to play the game, and potential players should reconsider how
much they are willing to play.

III. Expected value, or mean of a distribution

The expected value, or expectation, for a random variable, x, is the expected average
value of x if the process is repeated a large number of times. More formally, consider a
process that has m possible outcomes (or a complete set of n non-overlapping events).
If the random variable, x, has values of xi for outcomes i = 1, 2, 3 . . .m, and the
probabilities of the outcomes are p(i), then the expected value is defined as:

E =
m∑
i=1

p(i)xi

In essence, E is a weighted sum, in which each of the possible values of x are weighted
by the probability of that value of x being the result of a single experiment. If the
experiment is repeated a large number of times, we expect the average value of x to
approach E. If the experiment represents a game of chance and x is the payout, then
E is the expected average payout. This is what we need to calculate how much to
charge to play the game.

For the six-row plinko, the possible values of x and the respective probabilities are
listed below:
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Bucket xi p(i) p(i)xi

0 0 1/64 0

1 1 6/64 6/64

2 2 15/64 30/64

3 3 20/64 60/64

4 4 15/64 60/64

5 5 6/64 30/64

6 6 1/64 6/64

Total 1 192/64 =3

This confirms our earlier deduction that the average payout for the game should be 3.

For the random variable ∆x the expected value is quite different, because there are
both negative and positive values:

Bucket ∆xi p(i) p(i)∆xi

0 -3 1/64 -3/64

1 -2 6/64 -12/64

2 -1 15/64 -15/64

3 0 20/64 0

4 1 15/64 15/64

5 2 6/64 12/64

6 3 1/64 3/64

Total 1 0

This result makes sense, since we have, in effect, just moved the labels for the buckets
to the right by 3. More generally, if x is a random variable and a is a constant, then:

E(x+ a) = E(x) + a

Also,

E(ax) = aE(x)
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If x and y are two random variables that describe the same set of events, like x and
∆x, then

E(x+ y) = E(x) + E(y)

More generally, if x and y are random variables describing the same set of events, and
a and b are constants, then

E(ax+ by) = aE(x) + bE(y)

On the other hand, the following relationship is not true:

E(xy) = E(x)E(y)

To help convince yourself of the validity of these relationships (except the last) it may
be helpful to test them using x and ∆x for the six-row plinko. But, this does not
constitute a proof! For that you need to go back to the definition of the expected
value.

Finally, consider the case for the random variable |∆x|

Bucket |∆x|i p(i) p(i) |∆x|i

0 3 1/64 3/64

1 2 6/64 12/64

2 1 15/64 15/64

3 0 20/64 0

4 1 15/64 15/64

5 2 6/64 12/64

6 3 1/64 3/64

Total 1 15/16

This random variable has yet another expected value for the same experiment. Here,
it is clear that a relationship that you might think would be true,

E(|∆X|) = |E(x)|

is not.
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IV. The variance

Another important parameter that helps define a random variable is called the variance.
For a discrete random variable, x, with m possible values, the variance, σ2. is defined
as:

σ2 =
m∑
i=1

p(i)(xi − µ)2

where µ represents the mean, or expected value, of the random variable. In brief, σ2

is a measure of the breadth of the distribution. The closer all of the possible values of
x are to the mean, the smaller the variance. Of equal importance, if the values of x
close to µ are the more probable values, the smaller σ2 will be. Notice that all of the
differences in the sum are squared, which ensures that all of the terms are positive,
and values above and below the mean are treated equally.

For the six-row plinko, with the random variable, x, defined as the original bucket
number, the variance can be calculated as summarized in the table below. (Recall that
the mean value of x is 3.)

Bucket xi p(i) (xi − µ)2 p(i)(xi − µ)2

0 0 1/64 9 9/64

1 1 6/64 4 24/64

2 2 15/64 1 15/64

3 3 20/64 0 0

4 4 15/64 1 15/64

5 5 6/64 4 24/64

6 6 1/64 9 9/64

Total 1 28 1.5

Thus, σ2 = 1.5 for this particular random variable. It is rather difficult to compare
directly the magnitude of the variance to values of the random variable, because the
differences making up the variance have been squared. Although this particular random
variable doesn’t have units, random variables can have units in other cases. In such
cases, the units of the variance are those of the random variable squared. For instance,
if the random variable has units of meters, m, the the units of the variance will be
m2. For this reason, another parameter, the standard deviation, σ, is often used and
is defined as:

σ =
√
σ2
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Defining things this way, may seem a bit convoluted, but it emphasizes the fact that
the variance is defined in terms of a sum of squares, and is positive, and the standard
deviation is derived from σ2, and not the other way around. For the random variable
x defined for the 6-row plinko, σ =

√
(1.5) = 1.225.

Next, consider the random variable ∆x introduced earlier. for this random variable,
the mean, µ, is 0.

Bucket ∆xi p(i) (∆xi − µ)2 p(i)(xi − µ)2

0 -3 1/64 9 9/64

1 -2 6/64 4 24/64

2 -1 15/64 1 15/64

3 0 20/64 0 0

4 1 15/64 1 15/64

5 2 6/64 4 24/64

6 3 1/64 9 9/64

Total 1 28 1.5

Perhaps surprisingly, the variances for x and ∆x are the same. While the means are
different, the distribution of values around the respective means are the same.

For a binomial distribution defined previously as

p(k;n, ps) =
n!

k!(n− k)!
pks (1− ps)

n−k

where n is the number of trials, k is the number of successes, and ps is the probability
of a single succesful trial, the mean, variance and standard deviation for the random
variable, x = k, are given by:

µ = nps

σ2 = nps(1− ps)

σ =
√
nps(1− ps)

Thus, the variance increases in proportion to the number of trials in the binomial ex-
periment. This relationship also indicates that if ps is closer to 1 or 0, the variance
decreases. That is, the more biased the individual trials are, the narrower the distri-
bution. For instance, for the distributions shown on page 45, for a 10-row plinko with
ps = 0.5, 0.6 and 0.8, the corresponding values of the variance are 2.5, 2.4 and 1.6.
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2.8 Continuous probability distribution functions

I. The spinner

So far, we have limited our discussion of probability to processes with discrete out-
comes, such as coin tosses, dice or the plinko. But, many of the most interesting
biological and physical processes give rise to a continuous range of possible outcomes.
As a simple example of a process with continuous outcomes, consider a spinner, as
used in some board games, consisting of a pointer mounted on a board with a bearing
that allows it to spin freely after being given a sharp push, as with a flick of a finger,
as illustrated below:

A short time after being pushed, the pointer slows down and stops, pointing in a
particular direction. Assuming that the pointer is well balanced and the bearing is
very smooth, the pointer should be equally likely to point in any directions. For the
purposes of our discussion, we will define the direction of the pointer as the angle
between the vertical, as drawn above, and the pointer.

A spinner like this can be used to generate a variety of different random variables. For
instance we could divide up the range of angles into two regions; from 0 to π radians
and from π to 2π radians. We could then define a random variable so that it is 0 if
the pointer lands in the 0–π region and 1 if it lands in the π–2π range. This would
be equivalent to a coin toss with a fair coin. We could also divide the range into two
non-equal ranges to simulate a biased coin toss. Alternatively, we could divide the
range into six regions, to simulate a single six-sided die.

In principle, we can divide the range of angles into smaller and smaller angles, provided
that we have a means to measure very small differences in position. This leads to the
notion of a continuous random variable that represents the position of the pointer, as
shown in the drawing above. We will call this random variable θ and express its value
in radians, from 0 to 2π. Like other random variables we have discussed, every possible
value θ has associated with it a probability, p(θ). Since the pointer is equally likely
to point in any direction, the value of p(θ) must be equal for all values of θ. On the
other hand, if θ can take on any value in a continuous range, which can be divided
into infinitesimally small intervals, then the probability of pointing any single direction
must be infinitesimally small, or essentially zero! To resolve this apparent paradox, we
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interpret continuous probability distribution functions in terms of the probability that
the random variable (θ in our case) lies between two defined values. Specifically, the
probability that the random variable θ lies between a and b is given by the integral:

p(a ≤ θ ≤ b) =

∫ b

a

p(θ)dθ

This relationship is illustrated graphically below, for the case of the spinner:

As argued above, the value of p(θ) must be equal for all values of θ between 0 and 2π.
For now, we will call the value of p(θ) within this range c. Since the pointer must land
within the range between 0 and 2π, p(θ) must be zero elsewhere. The probability that
θ lies between a and b is then:

p(a ≤ θ ≤ b) =

∫ b

a

p(θ)dθ

=

∫ b

a

cdθ

This integral corresponds to the area below the horizontal line segment representing
p(θ) = c and bounded by θ = a and θ = b, as indicated by the shaded box in the
drawing above. Assuming that the probability function is, indeed, constant, then the
probability is proportional to the difference between a and b, as we would intuitively
expect if the spinner is fair. A continuous probability distribution function for which
all possible values of the random variable are equal is called a uniform probability
distribution. A more interesting probability distribution might arise if the pointer was
more likely to land in some areas than others, as illustrated in the hypothetical graph
below:
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In this case, the probability distribution function indicates that the pointer is more
likely to land in the region of θ ≈ 3π/4 than in the region of 3π/2. If this spinner
was used in a game of chance, a gambler with this information would be at a distinct
advantage over one without it!

Since the spinner must point somewhere in the range between θ = 0 and 2π (assuming
that it doesn’t break), the total probability must be 1. This is equivalent to the
requirement that the probabilities of all of the possible outcomes must sum to 1 in a
random process with discrete outcomes. For the uniform distribution function for the
spinner, we can write this requirement as:

p(0 ≤ θ ≤ 2π) = 1 =

∫ 2π

0

p(θ)dθ

=

∫ 2π

0

cdθ

where c is the constant introduced earlier, to which we can now assign a specific value,
as follows:

1 =

∫ 2π

0

cdθ

1 = cθ|2π0 = c2π − c0 = c2π

c = 1/(2π)

We can then write the probability distribution function as:

p(θ) =
1

2π

This form of the function is said to be normalized, meaning that the integral over
all possible values is equal to 1. This term is sometimes confused with the normal
probability function which refers to a specific continuous probability function that we
will discuss bellow and also goes by the name Gaussian distribution.
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II. Expected value and variance for continuous random variables

Recall that for a discrete random variable, x, we defined the expected value, E(x), as

E(x) =
n∑

k=1

p(xk)xk

where xk represents the k
th value of x and p(k) is the probability of xk. For a continuous

random variable, the sum above is replaced by an integral:

E(x) =

∫
p(x)xdx

where the integral is over all possible values of x. For the spinner random variable, θ,
the expected value is calculated as follows (for an unbiased spinner):

E(θ) =

∫ 2π

0

p(θ)θdθ

=

∫ 2π

0

1

2π
θdθ

=
1

4π
θ2
∣∣∣∣2π
0

=
4π2

4π
− 0

= π

Thus, the average value of θ, over a large number of trials, is expected to be π, that
is the mid-point of the range of possible values. Keep in mind, however, that this
outcome is no more likely than any other.

For a discrete random variable the variance is defined as the sum:

σ2 =
n∑

k=1

p(k)(k − µ)2

where µ represents the mean, or expected value, of the random variable.

The equivalent relationship for a continuous random variable is the integral:

σ2 =

∫
p(x)(x− µ)2dx

For the random variable θ, the variance is calculated as:
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σ2 =

∫ 2π

0

p(θ)(θ − π)2dθ

=

∫ 2π

0

1

2π

(
θ2 − 2πθ + π2

)
dθ

=
1

2π

(
1

3
θ3 − πθ2 + π2θ

)∣∣∣∣2π
0

=
1

2π

(
8

3
π3 − 4π3 + 2π3

)

=
4

3
π2 − 2π2 + π2

=
π2

3

III. Some other random variables from the spinner

A variety of other random variables might be assigned to the spinner. For instance, we
could create a game of chance where the payout ranges from zero to $10 depending on
the position of the pointer, with the payout increasing linearly with θ, from 0 to $10.
We will call this random variable x and define it in terms of θ according to:

x(θ) =
5

π
θ

This amounts to relabeling the spinner, as below:

5

46

37

28

19

Since the values of x are evenly distributed over the range of θ, which has a uniform
probability distribution function, x should also have a uniform probability distribution.
Following the approach used for θ, you should be able to show that p(x) = 1/10.
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The expected value of x is calculated as

E(x) =

∫ 10

0

p(x)xdx

=

∫ 10

0

1

10
xdx

=
1

20
x2
∣∣∣∣10
0

= 5

This result can derived even more easily by using a relationship introduced on page 53:

E(ax) = aE(x)

where a is a constant. (Note that x in this equation is not the same as our x(θ).)
Substituting θ for x and 5/π for a, we can write:

E(
5

π
θ) =

5

π
E(θ)

=
5

π
π = 5

Note that, just as for θ, the expected value for x is the midpoint in the range of possible
values. This is a general property of a uniform probability distribution function, but
not of all distribution functions.

The variance of the new random variable is calculated as:

σ2 =

∫ 10

0

p(x)(x− 5)2dx

=

∫ 10

0

1

10

(
x2 − 10x+ 25

)
dx

=
1

10

(
1

3
x3 − 5x2 + 25x

)∣∣∣∣10
0

=
1

10

(
1

3
1000− 500 + 250

)

=
25

3
≈ 8.333

As an example of a random variable that does not have a uniform distribution function,
but is still based on the spinner, we can define y as:

y(θ) =
10

4π2
θ2

As in the previous example, a constant of multiplication has been introduced to make
the range of possible values lie between 0 and 10. We can use this definition to relabel
the spinner dial:
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1.6

2.5

3.6

0.94.9

0.46.4

0.18.1

Now, we find that the values are not evenly distributed around the dial. For instance
the range of y-values from 0 to 2.5 represents half of the dial, meaning that values in
this range are expected to occur half the time, and values from 2.5–10 are expected
the other half.

To derive the probability distribution function for y, we can use its relationship to θ,
for which we do know the distribution function. For y, the expression p(y)dy represents
the probability that y lies within a small region, dy, of a specific value of y. Similarly,
the expression p(θ)dθ represents the probability that θ lies within dθ of θ. If y is y(θ)
for a specific value of θ and dy is the small region of y corresponding to the small region
of θ, dθ, then the two probabilities must be equal, and we can write:

p(y)dy = p(θ)dθ

Taking some mathematical liberties, this can be rewritten in terms of the derivative,
dθ/dy:

p(y) =
dθ

dy
p(θ)

To find the derivative, dθ/dy, we need the function θ(y), which can be obtained by
rearranging the definition of y as a function of θ:

y =
10

4π2
θ2

θ2 =
4π2

10
y

θ =
2π√
10
y1/2

The derivative of θ with respect to y is:

dθ

dy
=

2π√
10

1

2
y−1/2 =

π√
10
y−1/2
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Recalling that p(θ) = 1/(2π), the desired probability function, p(y), can now be written
as:

p(y) =
dθ

dy
p(θ)

=
1

2π

π√
10
y−1/2 =

1

2
√
10
y−1/2

Since p(y) was derived from a normalized probability density function, p(θ), p(y) should
be normalized as well. To be sure, though, we can calculate the integral of p(y) from
0 to 10.

∫ 10

0

p(y)dy =

∫ 10

0

1

2
√
10
y−1/2dy

=
1√
10
y1/2

∣∣∣∣10
0

=
1√
10

(
101/2 − 01/2

)
= 1

Thus, p(y) is, indeed normalized. A plot of p(y) is shown below:

Note that p(y) is not defined for y = 0, but it can be evaluated for any value of y
arbitrarily close to 0. As expected from the relabeled spinner dial shown on page 63,
the distribution favors smaller values of y. For instance, one half of the area under the
curve lies between 0 and 2.5, and the other half lies between 2.5 and 10, as indicated
by the vertical dashed lines.

Calculating the expected value of y is a bit more involved than in the previous examples,
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because the probability function is not a simple constant:

E(y) =

∫ 10

0

p(y)ydy

=

∫ 10

0

1

2
√
10
y−1/2ydy =

∫ 10

0

1

2
√
10
y1/2dy

=
1

2
√
10

2

3
y3/2

∣∣∣∣10
0

=
1

3
√
10

(
103/2 − 03/2

)
=

10

3
≈ 3.333

Recall that the expected value of x, which also covers the range from 0 to 10, is 5. The
lower value of E(y) reflects the non-uniform probability distribution function for this
variable, which more heavily favors lower values.

The variance is calculated as:

σ2 =

∫ 10

0

p(y)(y − 10/3)2dy

=

∫ 10

0

1

2
√
10
y−1/2

(
y2 − 20

3
y +

100

9

)
dx

=
1

2
√
10

∫ 10

0

(
y3/2 − 20

3
y1/2 +

100

9
y−1/2

)
dy

=
1

2
√
10

(
2

5
y5/2 − 40

9
y3/2 +

200

9
y1/2

)∣∣∣∣10
0

=
1

2
√
10

(
2

5
105/2 − 40

9
103/2 +

200

9
101/2

)

=
80

9
≈ 8.888

Notice that the variance is just a bit larger than for the random variable x, which has
a uniform probability distribution function.
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2.9 The Gaussian, or normal, probability distribution

function

One of the most important continuous probability distribution functions is commonly referred
to as a Gaussian or normal distribution function. The Gaussian function, in various forms,
also arises in areas outstide of probability and statistics. At it’s simplest, a Gaussian function
has the form:

f(x) = e−x2

where e ≈ 2.71828 is the base of the natural logarithms. A graph of the function has the
familiar bell shape shown below:
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0.6

0.8

1.0

The function has its maximum value, 1, when the exponent is 0 and decreases as x becomes
either positive or negative. When x = 1 or −1, the function equals 1/e ≈ 0.3679. Another
useful parameter for describing functions that describe peaks is the full width at half maxi-
mum, FWHM. For the simple Gaussian function, it is easy to show that FWHM = 2

√
ln 2.

The simple Gaussian function, and forms derived from it, have the rather inconvenient
property that its antiderivative cannot be written in terms of a finite number of simple
functions. As a consequence, integrals over finite ranges of x cannot be evaluated exactly.
However, the indefinite integral over all values of x can be shown to be:∫ ∞

−∞
e−x2

dx =
√
π

Thus, this form is not a properly normalized probability distribution function. It is also
striking that integration of a function defined in terms of an important irrational number,
e, is related to a second fundamental irrational number, π.

I. The general form of the Gaussian function

A more general form of the Gaussian function can be written as:

f(x) = ae−
(x−b)2

2c2

This form introduces three parameters, a, b and c, which affect the shape of the curve
in different ways, as illustrated in the figure below.
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0

0

The parameter a determines the value of the function at its maximum, where the
exponent of e equals zero, which occurs when the value of x is equal to b. The width of
the peak is determined by c2: The larger the value of c2, the more slowly the exponent
decreases as x increases or decreases away from b, and the wider the peak is. As shown
in the figure, both the full width at half maximum (FWHM) and the width at the
maximum value divided by e (a/e) are proportional to c (which is assumed here to be
positive).

The integral of the general form of the Gaussian function is:∫ ∞

−∞
ae−

(x−b)2

2c2 dx = a
√
2c2π

If a is set so that it is equal to 1/
√
2c2π, then the value of the integral is equal to one:∫ ∞

−∞

1√
2c2π

e−
(x−b)2

2c2 dx = 1

The function thus has the required property of a normalized probability distribution
function. However, the form that is usually used in probability and statistics uses the
symbol µ in place of b and σ2 in place of c2, to give:

p(x) =
1√
σ22π

e−
(x−µ)2

2σ2

As with the other continuous probability distribution functions we have looked at,
the (normalized) Gaussian distribution gives the probability that the variable x lies
between two points, x1 and x2, when the function is integrated between the two points.

p(x1 ≤ x ≤ x2) =

∫ x2

x1

1√
2σ2π

e−
(x−µ)2

2σ2 dx

In this context, µ is the mean value (or expectation value) of the distribution and σ2

is the variance, as defined earlier.
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II. Approximation of the binomial distribution by the Gaussian distribution

One important feature of the Gaussian (or normal) probability distribution function is
that it represents the limiting case of the discrete binomial distribution when the num-
ber of trials (rows in the plinko, for instance) becomes large. Unfortunately, rigorously
demonstrating this relationship is not simple. Instead, we will simply demonstrate
how closely the two relationships match one another as the number of trials increases.
Recall that the binomial distribution is given by

p(k;n, ps) =
n!

k!(n− k)!
pks (1− ps)

n−k

where n is the number of trials, k is the number of successes, and ps is the probability
of a single succesful trial. Recall also that the expected value, or mean, of the binomial
distribution is nps, and the variance is nps(1 − ps). For given values of n and ps, the
Gaussian distribution with the same mean and variance can be written as:

p(k) =
1√
σ22π

e−
(k−µ)2

2σ2

=
1√

nps(1− ps)2π
e−

(k−nps)
2

2nps(1−ps)

The figure below shows direct comparisons between the binomial and matched Gaussian
distribution for ps = 0.5 and n = 6, 12, 24, and 48.
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As you can see, the Gaussian distribution is a close match to the binomial distribution,
even for n as small as 6. For even moderately large values of n, it is much easier to
calculate values for the Gaussian distribution than for the binomial distribution, where
the values of the coefficients quickly become very large.

The figure below shows the same comparisons between the binomial and Gaussian
distributions, but now with ps = 0.75, so that the distributions are shifted to the
right. With the biased distributions, the match between the binomial and Gaussian
distributions is not quite as close as when ps = 0.5 The reason for this is that the
Gaussian distribution is always symmetrical about the mean, even if the mean is shifted
from the unbiased value. On the other hand, the binomial distribution becomes skewed
when ps is not equal to 0.5, especially for relatively small values of n. As n increases,
the binomial distribution becomes more symmetrical, for a given value of ps, and is
better matched by the Gaussian distribution.
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A general rule of thumb1 states that the Gaussian distribution, with µ set to nps and
σ2 set to nps(1 − ps) is a “good” approximation to the binomial if the following two

1https://en.wikipedia.org/wiki/Binomial_distribution#Normal_approximation
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conditions are satisfied:

n > 9
1− ps
ps

and

n > 9
ps

1− ps

Do the examples shown above appear to confirm this rule of thumb?

2.10 Simulating randomness with a computer:

(Pseudo) random numbers

One of the most interesting, and useful, applications of computers in science is the simulation
of processes that have an underlying random, or unpredictable, character. Such processes
include the diffusion of particles, mutations of genes and quantum-mechanical phenomena.
The basic idea of such simulations is to figuratively flip a coin, throw dice or spin a roulette
wheel to decide the outcome of specific events in a simulation. The simulation is usually
repeated many times in order to describe the distribution of possible outcomes. The tech-
nique is usually attributed to two mathematicians, John Von Neumann and Stansilaw Ulam,
who used it to study nuclear physics problems near the end of World War II and attached
the name “Monte Carlo” to this kind of calculation. (Presumably, they thought that Monte
Carlo sounded more glamorous than Wendover.)

Although they may not always seem it, computers are, by design, extremely predictable
machines. So, the problem arises, how do we simulate a random event, like a coin flip? The
answer is to generate a sequence of numbers using a completely predictable algorithm, that
appears to have come from a random physical process. These numbers are properly called
“pseudo-random numbers”, but the shortened term “random number” is often used. For
instance, a simulation of a series of coin tosses might be represented as a series of 1s and
0s. Over a long period, the number of 1s and 0s should be roughly, but not exactly, equal.
But, the sequence should not be a simple alteration of 1s and 0s, since we know that “runs”
of “heads” and “tails” are common. More generally, each number should be unpredictable
from the previous one, unless one knows the algorithm. Very demanding tests for random
number generators have been devised, and the development of improved generators is, itself,
an ongoing endeavor.

A fairly simple approach to generating random numbers involves taking a “seed” value,
applying some arithmetic operation to it, dividing the result by some other number and
returning the remainder. The result is then used as the seed for calculating the next number
in the series. One widely used algorithm uses the following equation to calculate number
Xn+1 from Xn:

Xn+1 = (aXn + b) mod c
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where a, b and c are integers, and the operator mod c indicates the remainder of dividing
the quantity (aXn + b) by c. For instance:

5 mod 4 = 1

The remainder has to be less than the value chosen for c, so this establishes a maximum
number of unique numbers that can be generated. Eventually, a number will be returned
a second time, and from that point on the series repeats exactly. How well this algorithm
works depends critically on the choice of constants.

Many computer languages include built in functions for generating random numbers. For
instance, the Python language includes a module, called random, that provides a much better
random number generator than the one described above, as well as several nifty variations for
special purposes. The function random.random() returns a number, x, such that 0 ≤ x < 1,
ss illustrated below:

>>> random . random ( )
0.63876690995825403
>>> random . random ( )
0.98645481541390223

In general, the initial seed for a random number generator can be either set to a specific
value derived from information provided by the computer or some outside source. A common
way of setting the seed is to derive it from the time when the program is started, using the
computer’s clock.

The Python random module includes a function that allows the user to specify the seed.
The listing below shows what happens if the same seed is used a second time:

>>> random . seed (12345)
>>> random . random ( )
0.41661987254534116
>>> random . random ( )
0.010169169457068361
>>> random . random ( )
0.82520650925374317
>>> random . seed (12345)
>>> random . random ( )
0.41661987254534116
>>> random . random ( )
0.010169169457068361

For a given seed, the same sequence of “random” numbers will be generated again. This
is a clear demonstration that the numbers generated from most random number generators
aren’t truly “random.” Sometimes, though, it is useful to be able to use the same set of
random numbers multiple times, for instance in testing a computer program or algorithm.

In addition to pseudo-random number generators, there are ways to generate “true”
random numbers from physical processes. One of these involves monitoring the decay of a
radioactive element. Although the average number of decay events over a period of time can
be well known, the intervals between successive events is random. A website that provides
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“Hot bits” derived in this fashion is:
https://www.fourmilab.ch/hotbits/

The hardware used at this site can only generate numbers at a modest rate, but they can be
used as the seeds for a pseudo-random number generator. At one time, there was a website
that generated random numbers from images of a lava lamp, as described on Wikipedia:
https://en.wikipedia.org/wiki/Lavarand

Again, the idea was to generate true random numbers that could be used as seeds for pseudo-
random number generators.

More recently, a variety of hardware devices have been developed that generate true
random numbers from various forms of electronic noise or quantum mechanical phenomena.
Some of these are relatively inexpensive USB dongles and some are built into newer com-
puters, including those using newer Intel microprocessor chips. It may seem surprising that
there would be so much demand for something random! But the reason for this demand is
that random numbers play a central role in cryptography, including securing data that is
transmitted over the internet. As the security problems of the modern age grow, random
number generators are becoming increasingly critical and are coming under ever more careful
scrutiny.

One of the useful things that we can do with a random number generator is to simulate
some process and look at the distribution, just to get a sense of what a truly random process
looks like. The figure below shows two distributions of points on a square:

For one of these figures, I choose random x and y values for 1,000 points and plotted
them. For the other, I placed a similar number of points using another procedure.

Which one is the true random distribution? How could you decide?
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Chapter 3
Random Walks

We have now spent a lot of time looking at “plinko probabilities”, and you should have a
good feel for how bell curves arise and how to calculate the probabilities of different outcomes
in a binomial distribution. Now, we want to start talking about random walks and the ways
in which they arise in physical and biological contexts.

Although the binomial distribution can, in principle, be used to describe a random walk
in one dimension, actually using this function for large numbers of steps quickly becomes
problematic. Calculating n! requires n−1 multiplications, and the magnitudes of the numbers
quickly become difficult to handle.. Also, we need to move beyond one dimension. So, we
need some other mathematical approaches.

We will start, however, by considering a one-dimensional random walk.

3.1 Random walks in one dimension

In the simplest version of a random walk, we imagine an individual standing on a sidewalk
and flipping a coin. If the coin lands heads-up, she turns in one direction and takes a step
of length l. If the coin lands tails-up, she turns the opposite direction and takes a step of
length l. She then repeats this process another n − 1 times, for a total of n steps in the
random walk.

I. The final position of the walker.

We will define the walker’s position as x, which is zero at the beginning of the random
walk. As the walker takes steps in the opposite directions, the value of x can take on
positive or negative values, as illustrated by the single coordinate axis drawn below:

We will call the position after i steps, xi, and the final position, after n steps, is xn. At
the outset, we can assume a few things abut the value of xn, irrespective of whether
the coin is fair or not:

• The maximum possible value of xn is nl

• The minimum possible value of xn is −nl
• Assuming that n is very large, the probability of a walk ending at either nl or
−nl is very small, since either outcome would require the coin to land the same
way for each toss.
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• If a large number of random walks are carried out the distribution of xn should
be related to a binomial distribution.

As a first step in analyzing the random walk in one dimension, we will calculate the
expected value of xn, that is the expected average value of xn if a large number of
random walks, each of n steps, is executed. Here and through out the discussion of
random walks, we will call the number of steps in an individual random walk n, and
the number of random walks, as used for calculating averages, N .

For each random walk, the final position is given by:

xn =
n∑

i=1

δi

where i is the step number, and δi is the change in x in step i. If the step is to the
right, δi = l, whereas if the step is to the left, δi = −l. We will call the probability of
an individual step to the right p+ and the probability of a step to the left p−.

The expected value of δi, for any individual step, is calculated as:

E(δi) = lp+ − lp−

= lp+ − l(1− p+)

= lp+ + lp+ − l

= 2lp+ − l = l
(
2p+ − 1

)
As a quick check, note that if the probability of left and right steps are equal, p+ = 0.5,
and the expected value of δi is 0.

An important theorem from probability states that if x and y are two independent
random variables, then the expected value of the sum of x and y is calculated as:

E(x+ y) = E(x) + E(y)

Since xn is simply the sum of δi for each step in the random walk, the expected value
of xn is calculated as:

E
(
xn
)
=

n∑
i=1

E(δi)

=
n∑

i=1

l
(
2p+ − 1

)
= nl

(
2p+ − 1

)
Note that if p+ = 0.5, then the expected value of xn is zero, that is the average final
position is the starting point, irrespective of the number of steps. The plot below shows
the expected value of xn as a function of n for different probabilities of an individual
forward step.
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As one might expect, values of p+ greater than 0.5 favor positive values of xn, and
values of p+ less than 0.5 favor negative values of xn. Notice also that, for any given
value of p+ (except 0.5), the expected value of xn increases or decreases linearly with
the number of steps.

If the number of individual random walks, N , is large, then the average value of xn will
approach the expected value. Note the distinction between the average value of xn for
N specific random walks and the expected value, E

(
xn) which is calculated from the

probabilities of individual forward and reverse steps, as well as the number of steps.
Mathematically, we would write the relationship between the two as:

lim
N→∞

1

N

N∑
j=1

xn,j = E
(
xn
)

where the index j indicates the individual random walks included in the average.

To write averages over multiple random walks in a more compact form, we will employ
the practice of representing averages using pairs of angle brackets, ⟨⟩, as in the example:

⟨xn⟩ =
1

N

N∑
j=1

xn,j

Though it is a bit sloppy, we will generally take averages represented in this way to
mean that N is large enough that the average approaches the expected value, unless
N is otherwise specified.

II. Other averages: The mean-square and root-mean-square

As shown above, it is quite easy to calculate the expected value of xn for a one-
dimensional random walk, even when the probabilities of turns in the two directions
are not equal. However, this average provides only limited information. From our
study of plinkos, we know that most of the balls don’t actually land in the central
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bucket (or central two buckets when the number of rows is odd), even though landing
in the central bucket(s) is the most probable result.

What we need as a way to represent the distribution of final positions away from the
average value of xn. For this purpose, there are two other kinds of average, which are
widely used in a variety of contexts. These are the mean-square and root-mean-square
averages, which are defined below, using the angle brackets to represent averages.

The mean-square:

⟨x2n⟩ =
1

N

N∑
j=1

x2n,j

where, as before, the sum is over the N random walks.

The root-mean-square (RMS):

RMS(xn) =
√

⟨x2n⟩ =

√√√√ 1

N

N∑
j=1

x2n,j

By summing over the squares of the final positions, both positive and negative values
of xn make a positive contribution to the averages, rather than canceling out, as when
the simple average of xn is calculated. This goal could be also be obtained by using
the absolute value of xn, but absolute values are more awkward when deriving general
results, and the squared quantities have important statistical significance.

A common application of the mean-square and RMS averages is in electrical engineer-
ing, where they are used to treat alternating currents (AC). The graph below shows
ideal behavior of voltage as a function of time, for the AC power used in US homes.

Note that the voltage oscillates between a maximum of 170V and a minimum of
−170V, with the average over time being 0V. For the US power system, each cy-
cle takes 1/60 s, for a frequency of 60Hz. Although mathematically correct, the simple
average of the voltage over time obviously doesn’t convey much information about
the power available frome the current. To obtain a positive value, the instantaneous
voltage can be squared to generate the plot below.
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In this plot, both the maxima and minima in the original plots give rise to peaks of
28900V2. The average square voltage over time is 14400V2. Although this average
is positive and reflects the magnitude of both the positive and negative voltage fluc-
tuations, it has the disadvantage of being expressed in units of V2, which are not so
intuitively interpreted. This is the main reason for introducing the root-mean-square
(RMS) average. In the plot below, the instantaneous voltage vales are squared, and
the the square root is taken for each point.

Notice that the peaks in the plot have slightly different shapes than those in the plot
of V 2, and the peaks have a height of 170V. The RMS average over time is 120V, and
it is this average that is usually specified for AC circuits. Note that the RMS average
is calculated as the square root of the mean-square average and not by averaging over
the square root of the squares of the individual values, which would, in general, give a
different result.

III. The mean-square and RMS end-to-end distance of a one-dimensional random walk

For the reasons discussed above, we would like to have an average that represents
distance between the beginning and end of a random walk, calculated in a way that
positive and negative steps don’t cancel one another. We will begin with the mean-
square distance, ⟨x2n⟩, which is easier to work with. Once an expression for ⟨x2n⟩ is
derived, the root-mean-square is calculated by taking the square root.

We start with a definition of the mean-square distance for the random walk:
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⟨x2n⟩ =
1

N

N∑
j=1

x2n,j

where N is the number of random walks, and the index j represents the individual
random walks. For each of the random walks, the final position is given by:

xn =
n∑

i=1

δi

where δi is the change in position along the x-axis and can be either +δ or −δ. Though
the reason for doing so may not be obvious yet, we can also write xn as:

xn = xn−1 + δn

where δn is the change in x in the very last step of the walk. Using this representation,
the mean-square distance can be written as:

⟨x2n⟩ =
1

N

N∑
j=1

x2n,j

=
1

N

N∑
j=1

(
x(n−1),j + δj,n

)2
=

1

N

N∑
j=1

(
x2(n−1),j + 2x(n−1),jδj,n + δ2j,n

)
where δj,n is the change in x for the last step in the jth random walk. This can be
broken down into individual sums and averages to give:

⟨x2n⟩ =
1

N

N∑
j=1

x2(n−1),j +
1

N

N∑
j=1

2x(n−1),jδj,n +
1

N

N∑
j=1

δ2j,n

= ⟨x2n−1⟩+ ⟨2xn−1δn⟩+ ⟨δ2n⟩

As before the angle brackets represent averages over a large number of random walks.
For each random walk, the final change in x will be either l or −l and will be uncorre-
lated with the position, xn−1. If we limit ourselves to the case where the probability of a
forward or backward step is equal, the central term in the expression above, ⟨2xn−1δn⟩,
will be zero. Thus, we can write:

⟨x2n⟩ = ⟨x2n−1⟩+ ⟨δ2n⟩

Note that the average of δ2n over all of the random walks is not expected to be zero.
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Following the same arguments as above, the position of the walker after n − 1 steps
can ve written as:

xn−1 = xn−2 + δn−1

and the average of xn−1 is:

⟨x2n−1⟩ = ⟨x2n−2⟩+ ⟨δ2n−1⟩

The mean-square average of xn can then be written as:

⟨x2n⟩ = ⟨x2n−1⟩+ ⟨δ2n⟩
= ⟨x2n−2⟩+ ⟨δ2n−1⟩+ ⟨δ2n⟩

Since the individual steps in a random walk are uncorrelated, and the individual walks
are uncorrelated, the average values of δ2n−1 and δ2n should be the same, so that we
have:

⟨x2n⟩ = ⟨x2n−2⟩+ 2⟨δ2i ⟩

where ⟨δ2i ⟩ is the mean-square average of the change in x, averaged over all of the steps
in the random walks.

The same logic can be applied repeatedly:

⟨x2n⟩ = ⟨x2n−2⟩+ 2⟨δ2i ⟩
= ⟨x2n−3⟩+ ⟨δ2n−2⟩+ 2⟨δ2i ⟩
= ⟨x2n−3⟩+ 3⟨δ2i ⟩
= ⟨x2n−4⟩+ 4⟨δ2i ⟩

and so on, until we have:

⟨x2n⟩ = ⟨x(1)2⟩+ (n− 1)⟨δ2i ⟩
= ⟨x(0)2⟩+ n⟨δ2i ⟩
= n⟨δ2i ⟩

This derivation does not depend on any assumptions about the value of ⟨δ2i ⟩, though it
does assume that ⟨δi⟩ is zero. If we further assume that δi is either l or −l, with equal
probability, then the average of δ2i can be further specified from the expected value:

⟨δ2i ⟩ = E(δ2i ) = p+l
2 + p−(−l)2

= p+l
2 + p−l

2

= l2
(
p+ + p−

)
= l2

We can then write ⟨x2n⟩ in the terms defining the random walk, n, the number of steps
and l, the length of each step:

⟨x2n⟩ = nl2
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CHAPTER 3. RANDOM WALKS

The root-mean-square distance between the starting and ending positions is then given
by:

RMS(xn) =
√
nl2 =

√
nl

Note that RMS(xn) has the same dimensions, length, as the step length, l.

This is the key result: The RMS average distance increases with the square root of the
number of steps. It doesn’t increase linearly with the number of steps, because not
every step moves the walker away from the starting point. But, the average distance
isn’t zero, even though the average position, ⟨xn⟩ is zero. The relationship between
the RMS end-to-end distance and the number of steps is shown in the figure below:
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Note that for small values of n the RMS distance increases relatively rapidly with n.
This is because, for a small number of coin flips, for instance, there is a relatively large
probability that a significant majority will be either heads or tails. However, as the
number of coin flips, n, increases, the likelihood of a significant deviation from the
expected average decreases, and the RMS distance increases with n more slowly. For
any given number of steps, RMS(xn) is proportional to the step length.

3.2 Random walks in two dimensions

In the simplest form of a two-dimensional random walk, a walker begins at the origin of
a two-dimensional coordinate system, where x = 0 and y = 0, and chooses at random an
angle, θ, between 0 and 2π rad. The walker then takes a step, of length l in the direction
defined by the angle θ with respect to the x-axis, as diagrammed below:
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3.2. RANDOM WALKS IN TWO DIMENSIONS

The process is then repeated n− 1 times to generagte an n-step random walk.

I. The random walks along the x- and y-axes

As the walker generates a path in two dimensions, it also can be thought of as carrying
out a walk along the x-axis. With each step, the projection of the current walker
position onto the x-axis changes, as illustrated below:

For each step, the change in the x-coordinate is

δx,i = xi − xi−1

Just as we did for the one-dimensional random walk along the x-axis, we can calculate
the following averages for the walk defined by the projections along the x-axis:

⟨xn⟩ =
1

N

N∑
j=1

xn,j

⟨x2n⟩ =
1

N

N∑
j=1

x2n,j

RMS(xn) =
√

⟨x2n⟩
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The central assumption that we will make at this point is that the turn angle at each
step is equally likely to take on any value between 0 and 2π rad. This means that
positive and negative changes in the x-coordinate are equally likely, leading to the
result:

⟨xn⟩ = 0

Recall that for the one-dimensional random walk we showed that:

⟨x2n⟩ = n⟨δ2⟩

where ⟨δ2⟩ is the mean-square average of the changes in position along the x-axis. This
derivation assumed only that ⟨δi⟩ = 0, so it applies to the case of the x-projections in
the two-dimensional random walk, as well.

For the one-dimensional random walk, we also argued that the individual changes in
the x-position could only be l and −l and, therefore, ⟨δ2i ⟩ = l2. However, this argument
does not apply to the changes in the x-projections in the two-dimensional random walk.
To see why, consider the change in x-coordinate for a single step, as diagrammed below:

If the angle, θ is zero, then δx,i = l, and δ2x,i = δ2. If θ is π, then δx,i = −δ, and δ2x,i = l2.
However, for most values of θ, δx,i lies between −l and l and δ2x,i is less than l2

To calculate the average value of δ2x,i, we calculate the expected value for a continuous
probability distribution function (see page 60):

⟨δ2x,i⟩ = E(δ2x,i) =

∫ δ

−δ

δ2xp(δx)dδx

It’s not so obvious what the probability distribution function, p(δx) is, but the random
variable δx is related to the random variable θ according to:

δx = l cos θ
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3.2. RANDOM WALKS IN TWO DIMENSIONS

From this relationship, the expected value of δ2x,i, ⟨δ2x,i⟩, can be calculated by integration
with respect to θ:

⟨δ2x,i⟩ =
∫ 2π

0

δx(θ)p(θ)dθ

=

∫ 2π

0

(l cos θ)2p(θ)dθ

In Chapter 2 (page 59), it was shown that p(θ) = 1/(2π) for a uniform distribution of
θ between 0 and 2π. The integral can then be evaluated as:

⟨δ2x⟩ =
1

2π

∫ 2π

0

(l cos θ)2dθ

=
l2

4π

(
sin(2θ)

2
+ θ

)∣∣∣∣2π
θ=0

=
l2

2

The mean-square projection along the x-axis of the endpoint after n steps is then
calculated as:

⟨x2⟩ = n⟨δ2x⟩

=
nl2

2

The two-dimensional random walk can also be envisioned as creating a random walk
along the y-axis:

There is nothing really special about either the x- or y-axis, or any other direction
(though the relationship between the x- and y-axis is special, because they are perpen-
dicular to each other). As a consequence, the results derived for the averages of the
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projections along the x-axis can be directly applied to the y-axis:

⟨y⟩ = 0

⟨y2⟩ = nl2

2

II. The end-to-end distance

In addition to the projections along the x- and y-axis for a two-dimensional random
walk, we can consider the distance between the starting and ending positions along the
straight line connecting them, as opposed to the actual path of the walk. The diagram
below shows how the distance of the walker from the starting position, ri, changes as
the number of steps in the random walk increases:

At the end of any specific random walk, the distance from the starting point, rn, is
related to the x- and y-projections according to:

rn =
√
x2n + y2n

and

r2n = x2n + y2n

To calculate the mean-square end-to-end distance, we again use the theorem for the
expected value of a sum of two random variables. For two random variables, A and B,
with expected values E(A) and E(B):

E(A+B) = E(A) + E(B)

The expected value for r2 can thus be written:

E(r2n) = E(x2n) + E(y2n)

Assuming, as we have, that the number of random walks, N , over which the averages
are taken is very large, this can be expressed in terms of the mean-square averages:

⟨r2n⟩ = ⟨x2n⟩+ ⟨y2n⟩
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3.3. THREE-DIMENSIONAL RANDOM WALKS

In the previous section, we showed that

⟨x2n⟩ = ⟨y2n⟩ = nl2/2

By substitution, we have:

⟨r2n⟩ = ⟨x2n⟩+ ⟨y2n⟩

= nl2/2 + nl2/2

= nl2

Thus, we have exactly the same result as for the one-dimensional random walk! The
root-mean-square end-to-end distance is also the same as for the one-dimensional case:

RMS(rn) =
√

⟨r2⟩ =
√
nl

3.3 Three-dimensional Random Walks

A random walk in three-dimensions can be represented as a series of vectors in a three-
dimensional coordinate system. The first step begins at the origin, as shown in the left-hand
panel below, and ends on a random point on the surface of a sphere with its center at the
origin and a radius equaling the step length.
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yx
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yx

The second step begins the end of the first and ends on a point on the sphere with its center
at the starting point for the step, as illustrated in the right-hand panel.

To describe the changes in direction for each step, it is useful to use polar coordinates,
as illustrated below:

z

y
x
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In the polar-coordinate system, the position of the endpoint of a vector is described by the
length of the vector and two angles. The vector is visualized as beginning initially aligned
with the z-axis and then being rotated by an angle, ϕ, away from the z-axis in the plane of
the x-z plane, and then rotated by an angle, θ, about the z-axis.

We can derive an expression for the mean-square end-to-end distance for a three-dimensional
random walk by following the same general approach as for the two-dimensional case. For
that case, we showed that

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩

where ⟨x2⟩ and ⟨y2⟩ are the mean-square projections of the random-walk end-points onto
the x- and y− axes, respectively. For the three-dimensional case:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩

In order to calculate ⟨x2⟩, ⟨y2⟩ and ⟨z2⟩, we need to consider the distributions of the projec-
tions of the individual steps onto the three axes and then calculate ⟨δx,i⟩, ⟨δy,i⟩ and ⟨δz,i⟩.

If the direction of each step is random with respect to the coordinate axis, the mean-
square projection along any direction is the same as along any other direction. When using
the polar coordinate system as defined above, the z-axis is the most convenient to work with,
since the projection for a single step depends only on the step length, l, and the angle ϕ:

δz = l cosϕ

The mean-square projection of an individual step onto the z-axis is given by:

⟨δ2z⟩ =
∫ π

0

p(ϕ)δ2zdϕ =

∫ π

0

p(ϕ)(l cosϕ)2dϕ

To evaluate this expression, we need to know the probability distribution function for the
angle ϕ, p(ϕ). At first glance it might seem that all values of ϕ would be equally probable,
so that p(ϕ) would be a simple constant. Recall, however, that the steps in the random walk
were defined so that a step towards any point in the surrounding sphere is equally probable.
The figure below represents the effect of rotating the vector by different values of ϕ from the
z-axis and the points on the sphere that are accessible as the vector is rotated about the
z-axis.
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As indicated in the figure, the largest number of points on the sphere is associated with
a rotation that places the vector in the x-y plane, corresponding to a value of ϕ equal to
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π/2. At the other extreme, if ϕ = 0 or π, the number of points is infinitesimally small.
More generally, the number of points accessible for a given value of ϕ is proportional to
the circumference of the circle swept out by the vector as it rotates about the z-axis. The
circumference in turn is proportional to the radius, rc, which is related to ϕ according to:

rc = l sinϕ

In order to satisfy the requirement that all directions in three dimensions be equally probable,
the probability distribution function for ϕ must be proportional to sinϕ.1 The probability
distribution function can thus be written in the form of:

p(ϕ) = c sinϕ

where c is a constant of proportionality. To evaluate this constant, we impose the requirement
that the distribution function must be normalized:∫ π

0

p(ϕ)dϕ =

∫ π

0

c sinϕdϕ = 1

=
(
− c cosϕ

)∣∣π
0

= c− (−c) = 2c

The constant c must then be equal to 1/2 in order for the probability density function to be
normalized:

p(ϕ) =
1

2
sinϕ

The average, or expected, value of the step-length projection onto the z-axis is then:

⟨δ2z⟩ =
∫ π

0

p(ϕ)δ2zdϕ =

∫ π

0

p(ϕ)(l cosϕ)2dϕ

=

∫ π

0

1

2
sinϕ(l cosϕ)2dϕ

=
l2

2

∫ π

0

sinϕ cos2 ϕdϕ

The integral can be evaluated using a table of integrals or a computer program such as
Mathematica, Maple or Maxima, to give:

⟨δ2z,i⟩ =
l2

2

∫ π

0

sinϕ cos2 ϕdϕ

=
l2

2

(
−1

3
cos3 ϕ

)∣∣∣∣π
0

=
l2

2

(
1

3
+

1

3

)
=
l2

3

1One could define the probability distribution function for ϕ as a constant, but this would give a different
distribution of directions, in which those aligned more closely with the z-axis would be disproportionately
favored.
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We can now calculate the mean-square projection onto the z-axis of the end-to-end distances
for a large number of n-step random walks:

⟨z2n⟩ = n⟨δ2z,i⟩ = n
l2

3

Since the z-axis is not special (except for the definitions of ϕ and θ, which are arbitrary) the
mean-square end-to-end projections onto the x- and y− axis are also equal to nl2/3, and the
mean-square end-to-end distance is given by:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩

= n
l2

3
+ n

l2

3
+ n

l2

3

= nl2

Thus, we have exactly the same result as for one and two dimensions. In fact, the same result
applies to random walks in any number of dimensions, though it may be hard to visualize
the ones in more than three dimensions.

3.4 Computer Simulations of Random Walks

For many random processes, computer simulations can provide a useful complement to the-
oretical treatment, such as those derived in the previous sections. For random walks, sim-
ulations can provide snap shots of individual random walks and illustrate the distribution
of properties, such as the end-point position, rather than just the averages that we have
calculated so far. In addition, the process of writing the computer code for a simulation can
help clarify one’s thinking about the description of a random process.

I. Turtle graphics to illustrate two-dimensional random walks

Generating the high-quality computer graphics that we are now so familiar with takes a
great deal of computer programming. But, there is a simple system that can be used for
generating a graphical representation of two-dimensional random walks, called turtle
graphics. Turtle graphics was introduced as a feature of a computer programming
language, Logo, that was developed in the 1960s as a means for introducing children
to computers and programming. Although there was much more to Logo than turtle
graphics, that is probably the feature that it is best known for, and it has been adopted
in other languages as well. The basic idea is that we imagine a turtle placed on a floor
covered with a big piece of paper, and the turtle caries a pen. The turtle is given
simple commands, such as “move forward by 10 units”, or “turn right by 45◦”. These
commands can be incorporated into programs where they are repeated numerous times,
with variations, to generate a wide variety of patterns. Since a two-dimensional random
walk consists of repeated steps and turns, turtle graphics is an ideal way to represent
individual walks.

The figures below show turtle-graphics representations of a turtle at its starting point,
at the origin of the x-y coordinate system, (on the left) and after taking a taking a
200-step random walk (on the right).
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The path of the turtle in this example illustrate an important general feature of random
walks that is not readily apparent from the mathematical treatments of the previous
two sections: The movement of the walker tends to be concentrated in small areas for
a number of steps, followed by a series of steps in approximately the same direction,
leading to a substantial excursion. The excursions are analogous to a series of coin
tosses for which all, or nearly all, land heads. Although such series are relatively rare,
they do occur on occasion, and have a significant effect when they do.

Another way in which simulations of this type are useful is that they let us explore the
effects of changing the rules defining a random walk. For instance, the figures below
represent random walks in which the turn angle at each step is constrained relative to
the direction of the previous step. In the walk represented on the left, the turn from
the previous was restricted to ±90◦. In the right-hand figure, the turn was restricted
to ±46◦.

The obvious effects of restricting the turn angle in this way are to expand the random
walk and reduce the number of times the path crosses itself. Note that these random
walks consisted of only 20 steps each, yet the distance from the starting point is about
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the same as for the 200-step random walk shown above, in which the turn angles were
unrestricted. A random walk of this type is sometimes referred to as a correlated
random walk.

We can also change the random walk by allowing the step length, as well as the turn
angle, to vary randomly. The examples shown below were generated by sampling the
step length from a Gaussian distribution centered at zero. For the diagram on the left,
the standard deviation of the length distribution was 20 pixels, whereas the standard
deviation was 30 pixels for the example on the right.

In both cases, short step lengths are the most probable, but longer ones are not un-
common. For the example on the left, with the narrower distribution, the random walk
included 100 steps. To keep the walk to roughly the same extension, the number of
steps was reduced to 50 for the walk shown on the right.

One of the important ways in which simulations of nearly any process can be used is
to compare them to experimental observations. The extent to which the simulations
matches the observed results can help support a theoretical model or indicate the ways
in which the model might be improved. As an example the theory of random walks
can be applied to analyzing the paths that animals follow when foraging for food.

The figures below represent the paths of individual ants, of two different species, as
they foraged for food, as studied by Prof. Donald Feener and his colleagues at the
University of Utah.2

2Pearce-Duvet, J. M. C., Elemens, C. P. H. and Feener, D. H. (2011) Walking the line: search behavior
and foraging success in ant species. Behavioral Ecology 22, 501–509.
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Brachymyrmex depilis

(25 s)

Dorymyrmex insanus

(21 s)

The paths of the ants show some distinct similarities with those generated in the
simulations shown above. In particular, there are frequent turns with a wide range of
angles, and relatively straight segments of varying lengths. Of course, an ant has to
take a large number of tiny steps to cover any significant distance, but it is reasonable
to define random walk steps that correspond to the relatively straight segments in the
path.

Particularly for Brachymyrmex deplis, the range of step lengths is extremely wide. A
random walk model that has been used to describe walks with occasional steps that
are very long is called a Lévy flight. This type of walk is characterized by a long-tailed
distribution of step sizes, meaning that long steps are favored much more than by a
Gaussian distribution. One such distribution is called the Pareto function, which has
the general form:

p(x) =


αxα

m

xα+1 if x ≥ xm

0 if x < xm

where xm is the minimum value for which the probability is greater than zero. The
parameter α determines the rate at which the probability falls as x increases and lies
between 0 and 2. An example of a Pareto distribution, with xm = 1 and α = 2 is
plotted below.

0 1 2 3 4 5

0

1

2
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As written above, the Pareto function is a normalized probability distribution function.
An interesting property of this function is that for α ≤ 2, its variance is infinite. (More
properly, the integral representing the variance increases without bound as x increases.)

The figure below shows a simulated Lévy flight based on the Pareto function with the
step lengths determined by a Pareto function with xm = 10 and α = 2.

Compared to the random walks shown earlier, this one is characterized by a few very
long steps, separated by much more localized random steps. In this respect, it seems to
be a better model for the behavior of the ants shown above, and there is some evidence
that this type of random walk is appropriate model for the foraging behavior of many
species.

It should be noted that each of the turtle graphics representations shown above is just
a single random walk and was chosen without complete objectivity. In particular the
examples were chosen to highlight particular features, and for the fact that they didn’t
exceed the arbitrary boundaries of the axes. None the less, the features highlighted
are quite real and can be found when large samples are examined.

II. Simulating large samples of random walks

Another way in which simulations can be used is to generate large samples of random
walks, from which general statistical insights can be gained. The figure below shows
the endpoints of 10,000 two-dimensional random walks of 50 and 100 steps, on the left
and right respectively. The steps in these random walks have a length of 1, in arbitrary
units.
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Note that the maximum projection along the x- or y-axes is 50 or 100, for the left
and right panels, respectively. However, even among 10,000 random walks, distances
greater than 20 are rare in either case.

The graphs below show the relative probabilities of the x-projections of the endpoints
lying within intervals 1 step-length wide.
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To produce these relatively smooth curves, 100,000 simulated random walks were gen-
erated. As expected, the distributions are bell shaped and centered at x = 0. As the
number of steps increases, the breadth of the distribution increases.

The next set of graphs, below, show the distribution of distances between the starting
and end points.
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It may seem surprising that the peaks of these distributions are not at r = 0, since the
highest density of endpoints in near the starting point. To understand this apparent
paradox, it is important to keep in mind the meaning of a probability distribution
function. If the probability distribution function is p(r), then the probability that the
distance lies with in a small interval of r-values is the product p(r)dr, as represented
in the figure below:
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As shown in the figure, the probability distribution function, p(r), represents the prob-
ability that the endpoint of the random walk lies within an annulus dr thick at a
distance r from the starting point. This probability depends on both the density of
points at distance r and the area of the annulus. This area is calculated as:

A = 2πrdr

To help visualize this relationship, imagine a thin metal ring, with radius r and thick-
ness dr. If you were to cut this ring and flatten it out, the cross-sectional area (viewed
along the thin edge) would be the length, 2πr, times the thickness dr. Thus, the area
of the annulus increases as r increases, while the density of endpoints decreases with r.
The product of the area and the density is small when either term is small, and reaches
a maximum at an intermediate value of r, as shown in the distribution function.
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Chapter 4
Diffusion

Now, we go back to the problem introduced when we first began discussing probability,
Brownian motion and diffusion. We would like some real numbers about how far a molecule
or particle will diffuse in a given time, and we would like to know what factors determine this.
Traditionally most experimental measurements of diffusion have been based on measuring
changes in bulk concentration. An example that we will consider in some detail involves
setting up two adjacent volumes, one containing a molecule of interest and the other without.
At the beginning of the experiment, there is a sharp boundary between the two volumes, as
diagrammed below.

0

x

Setting up an arrangement like this is technically challenging, but not impossible. Typically,
the apparatus is set up vertically, but it is shown horizontally here, because we will define
the xaxis as the axis of diffusion, as indicated

With time, we expect the molecules to diffuse and the concentration to become more
even. The rates at which the concentration changes at different points along the x-axis will
depend on the rates at which the molecules move, and we should be able to deduce the
parameters of the random walk from the rate of change in concentration.

What we are trying to do here is to extend the treatment of individual random walks to
the bulk behavior of molecules that lead to concentration changes. This will require thinking
about things a little differently.

4.1 Flux: Fick’s First Law

I. The derivation

We will look at diffusion along a single dimension, x. Diffusion depends on Brownian
motion, which can be described as a random walk. In each step of the walk, the
direction is random, in three dimensions. If the mean-square length of the steps is ⟨l2⟩,
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then the mean-square displacement of the step along the x-axis will be ⟨δ2x⟩ = ⟨l2⟩/3.
For convenience, we will refer to the step size along the x-axis as δx = RMS(δx).

We will also define the average time interval between steps as τ . After a time period t,
the number of steps will be n = t/τ . The mean-square displacement along the x-axis
will be:

⟨x2⟩ = nδ2x = tδ2x/τ

Notice that the average (RMS) distance will increase with the square root of time.

Now, let’s consider two thin slices of the volume diagrammed in in the previous figure,
cut perpendicular to the direction of the concentration difference:

The thickness of each volume is set to be δx, the RMS length of a random-walk step
along the x-axis, and the cross-section along the x-axis has an area of A. Therefore,
the volume of each slice is Aδx. During the interval τ , one half of the molecules within
a slice will move to the left and half will move to the right. This will happen in
both slices. If the number of molecules is the same in the two slices, the number of
molecules that cross in each direction will be the same. But, if there are more molecules
at position x+ δx than at position x, then there will be a net movement of molecules
to the left.

Call the number of molecules in the slice centered at x Nx, and the number of molecules
in the slice at x+ δx Nx+δx . The net number of molecules going to the right in time t
will be:

dN =
1

2
Nx −

1

2
Nx+δx

= −1

2
(Nx+δx −Nx)

Notice that we have defined things so that if the number of molecules to the right is
larger than to the left, the flow of molecules to the right will be negative.

The flux across a given surface area is expressed as the number of molecules (or moles)
per unit time per unit area. The expression above is divided by A and the time interval,
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τ , to give the flux, J :

J = − 1

Aτ

1

2
(Nx+δx −Nx)

We can express the number of molecules in each slice in terms of the concentrations
and the volumes of each slice:

Nx = CxAδx

Nx+δx = Cx+δxAδx

We can then re-write the flux equation as:

J = − 1

Aτ

1

2
(Nx+δx −Nx)

= − 1

Aτ

1

2
(Cx+δxAδx − CxAδx)

= −δx
τ

1

2
(Cx+δx − Cx)

Now, we can write the difference in concentrations at the two positions in terms of a
derivative with respect to x

dC

dx
= lim

δx→0

Cx+δx − Cx

δx

In the limit of small δx:

Cx+δx − Cx = δx
dC

dx

So, we now have:

J = − δ2x
2τ

dC

dx

Consider the quantity δ2x/(2τ). Both parameters in this ratio are properties of the
diffusing particle under a particular set of conditions. For now, we won’t worry abut
it’s particular significance, but we will replace it with a new parameter, which we call
the diffusion constant, D. Thus:

J = −DdC
dx

This equation is known as Fick’s first law. (Adolf Eugen Fick, German physiologist,
1829–1901.)

Important conclusion: The net flux of molecules per unit area and per unit time
is determined by the difference in concentration, and the diffusion coefficient, which
reflects the steps in a random walk.
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Why do molecules “move down a concentration gradient”? It’s not because they can
sense concentration! All of the molecules move randomly, but the probability for
moving from a high concentration to a lower concentration is higher than the reverse
simply because there are more molecules in the high-concentration region.

Let’s also look at the units in this equation:

• The flux, J , has dimensions of molecules per cross-sectional area per unit time,
or, in SI units: molecules ·m−2s−1. Alternatively, it can be expressed in terms of
moles.

• The diffusion constant, D = δ2x/(2τ), has units: m
2s−1.

• The derivative of concentration with respect to x has dimensions of molecules per
volume per length. In SI basic units this is: molecules ·m−3m−1 = molecules ·m−4

• Combining these:

J = −DdC
dx

molecules ·m−2s−1 = m2s−1 ×molecules ·m−4

molecules ·m−2s−1 = molecules ·m−2s−1

Looks good!

II. The distribution of molecules diffusing from a single position.

Consider the case described earlier, where there is initially a sharp boundary between
an area where C = 0 and an area with C = 1, in arbitrary concentration units

x

C(x)

We might ask: For a molecule at any initial position along the x-axis, what is its most
likely position after a given period of time? If we treat this as a random-walk problem,
we conclude that the most likely position is the starting position, even though the
random walk will have taken the molecule to many other positions during the time
period. But, this must be true for all of the molecules in the sample. So, how does net
diffusion ever take place?

The solution to the paradox lies in the nature of the probability distribution function.
Recall that the Gaussian distribution for a random walk is given by:

p(x) =

√
1

2π⟨x2⟩
e−x2/(2⟨x2⟩)
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4.1. FLUX: FICK’S FIRST LAW

where x is the position of the endpoint and ⟨x2⟩ is the mean-squared value of x. For
diffusion, we defined the random walk parameters in terms of δx (the step size), τ (the
time interval between steps), t (the total time) and D = δ2x/(2τ), so that ⟨x2⟩ is given
by:

⟨x2⟩ = nδ2x

=
tδ2x
τ

= 2Dt

So, the probability function can be expressed in terms of D and t:

p(x) =

√
1

4πDt
e−x2/(4πDt)

A plot of the function looks like:
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For this plot, D = 3× 10−10m2/s, and t = 105 s.

Remember that a continuous probability distribution function is interpreted in terms of
its integral. In this case, the probability that the molecule lies between two positions,
a and b is given by the integral:∫ b

a

√
1

4πDt
e−x2/(4Dt)dx

If we divide up the range of x values into thin slices, the slice with the largest probability
is the one centered at x = 0. But the total probability that the molecule will be in one
of the other slices is much larger than the probability that x will be close to zero.

So, we really do expect virtually all of the molecules to be somewhere else after the
time period. The lesson here is that it is not enough to ask what the most likely
outcome is! The most likely may represent only a tiny fraction of the total.
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III. A (simplified) biological example

In biology, we don’t really have examples where we start with a perfectly sharp bound-
ary, with nothing separating the two sides. But, we do have lots of cases where there is a
sharp change in concentration across a membrane. Biological membranes are composed
of bilayers of phospholipids, along with proteins that are embedded in the bilayer. For
now, the structural details are not very important, except that most molecules diffuse
across lipid bilayers extremely slowly, and proteins can act as pores that allow much
faster selective diffusion of molecules.

Suppose that we have a membrane with a thickness of about 3 nm, a typical value,
and a small-molecule compound that has a concentration of 50mM on one side of the
membrane and 5mM on the other.

High concentration Low concentration

Membrane

Pore

Across the width of the membrane, we can estimate the concentration gradient as:

dC

dx
=

50mM− 5mM

3nm
=

0.045M

3× 10−9m

= 1.5× 107M/m

To go further, we need to convert the concentration gradient to units with consistent
units of length:

dC

dx
= 1.5× 107M/m

= 1.5× 107
moles

L×m
× 1 L

10−3m3

= 1.5× 1010moles/m4

From Fick’s first law, we can calculate the flux, J :

J = −DdC
dx
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A typical diffusion coefficient for small molecules is 10−10m2/s.

J = −10−10m2/s× 1.5× 1010moles/m4

= −1.5moles/(m2s)

This looks like a lot of molecules per second, but remember that the flux is expressed
per unit of area, in this case 1m2. The negative sign simply indicates that the flux is
in the opposite direction of the concentration gradient.

The pores in membranes vary greatly is size and shape, and many of them have very
small and specialized structures for which a general treatment of diffusion is probably
not appropriate. But, there are examples of pores with diameters of a few nm. For a
pore diameter of 1 nm, the area is:

A = πr2 = π(0.5× 10−9m)2 = 7.8× 10−19m2

The flow through this pore is then:

1.5moles/(m2s)× 7.8× 10−19m2 = 1.2× 10−18moles/s

The number of molecules per second is:

1.2× 10−18moles/s× 6.02× 1023molecules/mole ≈ 7× 105molecules/s

How many molecules would be in the volume of the pore at any instant? The volume
is:

V = A× L = πr2 × L = π(0.5× 10−9m)2 × 3× 10−9m

= 7.8× 10−19m2 × 3× 10−9m = 2.4× 10−27m3

= 2.4× 10−24 L

If the concentration within the pore is the average of that on the two sides of the
membrane, 20mM, the average number of molecules in the pore is calculated as:

2.4× 10−24 L× 0.02moles/L = 5× 10−26moles ≈ 0.03molecules

This result means that the pore is empty nearly all of the time, even though about 106

molecules are passing through every second. So, each is there for a very short time.

Can a flow of 106molecules/s be detected through a singe pore? It can be if the molecule
is charged, by measuring electric current. A current of 1 ampere (A) corresponds to 1
coulomb per s, or about 6×1018 charges per s. So 106 charges/s corresponds to about
2× 10−13A, or 0.2 pA. This is a very small current, but currents of this magnitude are
routinely measured by electrophysiologists studying single channels in membranes in
(or removed from) neurons and muscle cells.
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4.2 Fick’s second law

As soon as there is a net flux between regions of a sample, the concentrations will change.
Fick’s second law describes the change in concentration with time.

I. The derivation

Consider, again, a thin slice cut perpendicular to the x-axis, with area A and thickness
δx:

The net number of molecules moving to the right at the two sides of the slice during
an interval dt will be:

Nx = AJxdt

Nx+δx = AJx+δxdt

where Jx and Jx+δx are the values of the flux at positions x and x + δx respectively.
The change in the number of molecules in the slice will be:

dN = AJxdt− AJx+δxdt

= Adt(Jx − Jx+δx)

The change in concentration will be:

dC =
dN

Aδx

=
Adt(Jx − Jx+δx)

Aδx

= −dtJx+δx − Jx
δx
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In the limit of small dt and small δx:

dC

dt
= −Jx+δx − Jx

δx
= −dJ

dx

From Fick’s first law, we know how J depends on the change of C with respect to x:

J = −DdC
dx

Differentiating J with respect to x gives:

dJ

dx
= −Dd

2C

dx2

Substituting:

dC

dt
= D

d2C

dx2

This is the usual form of Fick’s second law. It is also referred to as the “diffusion
equation”, and it provides the basis for calculating how concentration will change with
time, provided that we know how concentration depends on position, x, which, of
course, changes continuously.

The good news is that diffusion is described by this very simple equation. The bad
news is that it’s not at all simple to solve this equation for real problems. What is
required is to find a function, C, of both x and t, that satisfied this differential equation
and describes the particular physical arrangement at when t = 0.

Historically, problems of this type were first solved in the context of heat flow through
materials, which follows the same mathematical laws as diffusion. Consideration of
problems of this type led the French mathematician Joseph Fourier to develop the
methods now known by his name, Fourier analysis. This can be, and is, the subject of
entire courses.

The two laws of Fick describe different, but closely related, features of the dynamics:

1. Fick’s first law states that the net flux of diffusing molecules is proportional to
the change in concentration with respect to distance, i.e., the “concentration
gradient”.

2. Fick’s second law states that the change in concentration with respect to time, at
a given position, is proportional to the derivative of the concentration gradient,
i.e., how rapidly the concentration gradient changes with position.

To see how these relationships work, we will look at the solution to the case of diffusion
from a sharp boundary.
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4.3 Diffusion from a Sharp Boundary

The case introduced earlier, diffusion from a sharp boundary, is one for which a solution
to the diffusion can be found relatively easily. Though this case is highly simplified and
restricted to diffusion in only a single dimension, its solution reflects general properties of
diffusion and provides considerable insight.

I. A solution to the diffusion equation

In looking for a solution to the diffusion equation, we are looking for a function, C(x, t),
that describes the concentration of the diffusing molecules as a function of both x and
t such that the derivatives of the function satisfy the differential equation:

dC

dt
= D

d2C

dx2

For each value of x, the concentration at time t will represent all of the molecules that
have diffused to that point, from all of the points at which molecules were initially
present (including x itself). For the case of diffusion from a sharp boundary, we can
say the following:

• For x < 0, the initial concentration is 0.

• For x >= 0 the concentration is initially the same, and we can call this value 1,
in arbitrary units.

These constitute the boundary conditions for the problem. Any solution must satisfy
these conditions, as well as the differential equation.

Assuming that there are initially a very large number of molecules in the vicinity of each
value of x >= 0, we know that the final distribution of molecules from that position
will be described by a Gaussian probability distribution function that is centered at the
initial position. Recall that the Gaussian function, for molecules beginning at x = 0,
can be written as:

p(x) =

√
1

4πDt
e−x2/(4Dt)

More generally, if we consider molecules that begin at position x = a, we can replace
x with (a− x) in the distribution to give

P (x, a) =

√
1

4πDt
e−(a−x)2/(4Dt)

A plot of the function looks like:
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For a given position x, the final concentration will be the total of molecules from all
values of a > 0. So, we add together the value of all of the probability functions for all
values of a > 0, as represented in the figure below:
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In other words, we integrate:

C(x, t) =

∫ ∞

0

√
1

4πDt
e−(a−x)2/(4Dt)da

Notice that the variable a doesn’t appear in the final result, it simply represents all
of the possible starting positions of the molecules. This integral cannot be evaluated
analytically, but it can be estimated numerically.

In most textbooks, this result is presented somewhat differently, as:

C(x, t) =
1

2

[
1 + erf

(
x√
4Dt

)]
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where erf is called the “error function” (because it arises in the statistical analysis of
measurement errors) and is defined as:

erf(z) =
2√
π

∫ z

0

e−u2

du

We can check that our solution satisfies Fick’s second law by calculating the appropriate
derivatives. For this purpose, it is convenient to use the form using the error function,
substituting x/

√
4Dt for z:

C(x, t) =
1

2
+

1√
π

∫ x/(4Dt)

0

e−u2

du

Since the function C(x, t) is an integral of the Gaussian function, it should not be
surprising that the derivatives of C(x, t) are Gaussian functions. The fundamental
theorem of calculus stipulates that if a function F (X) is defined as:

F (X) =

∫ X

a

f(x)dx

then the derivative of F (X) is simply f(X).

Using this relationship and some substitutions, differentiating C(x, t) with respect to
x gives:

dC

dx
=

d

dx

[
1

2
+

1√
π

∫ x/(4Dt)

0

e−u2

du

]

=

√
1

4πDt
e−x2/(4Dt)

The second derivative of C with respect to x is:

d2C

x2
= − x

4
√
πD3t3

e−x2/(4Dt)

With some effort (or the assistance of a computer program such as Mathematica or
Maxima), the derivative of C with respect to t can be shown to be:

dC

dt
= − x

4
√
πD3t3

e−x2/(4Dt)

Thus, Fick’s second law is satisfied by this solution:

dC

dt
= D

d2C

dx2

− x

4
√
πDt3

e−x2/(4Dt) = −D x

4
√
πD3t3

e−x2/(4Dt)
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II. Graphical representations of the solution

The best way to get a feel for all of this is to look at graphs representing the solution
and its derivatives.

The profiles predicted by the solution to the diffusion equation (for this particular
starting state) are shown in the graph below, for the case where D = 3 × 10−10m2/s
and the time after creation of the sharp boundary, t, is 103, 104, 105 or 106 s, as
indicated. (Note that the function is not defined for t = 0.)

0-0.04 0.04-0.02 0.02

The first derivative of C with respect to x is plotted below for the same value of D
and the indicated times.

0-0.04 0.04-0.02 0.02

Notice that the derivative has the form of a Gaussian function, which reflects the fact
that C(x, t) has the form of an integral of the Gaussian. The peak of the concentration
gradient remains at x = 0, but decreases in steepness with time as the gradient covers
a wider range of x values.

The net rate at which molecules pass a particular point is proportional to the concen-
tration gradient. Thus, the flux, J , is always maximal at x = 0 but decreases with
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time at this point. At other points, however, the flux increases and then decreases with
time.

Finally, we look at the second derivative of C with respect to x:

0

0-0.04 0.04-0.02 0.02

Notice that there are two peaks, one positive and one negative. At t = 0, these
are extremely sharp and represent the two edges of the sharp concentration gradient.
With time, these peaks move apart and become less pronounced as the concentration
gradient becomes more gentle.

The positive peak on the left represents the region where the concentration is begin-
ning to increase and where the gradient increases most rapidly. This is where the
concentration is increasing most rapidly. But, it’s not where the flux, J , is maximal!
The flux is always maximal at x = 0.

Why is the region where the flux is greatest not where the concentration changes most
rapidly?

At x = 0, the flux is maximal, but the molecules are constantly being replaced by the
“reservoir” to the right and are being drawn off to the left. So, the concentration stays
constant.

Where the second derivative is maximal, the flux changes most rapidly with position.
This means that the flux going into a volume element is greater than that leaving, so
that the concentration changes most rapidly.

As time increases, the absolute values of both the first and second derivatives decrease,
so that both the flux and the rate of change in concentration decrease.

Notice, also that the concentration at positions close to x = 0 change very rapidly, but
even a millimeter away, the change is quite slow.
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4.4 Estimating a Diffusion Constant from a Simple Ex-

periment

An approximation to the ideal sharp boundary experiment can be realized in practice by
overlaying two solutions, one containing a dye. In order to form the (relatively) sharp
boundary easily, it is also necessary to make the lower solution slightly more dense than the
upper one, for instance by adding a few percent of glycerol. The increased viscosity of the
lower solution slightly complicates the situation, but not so much as to obscure the essential
features of the experiment

The photograph below shows the result of such an experiment 48 h after establishing the
boundary.

Even after 48 h, very little, if any, of the dye has reached the top of the solution, about
2 cm from the initial boundary. We can use the result of this experiment to make a rough es-
timate of the diffusion coefficient, D, by comparing the observation to those predicted by the
solution for diffusion from a boundary. The plot below shows the expect concentration, after
48 h, as a function of position, x, with different values assumed for the diffusion coefficient,
as indicated.
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As a rough estimate, it appears that the experimental result lies somewhere between the
curves calculated for D = 10−10 and 10−9m2/s. Later, we will see how to calculate the
diffusion coefficient from the size of a molecule and the viscosity of the solution, and we’ll
see how close the two estimates match.

4.5 Molecular Motion and Kinetic Energy

So far, we have considered diffusion from a macroscopic point of view, focusing on the net flux
of molecules and changes in concentration, without considering the nature of the molecular
motions. To take a more microscopic view, we need to consider the motions of individual
molecules, which reflect their kinetic energy.

I. Kinetic energy

We can begin this discussion by asking, in the most general way, what is energy? The
standard textbook definition is that energy is the ability do do work. But what, then,
is work?

For mechanical motion, work, and therefore energy, represents an integral of force with
respect to distance:

w =

∫ b

a

Fdx

The units of energy are those of force times distance. In SI units N·m = joule (J).
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The unit of force, N, is defined from Newton’s second law:

F = m · a = kg ·m · s−2

Therefore, in the basic SI units, energy has units of 1 J=1 kg ·m2·s−2.

The kinetic energy of an object moving along a given direction, x, from classical me-
chanics is:

Ek,x = m · v2/2

This represents the work required to accelerate an object of massm from rest to velocity
v, in the absence of friction. It doesn’t matter how rapidly or slowly the acceleration
is, the final energy depends only on mass and velocity. If the object slows down, it
looses some of that energy.

Note that kinetic energy has the correct units, = kg ·m2·s−2

Also note that doubling the velocity increases the kinetic energy four fold. This is why
car accidents become so much more dangerous at higher speeds.

II. Thermal energy

Fundamentally, temperature is a measurement of the motion of molecules. The sim-
plest thermometer is a container of gas that expands or contracts when the temperature
changes (at constant pressure). Alternatively, we can measure temperature by measur-
ing the pressure of a gas at constant volume. Though this was not always understood,
we now know that the pressure represents the collisions of molecules against the side
of the container.

For an ideal gas, we have the relationship:

PV = nRT

where P is pressure, V is volume, n is the number of moles of gas, T is temperature
and R is the gas constant. An ideal gas is one that is made up of particles that do not
interact at all with one another. At moderate temperatures and pressures, real gasses
are well approximated by the ideal gas law.

What are the units of the gas constant?

Pressure has the units of force per unit area, or N ·m−2, and volume has the units of
m3. T has units of K, and n has units of moles. Therefore, R has units of:

R =
PV

nT
=

N ·m−2m3

K ·mol
= N ·m/(K ·mol)

In the basic SI units, R has the units of:

N ·m/(K ·mol) = kg ·m2s−2K−1mol−1

111



CHAPTER 4. DIFFUSION

Notice, though, that we just showed that kg ·m2·s−2 is a unit of energy, the Joule. So,
R can be expressed in units of J/K, and the product RT must, in some sense be a
measure of the energy that one mole of moving molecules have at a given temperature,
irrespective of pressure and volume.

To discuss the energy of individual molecules, it is convenient to divide the gas constant
by Avogadro’s number. (≈ 6.02× 1023). This is the Boltzmann constant, which, in SI
units, is:

k = 1.3806× 10−23 kg ·m2s−2K−1 = 1.3806× 10−23 J/K

In a given volume of gas, not all of the molecules will have the same energy (or velocity)
at a given instant. In fact, they will have a broad distribution of energies as they collide
with one another and the walls and exchange energy. So, we have to express the kinetic
energy as an average. Without going through the derivation, the RMS translational
kinetic energy in one direction is:

RMS(Ek,x) = kT/2

And the total translational energy, summed over all three directions is:

RMS(Ek) = 3kT/2

Remember, though that the kinetic energy is also expressed in terms of the velocity
and mass of a particle:

Ek = m · v2/2

Combining these equations gives:

v =
√
kT/m

where v is understood to be an RMS average velocity. With this equation, we can
calculate the RMS velocity knowing only the mass of a molecule and the temperature.

III. Steps in the random walk

The equations for kinetic energy in a gas also apply to molecules in a liquid, at the same
temperature. The instantaneous velocities are the same, it’s just that the molecules
collide with one another much more frequently in a liquid, and we can now calculate
just how frequent that is.

For a single (average) step in the random walk, the displacement is δx and the time is
τ . Therefore, the velocity during this period is:

v = δx/τ
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If we have measured the diffusion coefficient, D, we can now calculate δx:

D =
δ2x
2τ

=
δx
2
v

=
δx
2

√
kT/m

δx =
2D√
kT/m

The average time between collisions is given by:

τ = δx/v

=
2D√
kT/m

1√
kT/m

=
2D

kT/m

What is implied by these equations?

• The average velocity of a molecule depends on the temperature and mass, irre-
spective of the surrounding environment.

• But, the average distance that a molecule goes before colliding and bouncing off
in different directions does depend on the environment.

• All molecules at a given temperature have the same average kinetic energy. (This
is implied by the ideal gas law.) However, the average velocity is inversely related
to the square root of the molecular mass. Big molecules move more slowly.

IV. Some typical values of D, δx and τ .

From the simple diffusion experiment, we estimated that the diffusion coefficient for
the bromophenol blue dye is about 10−10m2/s. The molecular weight of this dye is
670 g/mol. Thus, the mass of a single molecule is 1.1×10−21 g, or 1.1×10−24 kg. At
room temperature (≈300 K), the expected velocity of the molecule is then:

v =
√
kT/m

=

√
1.38× 10−23 kg ·m2·s−2·K−1 · 300K

1.1× 10−24 kg

≈ 60m/s
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This seems very fast, especially considering how slowly the molecules diffused. But,
we know that they only move in a given direction for a short time before colliding
with another molecule in the solution. From the relationships derived earlier, and the
estimate of the diffusion coefficient, we can calculate the distance between collisions
as:

δx = 2D/v

≈ 2× 10−10m2/s÷ 60m/s

≈ 3× 10−12m

Thus, the average displacement is extremely small: A hydrogen atom is about 10−10m
in diameter. The time interval between collisions is correspondingly small:

τ = δx/v

≈ 3× 10−12m÷ 60m/s

≈ 5× 10−14 s

The RMS displacement along one axis as a function of time is given by:

RMS(x) =
√
2Dt

≈
√

2× 10−10m2/s · t(s)

≈ 1.4× 10−5m
√
t(s)

V. The relationship between molecular size and diffusion coefficient

In general, we expect the diffusion coefficient to depend on the molecule and its envi-
ronment. More specifically, we might expect D to depend on the size of the molecule,
the temperature and the viscosity of the solution. Indeed, this is the key relationship
that Einstein formulated in his classic 1905 paper on Brownian motion:

D =
kT

6πηr

where η is the viscosity of the solution and r is the radius of a spherical particle. This
is usually referred to as the Stokes-Einstein equation, showing that even Einstein built
on the work of others! Strictly, this applies only to spherical particles, but it is common
to refer to an “effective radius” for particles that are less symmetrical.

We will ignore the question of how viscosity is defined and measured except to note
that it is most commonly expressed in units of centipoise, which is equivalent to
10−3N · s ·m−2. The factor of 10−3 has obscure historical origins, but the unit of
centipoise has been retained, probably because water at room temperature has a vis-
cosity very close to 1 centipoise. It is left to the student to demonstrate that the units
in the Stokes-Einstein equation are consistent.
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Here are a few examples of particles with a range of sizes and calculated diffusion
coefficients:

• Small molecule (1 nm): 2× 10−10m2s−1

• Protein (10 nm): 2× 10−11m2s−1

• Bacterium (1 µm): 2× 10−13m2s−1

• 1 mm sphere: 2× 10−16m2s−1

To place these diffusion coefficients into some context, it is helpful to calculate the
time required for a particle to diffuse until the RMS distance from the starting point
reaches a given value. Earlier, the relationship between the RMS distance and time
was given as:

RMS(x) =
√
2Dt

Rearranging this equation gives:

t =
RMS(x)2

2D

The graph below shows how the time required to diffuse a given RMS distance depends
on time for different size molecules:
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This graph shows that diffusion leads to quite fast net movements of molecules over
short distances, but the times required for movement over longer distances can greatly
exceed what is necessary in many biological contexts.
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A biological example highlighting the differences in diffusion times over different dis-
tances is neural transmission. Individual neurons communicate with adjacent neurons
and muscle cells via chemical synapses, as diagrammed below1:

When stimulated, the axon terminus of a neuron (the pre-synaptic cell) releases neu-
rotransmitter molecules, such as acetylcholine, glutamate or dopamine. These small
molecules diffuse across the synaptic cleft, which has a width of about 20 nm, and bind
to receptors on the adjacent neuron or muscle cell (the post-synaptic cell). Binding
to these receptors then generates a signal within the post-synaptic cell. The time re-
quired for the transmitter to diffuse an RMS distance of 20 nm is calculated (assuming
a diffusion coefficient of 2× 10−10m2s−1) as:

t =
RMS(x)2

2D

=
(2× 10−8m)2

2× 2× 10−10m2s−1

= 10−6 s = 1µs

Signals also must travel along the lengths of neurons, which can be up meters in length.
To travel by diffusion a distance this long, would take:

t =
(1m)2

2× 2× 10−10m2s−1

= 2.5× 1010 s ≈ 80 yr

The obvious conclusion from this calculation is that some other mechanism must be
employed to transmit signals over the length of the neuron, and this mechanism is
the propagation of an electrical potential across the membrane. Within neurons and
other eukaryotic cells, the components of various structures must be transported over
distances that are similarly too long for diffusion to be effective. Molecular motors
that move along structural tracks in the cell facilitate this kind of motion.

1Figure from https://en.wikipedia.org/wiki/Chemical_synapse, Thomas Splettstoesser (www.
scistyle.com).
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4.6 A Plant Faces Diffusion

Diffusion plays a role in the physiology of all organisms, as they exchange nutrients and
other compounds with their environments. Here we consider diffusion at the surface of plant
leaves, a process that dictates many aspects of plant physiology, structure and ecology.

I. A plant’s demand for CO2

Consider the growth of a seed to a plant. Where does all of the mass, especially the
carbon, come from? Nearly all of the carbon comes, literally, from thin air. The net
chemical reaction is:

6CO2 + 6H2O −−→ C6H12O6 + 6O2

This is an extremely unfavorable chemical reaction, except when it is coupled to the
absorption of energy provided by sunlight.

A back of the envelope calculation: How much CO2 must cross the leaf surface per
second to support a plant’s growth? Suppose that a plant incorporates 1 kg of carbon
a year. How much leaf area does such a plant have? A rough estimate might be that
the plant has 1,000 leaves with an area of 1 cm2 each, for 0.1m2 total.

Total moles of carbon per year:

1 kg ÷ 12 g/mol ≈ 80mol

Total seconds per year:

1 yr× 365 days/yr× 24 hr/day × 60min/hr× 60 s/min ≈ 3× 107 s

But, CO2 is incorporated only during daylight, so the total time available is only about
half of this. The number of moles per second is:

80mol÷ 1.5× 107 s ≈ 5× 10−6mol/s

II. Leaf structure and stomata

CO2 enters leaves only through special openings, called stomata, which can be regulated
depending on physiological state. A rough cross-sectional drawing of a typical plant
leaf is shown below.

Epidermal cells

Guard cells Stomatal pore

Mesophyll cells
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The cells that carry out photosynthesis, the mesophylls, are enclosed in a space bounded
by the leaf epidermis on both sides. In some plants, the stomata are found only on the
lower leaf surface, but in others they are on both surfaces. Photosynthesis takes place
within the chloroplasts of the mesophylls, and the CO2 is converted into sugars by the
enzyme ribulose-1,5-bisphosphate carboxylase (Rubisco). This is the most abundant
enzyme on earth, and is arguably the most important for life. Essentially every carbon
atom in our bodies passes through this enzyme.

The left-most panel in the figure2 below is a scanning electron micrograph of a tomato-
plant leaf. The large gaping opening is a single open stoma, with a diameter of about
10µm and a depth of about 40µm.

The two other panels in the figure are diagrams of a stoma in the open and closed
states. The opening is controlled by two large cells, called guard cells on either side,
which expand and change shape when their water content increases to open the stoma.
When the water content decreases, the guard cells contract, and the opening closes.

III. Diffusion of CO2 through stomata

In the air, CO2 is a trace gas, making up about 580 parts per million of the atmosphere
by mass. This number has increased with the burning of fossil fuels, which is, of course,
a very important issue right now. At sea level, the concentration of CO2 is about
1.5× 10−2mol ·m−3 = 15µM.

Within the leaf, the consumption of CO2 by the chloroplasts depletes the concentration
in the leaf airspace. The flux through the leaf involves many steps and concentration
gradients, but the most significant barrier to diffusion is in the stomata. In the airspace,
the CO2 concentration is about half of what it is in the atmosphere, i.e., about 7.5×
10−3mol ·m−3. So, the concentration difference across the stomata is about 7.5 ×
10−3mol ·m−3.

Recall Fick’s first law:

J = −DdC
dx

2Scanning electron micrograph of tomato-leaf surface by Louisa Howard, http://remf.dartmouth.edu/
images/botanicalLeafSEM/source/16.html

Diagrams of open and closed stomata by Ali Zifa https://en.wikipedia.org/wiki/Stoma

118

http://remf.dartmouth.edu/images/botanicalLeafSEM/source/16.html
http://remf.dartmouth.edu/images/botanicalLeafSEM/source/16.html
https://en.wikipedia.org/wiki/Stoma


4.6. A PLANT FACES DIFFUSION

where J is the flux, D is the diffusion coefficient, C is concentration and x is distance
along the direction of diffusion.

For the stomata:

dC

dx
=

1.5× 10−2mol ·m−3 − 0.75× 10−2mol ·m−3

40× 10−6m
= 190mol ·m−4

The diffusion coefficient for CO2 at atmospheric pressure is 1.5 × 10−5m2s−1. This is
much larger than the numbers we discussed for molecules in water. Why?

The flux, per unit of surface area, is then:

J = −DdC
dx

= −1.5× 10−5m2s−1 × 190mol ·m−4

= −2.8× 10−3mol ·m−2s−1

How much surface area do we need in order to fix 1 kg of CO2 per year?

5× 10−6mol · s−1 ÷ 2.8× 10−3mol ·m−2s−1 ≈ 0.002m2

We can then calculate the minimal number of stomata required to allow this transfer
of CO2 into the leaves. The area of each stomatal pore is:

π(5× 10−6m)2 ≈ 10−10m2

and the number of pores required is:

0.002m2 ÷ 10−10m2 = 2× 107

If the plant has a total of 0.1m2 of leaf area, then about 2% of that must be devoted
to stomatal pores. A plant that grows by 1 kg/yr might have about 1,000 leaves of
1 cm2 = 10−4m2 each, so that there would be about 20,000 stomata per leaf, or 200
stomata per mm2. Actual densities of stomata on plant leaves range from 100 to 1,000
per mm2, depending on plant species and environmental conditions.

IV. The big problem: Water diffusion

Because the stomata are just open holes in the leaf surface, other gasses can also diffuse
in and out of the airspace. The diffusion of water out of leaves, transpiration, is a major
factor that limits the ability of plants to fix CO2.

Within the airspace of the leaf, water reaches saturation concentration, i.e., close to
100% humidity. For a leaf at 25 ◦C, this is about 1.3mol ·m−3. Outside the leaf, the
water vapor concentration is about half this.

So, we can calculate the H2O vapor gradient across the stomata:

dC

dx
=

0.6mol ·m−3

40× 10−6m
= 1.5× 104mol ·m−4
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The diffusion coefficient is slightly larger for H2O than for CO2. Why? D =2.4 ×
10−5m2s−1.

The flux per unit area of stomata is:

J = −DdC
dx

= −2.4× 10−5m2s−1 × 1.5× 104mol ·m−4

= −0.36mol ·m−2s−1

For our plant with 0.1m2 of leaf surface area and 0.002m2 of stomatal surface area:

0.36mol ·m−2s−1 × 0.002m2 = 7× 10−4mol/s

In one year:

1.5× 107 s× 7× 10−4mol/s = 104mol

104mol× 18 g/mol = 18× 104 g

= 180 kg

≈ 45 gal

The plant needs about 180 kg of water for each kg of carbon it fixes, just because of
evaporation from the leaves.

Note: This is a very rough approximation!

This dwarfs the amount of H2O directly used in the photosynthesis reactions (≈
80mol ≈ 1.4 kg).

Consequences of huge water losses:

• Stomata are closed when photosynthesis rates are low (e.g., at night). This is
probably why plants evolved stomata, rather than allowing diffusion across the
entire leaf area.

• The tradeoff between photosynthesis and water loss is the major physiological
challenge to plants. Plants in different environments evolve to optimize this trade-
off.

• All of this water has to pass through roots and stems of the plant.

• For tall trees, there is a huge pressure difference from the bottom to the top of
the trunk of the tree. Conduction depends on unbroken flow of liquid. If bubbles
form, conduction stops. Tree trunks have small parallel tubes to conduct water,
the xylem. If one develops a cavity, it is sealed off.

• For trees, each year there is a discontinuity in the flow, and new tissue has to be
grown, leading to rings.

V. The Crassulacean Acid Metabolism Cycle

In some plant lineages, special adaptations have evolved to minimize the loss of wa-
ter through stomata, particularly in species that live in arid environments. One of
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these adaptations is based on a metabolic pathway, the crassulacean acid metabolism
(CAM) cycle, which allows CO2 to be captured at night and then incorporated into
carbohydrates during the day. The name, crassulacean, comes from the plant family
Crassulacae (which includes the pineapple and jade plants), where the pathway was
first studied in detail. The overall cycle is illustrated in the figure3 below:

During the night, when water transpiration is minimal because of lower temperatures,
the stomata are open to allow CO2 into the leaves. Because, there is no sunlight, how-
ever, the plants are not able to convert the CO2 into carbohydrate via photosynthesis.
Instead, the CO2 is used to convert phosphoenolpyruvate (PEP) into oxaloacetate,
which is then converted to malate. The resulting malate is then stored in vacuoles.
During the daytime, the stomata are closed, to prevent transpiration, and the malate
that accumulated overnight is metabolized to regenerate CO2, which is used for pho-
tosynthesis.

By temporally separating the processes of CO2 diffusion and photosynthesis, plants us-
ing this cycle minimize the loss of water. But, this does come with a cost in metabolic
energy, including the hydrolysis of ATP to drive the reformation of PEP and for trans-
port of malate into vacuoles.

VI. Changes in atmospheric CO2 concentration

It is now well established that the atmospheric concentration of CO2 has increased
markedly over the past century, as shown in the graph below4:

3Figure from https://en.wikipedia.org/wiki/Crassulacean_acid_metabolism
4The figures in this section are from Lammersma, E. I., de Boer, H. J., Dekker, S. C., Ditcher, D. L.,

Lotter, A. F. &Wagner-Cremer, F. (2011). Global CO2 rise leads to reduced maximum stomatal conductance
in Florida vegetation. Proc. Natl. Acad. Sci., USA, 108, 4035–4040. http://dx.doi.org/10.1073/pnas.
1100371108
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In molar units, the increase in CO2 concentration from 300 to 400 ppm is an increase
from 12 to 16µM. This increase in CO2 concentration could, in principle, be beneficial
for plants, both by increasing the efficiency of CO2 fixation and by minimizing the
loss of water through stomata. It appears that plants have responded to the relatively
recent increase in CO2 concentration by reducing the total area of open stomata on
their leaves. The results of a study examining the nature of this change in nine plant
species found in Florida is shown below:

The quantity plotted on the vertical axis of this plot is termed the anatomical maximal
stomatal conductance to water, gsmax and has the units of mol ·m−2s−1. Note that
these are the same units as used for flux, J , but gsmax is made up of several terms, as
defined by the equation:

gsmax =
dwatD · amax/v

l +
√
πax/2

where dwat is the diffusion coefficient of water, D is the density of stomata on a leaf,
amax is the maximum open area of an individual stoma, l is the length of the stomatal
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pore and v is the molar volume of air (the inverse of molar concentration, with units
m3/mol). gsmax represents the maximum conductivity of water per unit of leaf area
and reflects both the dimensions of the stomata and their density on the leaves of a
plant.

The important message from the figure shown above is that conductance per unit of
leaf area has decreased over the time period when the atmospheric CO2 concentration
has increased. Analogous changes have been demonstrated over geological timescales,
when atmospheric CO2 concentrations have both increased or decreased, and stomatal
conductance has decreased or increased, respectively.

In different plant species, the reduction in overal stomatal surface area is due to a
reduction in stomatal density or in pore size, or both. For the species of Florida plants
examined in this study, the major change appears to be in the density of stomata on
the leaf surface, rather than changes in the size of the stomata.

4.7 Bacterial Chemotaxis: Overcoming the Limits of

Diffusion

Microorganisms are subject to Brownian motion and can diffuse over short distances, but the
requirements for traveling longer distances has led to the evolution of special mechanisms,
referred to as chemotaxis. Among the best studied examples of chemotactic microorganisms
are the closely related gram-negative bacteria Escherichia coli and Salmonella enterica5.

I. Diffusion from a bacterial perspective

As an approximation, we will treat a bacterial cell as a sphere of 1µm radius. First,
we calculate the diffusion coefficient from the Stokes-Einstein equation:

D =
kT

6πηr

η is viscosity and r is the radius of the particle.

k = 1.38× 10−23 kg ·m2s−2K−1

T = 300K

kT = 4.1× 10−21 kg ·m2s−2

η = 10−3N · s ·m−2 = 10−3 kg ·m−1s−1

D =
4.1× 10−21 kg ·m2s−2

6π10−3 kg ·m−1s−1 · 10−6m

= 2.2× 10−13m2s−1

5The species S. enterica is classified into smaller groups, called serovars, and the serovar that has been
most extensively studied with respect to chemotaxis is Typhimurium. Until recently this serovar was iden-
tified as a species, Salmonella typhimurium. It’s very confusing.
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This is about 1/1,000 of the value for a small molecule.

A short cut: Remember a few key facts:

• A ”small molecule” (≈ 100 Daltons) has a radius of r ≈ 1 nm.

• A molecule of this size has a diffusion coefficient of about 10−10m2s−1.

• The diffusion coefficient is inversely proportional to the radius of a particle.

A bacterium with a radius of 1µm should have a diffusion coefficient of about 1,000th
that for a small molecule, or about 10−13m2s−1.

Next, we calculate the velocity of the bacterial cell during its random-walk steps, using
the relationship:

RMS(v) =
√
kT/m

We need to know the mass. Bacteria (and the great majority of all organisms) have a
density that is about the same as water. (Because they are mostly made up of water!)
The density is about 1 g/mL = 1kg/L. So if we know the volume we should be able
to make a reasonable estimate of the mass.

V =
4

3
πr3 =

4

3
π(10−6m)3

= 4.2× 10−18m3

1m3 = 103 L, so we can calculate the mass as:

m = 4.2× 10−18m3 × 103 L

1m3
× 1 kg

1 L

= 4.2× 10−15 kg

The average velocity is:

RMS(v) =
√
kT/m =

√
4.1× 10−21 kg ·m2s−2

4.2× 10−15 kg

=
√
10−6m2s−2

= 10−3m/s

About 1mm/s: Much slower than the small molecules, which have a velocity of about
100m/s.
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The random-walk step size is then calculated as:

D =
δ2x
2τ

=
v

2
δx

δx =
2D

v

δx =
2× 2.2× 10−13m2s−1

10−3m/s

δx = 4.4× 10−10m

Compare this with 3 × 10−12m for a small molecule. The average step size increases
with particle size, but the velocity decreases much more rapidly

For a three-dimensional random walk, the mean-square end-to-end distance is calcu-
lated as:

⟨r2⟩ = 6Dt

where r is the distance, in three-dimensions, from the start to end of a walk, and t is
time.

Note that this expressions differs from the one for one-dimensional diffusion, with the
factor of 6 replacing 2. The reason for this has to do with the definition of the diffusion
coefficient in terms of the random-walk step size, as given above. The parameter δx
is the average projection of the steps onto the x-axis (or any arbitrary axis, for that
matter). If we only consider the net diffusion in one-dimension, the δx corresponds to
the average step size in that direction. But, if we are considering the diffusion away
from the starting point and are calculating the distance through three dimensions, then
the projections along all three axes contribute to the distance:

⟨r2⟩ = ⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩ = 6Dt

How long does it take for an average walk to reach 1mm?

⟨r2⟩ = (10−3m)2 = 6Dt

t =
(10−3m)2

6× 2.2× 10−13m2s−1

t = 7.6× 105 s

t ≈ 9 days

Since an E. coli bacterium can divide in as little as 20min, this is obviously a long
time for such an organism!
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II. Bacteria under the microscope

When bacterias such as E. Coli are examined under a microscope it is often observed
that they move much faster than the calculated rates of brownian motion. For many of
these motile bacteria, the motion appears to be a random walk, but with much larger
steps than expected for Brownian motion.

A pioneer in the biophysical study of bacterial swimming is Prof. Howard Berg. In 1972
he built a very fancy microscope, especially for the time, that could track the motion
of individual bacteria in three dimensions6. The figure below shows an example of one
of the paths, projected onto two dimensions, as traced by Berg and his colleagues:

This looks like a random walk with variable step length, and detailed analyses showed
that the typical parameters for the random walks were:

• Velocity ≈ 2× 10−5ms−1

• Average time of forward motion ≈ 3 s

• Average step length ≈ 6× 10−5m

Note that the velocity is much lower than the instantaneous velocity from thermal
motion. But, the length of the steps is vastly longer, about 60 bacterial body lengths.

The number of steps is n = t/(3 s/step)

6Berg, H. C. & Brown, D. A. (1972). Chemotaxis in Esherichia coli analyzed by three-dimensional
tracking. Nature, 239, 500–504. http://dx.doi.org/10.1038/239500a0
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What is the average time to move 1mm? First calculate the number of steps:

n =
⟨r2⟩
δ2

=
(10−3m)2

(6× 10−5m)2

≈ 280 steps

The total time, then, is:

t = 280 steps× 3 s/step

≈ 840 s ≈ 15min

This is almost 1,000 times shorter than the time required for diffusion over the same
distance.

This is an important feature of random walks: For a given period of time, the average
distance from the starting point will be larger if the steps are longer, even if there are
fewer of them.

But, why doesn’t the bacterium take longer steps? Because it wouldn’t help! Notice
the tracks in the microscope. They are curved, because Brownian motion is moving
them off of a straight path. After a few seconds, the bacterium essentially forgets what
direction it is going.

But, it is suddenly changing direction. Why do this if it is going to be randomly
altering direction anyway?

Because, it is doing something much smarter!

III. Chemotaxis: Movement to or from specific chemicals

The ability of bacteria to systematically move towards or away from certain compounds
was first demonstrated by Wilhelm Pfeffer in 1884 in a very simple experiment. Pfeffer
placed a solution of sugar in a small capillary tube and then placed the end of this
tube in a liquid culture of bacteria, as illustrated in the figure below7:

7Figure from: Adler, J. (1969). Chemoreceptors in bacteria. Science, 166, 1588–1597. http://dx.doi.
org/10.1126/science.166.3913.1588
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As shown in the microphotograph, the bacteria quickly cluster around the open end
of the capillary tube. This simple experiment demonstrated that bacteria have the
capability to detect specific compounds and move in a directed fashion.

The first question these observation raise is, how do they know which way to go? Some-
how, they need to detect a concentration gradient and then move in the direction of
increased concentration, if they want to use the compound as a nutrient, or decreased
concentration, if the compound is toxic. One might imagine that the bacteria could
somehow sense concentrations at the two ends of the cell and compare these to de-
termine the concentration gradient. But, our earlier calculation show that the time
required for a small molecule to diffuse over the the length of a typical bacterial cell,
about 1-2µm, is less than a second, so that concentration gradients are insignificant
over these distance.

Instead, bacteria use a modified random walk strategy that involves the following steps:

1. Choose a random direction.

2. Swim for a while.

3. Is life getting better? (more food, less poison)

• Yes: keep going.

• No: Stop and choose a new random direction.

Steps in the good direction are still limited to a few seconds, but steps in the wrong
direction can be much shorter.

This requires that the bacteria have a concentration sensor and a “memory”, so that
they can compare concentrations as they move in a particular direction. How do the
bacteria actually do all of this?

• The bacteria swim using a propeller and a rotary motor.

• Bacteria change direction by stopping the flagella and tumbling for an instant.

• Sensors on cell surface detect concentration changes and transmit that information
to the rotary motor.

IV. The rotary motor

E. coli and many other bacterial species are propelled through liquid media by long
helical flagella. Each cell contains multiple flagella, each with a rotary motor embedded
in the cell membranes and cell wall, as shown in the diagram in the left panel below8.
The right panel shows an image of the motor reconstructed from electron micrographs.

8The diagram of the bacterial motor is from Berg, J. M., Tymoczko, J. L. & Stryer, L. (2002). Biochem-
istry . W. H. Freeman, 5th edition. https://www.ncbi.nlm.nih.gov/books/NBK22489/
The electron microscopy reconstruction is from Thomas, D., Morgan, D. G. & DeRosier, D. J. (2001). Struc-
tures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J. Bacteriol., 183, 6404–6412.
http://dx.doi.org/10.1128/JB.183.21.6404-6412.2001
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The motor, which we will discuss in more detail later in the course, is driven by the flow
of H+ ions from outside of the cell inward and rotates the flagella at up to 10000RPM.
When the motor rotates in the counter-clockwise direction, the individual flagella of a
cell bundle together and act as a propeller. The bacterium then swims in a (relatively)
straight direction. When the motors reverse direction, the flagella unbundle, and the
bacterium tumbles randomly. After a few seconds, the motor reverses again, and the
bacterium swims in a new direction. By this process, the bacteria carry out their
random walk. The reversals of the motor are controlled by a signalling system that
detects changes in the concentrations of specific compounds in the surrounding liquid.

V. The sensory and signalling system

The system for sensing specific molecules and signalling the rotary motor is quite
complex, but a simplified diagram is shown below:

P

P

Clockwise
"Off"

Counter-clockwise
"Off"

P

P

Clockwise
"Off"

Longer Runs More Frequent Tumbles

Attractant Repellent

Molecules in the extracellular environment are detected when they bind to receptors
that cross the cellular membrane. These receptors are bound to an enzyme and can
exist in two conformations. In one conformation (“on”), the enzyme, a kinase, is acti-
vated and phosphorylates another protein, which, in turns binds to the rotary motor.
When this phosphorylated protein is bound to the motor, the clockwise rotation is fa-
vored, leading to tumbling. When the receptors are in the other conformation (“off”),
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the kinase is inactivated, the signalling molecule is less likely to be phosphorylated,
and counter-clockwise rotation is favored.

The equilibrium between the two conformations of the receptors is controlled by multi-
ple factors, including the presence of attractant and repellant molecules. When attrac-
tants are bound to the receptors, the off conformation is favored, promoting counter-
clockwise rotation and forward swimming. In the absence of attractants or the presence
of repellants, the on conformation is favored, leading to tumbling and shorter steps in
the random walk.

In addition to sensing the concentrations of attractants and repellants, the bacterium
has to do one other very important thing: It has to remember what the concentrations
were a short time ago! In order to bias the random walk in the direction of a concen-
tration gradient, the bacterium has to compare the concentrations at different times
as it swims. This memory is established by another set of enzymes that covalently
modify the receptors by methylating specific glutamate residues. These modifications
are reversible and adjust the sensitivity of the receptors to attractants or repellents. As
the concentration of an attractant increases, the receptors are modified so that higher
concentrations of attractant are required to keep the receptor in the off conformation.
In a real sense, the cell becomes addicted to the attractant and require more of it
to keep swimming in the same direction. In this way, the random walk is biased in
a way that leads it up the concentration gradient. The system adjusts to repellent
concentrations in the opposite way, to favor moving down the concentration gradient.
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Chapter 5
Thermodynamics

Thermodynamics is the branch of chemistry and physics that is concerned with the intercon-
version of different forms of energy. The laws of thermodynamics place absolute constraints
on how much work can be obtained from different forms of energy and whether or not spe-
cific processes will occur spontaneously. Nobody gets to break these laws! Thermodynamics
does not tell us how a process will occur, but only whether or not the process will occur
spontaneously.

Thermodynamics is definitely one of the most challenging subjects for nearly all students,
for several reasons:

• The ideas are fundamentally abstract and subtle. Even people who have thought about
thermodynamics for many years easily get tripped up.

• It uses math! Even if many of the ideas seem to be conceptually simple, a deep and
useful understanding depends on mathematics.

• The language can be confusing. Different disciplines sometimes use different terms. In
addition, the language has historical origins, and the history is convoluted.

• Historical confusion. Unlike classical mechanics, which almost all came from one per-
son, Newton, over a short period of time, thermodynamics was developed over a long
period of time by several generations of scientists, and there were periods of profound
confusion.

But, it’s worth it! The current issues regarding energy and climate change offer a dramatic
examples of how important the interconversion of energy forms can be. In the context of our
course, we will use these principles to understand how biological systems become organized
and do amazing things.

5.1 Energy, Work and Heat

I. Units of energy.

Before going on, it is worthwhile to review again the definition of energy and the units
we use. A general definition of energy is that it is the “ability to do work”. We define
mechanical work as the integral of force applied over distance:

w =

∫ x2

x1

Fdx
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If the force is constant, then

w = F (x2 − x1)

The units of work must be force times distance. The SI unit of force is the newton,
which is the force required to accelerate a mass of 1 kg by 1m/s per s. The SI unit of
work or energy is then the Nm, or joule:

1 joule = 1 newton ·meter = 1 kg ·m2s−2

Another commonly used unit of energy is the calorie, which is defined as the amount
of energy required to raise the temperature of 1 g of water by 1 ◦C, or 1K. One
problem with defining the calorie in this way is that the heat required to raise the
temperature of water depends on the starting temperature. 4 ◦C and 15 ◦C have been
used to define the unit, sometimes with a subscript indicating the temperature. The
standard definition now is in terms of the Joule, as defined above:

1 cal = 4.184 J

Another source of confusion is that the calorie has been defined at different times in
terms of the energy to heat either 1 g of water or 1 kg. The current convention is to use
a lower case “c” to designate the “gram calorie” and an uppercase “C” to designate
the “kilogram calorie”. The energy content of foods is expressed in kilogram calories.
This is one reason that the idea of loosing weight by eating ice cream (which should
cool the body and result in negative calorie intake) is doomed to failure!

II. An important distinction: Temperature versus heat.

Before considering some simple examples, it is important to be sure that we are using
language carefully. One common cause of confusion is the difference between temper-
ature and heat.

• Temperature has a relatively straight-forward definition. It is a property of a
given mass of matter that is directly related to average kinetic energy of the
molecules making up the matter. For an ideal gas, the temperature determines
the relationship between volume and gas according to the ideal gas law:

PV = nRT

For an ideal gas, temperature is related to the average kinetic energy of the ideal
gas molecules according to:

E = 3kT/2

• Heat is often defined as “a form of energy”. More specifically, heat is the flow of
energy from a warm object to a cooler one, with the result that the temperatures
become more equal.
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At one time, heat was thought to be a massless substance, often called “caloric”,
that flowed invisibly between objects. We now understand that heat is not some-
thing that objects contain, but the language still seems to imply this. This is one
of the historical origins of some of the confusion in thermodynamics.

It is possible to formulate the laws of thermodynamics without invoking “heat”,
but that seems rather artificial to me and only shifts the difficulties to other words.

• In summary: temperature is a property of matter that can be directly measured,
while heat is a flow of energy associated with temperature changes. The heat flow
is always from a warm object to a cooler one.

III. Some examples based on the expansion and compression of gasses.

Historically, one of the most important motivations for the development of thermody-
namics was the invention of the steam engine. Once steam engines started to be used,
there was great interest in getting the maximum amount of work from them. Since
steam engines work through the expansion of a gas, many of the ideas in thermody-
namics were formulated in this context.

At the time, though, the relationship between the pressure of a gas and the motion
of molecules was not understood, and the theory was developed without any explicit
model for what actually generated forces or work. This treatment is usually referred to
as “classical thermodynamics”. Later, a molecular interpretation was developed, what
we now call “statistical mechanics”. Both can stand on their own and are completely
consistent with one another. But, I think that it is often easier to merge the two
approaches when trying to understand things.

1. Gas expansion without work

Suppose we build an apparatus as shown below:

This apparatus should have the following features:

• It is completely insulated from its surroundings, so that heat can’t flow in or
out of it.

• There are two chambers separated by a valve that can be opened or closed
without perturbing anything else and without generating any heat, that is
there can be no friction.

• One chamber is filled with a gas at some arbitrary pressure, P , and temperature,T .
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• The other chamber is evacuated.

Once the system has equilibrated, we open the valve. As we have discussed at
length, the molecules are moving about due to kinetic energy in random direc-
tions. Eventually (quite quickly, actually) we expect the molecules to distribute
themselves throughout the vessel, with roughly equal numbers on the two sides.

What can we say about what has changed and what hasn’t?

• Nothing has happened to change the average velocities of the molecules.
Therefore, the temperature should be the same, and the average kinetic en-
ergy is the same.

• The volume has increased. So, by the ideal gas law, PV = nRT , the pressure
should decrease.

• Because of the insulation, no heat has flowed in or out of the chambers.

• Nothing, except the molecules, has been moved, so no work has been done.

But, something else has happened. Even though no work was done and the energy
has stayed the same, we know that we would have to do work, i.e., spend energy,
to restore the system to its original state. You probably already know the fancy
word for this, “entropy”, but let’s put off discussing this concept. What we can
say, though, is that somehow or other we have wasted the potential to do work,
even though the total thermal energy has stayed the same.

Processes in which there is no exchange of heat are called “adiabatic”.

2. Gas expansion with work, but without heat flow.

Now, let’s think about another type of apparatus. Again we will keep the appa-
ratus fully insulated. But, now a movable piston has been added to the upper
chamber. The upper chamber is still evacuated, and our engineers have made a
perfect, frictionless seal to the outside, through which a rod connects the piston
to a weight.

Weight

Weight

When we open the valve, the gas molecules begin to collide with the piston, and
the pressure from the gas molecules pushes the piston and the weight upward.
Mechanical work is now being done. What is changing as the piston moves?
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• Does the temperature change? Consider what happens when the piston is
pushed upwards. The gas molecules collide with the piston and transfer some
of their energy to it. Unlike when they collide with a fixed wall, their velocity
is not quite as great when they bounce off in the other direction. As a
consequence the average kinetic energy of the molecules decreases, meaning
that the temperature decreases as well.

• If the volume increases by the same amount as in the previous example and
the temperature decreases, then the pressure must decrease more than in the
previous example.

The key point about this example is that some of the kinetic energy of the gas
molecules has been converted to mechanical work. From the conservation of
momentum, the change in energy should be equal to the amount of work done.

Let’s put some labels on the quantities involved:

• E = energy of the molecules. For an ideal gas, this is entirely translational
kinetic energy. We will define the change in energy associated with a process
as:

∆E = Efinal − Estart

It’s important to keep track of the signs! We will define the work involved,
w, so that it is positive when work is done on the gas (or, more generally the
“system”), and negative when the system does work on the outside world, as
in this case.
For this example, we know that the amount of work must equal the change
in energy:

∆E = w

Is this always true?

3. Gas expansion at constant temperature with work.

Next, we have the engineers build an even fancier device by adding a thermal
reservoir at the bottom of the cylinder:
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Weight

Thermal Reservoir

(Constant T)

Weight

Thermal Reservoir

(Constant T)

Basically, the reservoir is a large mass equilibrated at the same temperature as
the gas. If the temperature of the gas drops, heat will flow to equalize the two
temperatures, without significantly lowering the temperature of the reservoir.

What happens, now, when we allow the piston to move and do work?

• As the piston is pushed upwards, the gas molecules loose some energy, and
the temperature starts to drop. But, as soon as that happens, heat flows
from the reservoir.

• At the end of the process, the temperature is the same as when it started, so
the energy must be the same as well. In this respect, the result is the same
as in the adiabatic expansion without work.

• Again, work has been done. Is more work done in the adiabatic or isothermal
process? Consider a point part way through each process, where the volumes
have increased by the same amount, as illustrated below:

Weight Weight

Thermal Reservoir

(Constant T)

Adiabatic Isothermal
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Because the adiabatic process does not allow heat to flow to the gas, the
temperature at this intermediate point must be lower for the adiabatic process
than the isothermal one. As a consequence, the pressure must be lower for
the adiabatic process. Since pressure represents force divided by the area
over which it is exerted, the total force on the piston must also be less for the
adiabatic process than for the isothermal one. We can thus conclude that the
isothermal process can produce more work than the adiabatic process.
The energy for the additional work from the isothermal process is drawn from
the heat of the reservoir.

In this example, ∆E = 0, but work has been done, and there has been a flow of
heat.

We represent the heat flow by the symbol q and define it so that it is positive
when heat flows from the surroundings into the system of interest. In this case, q
is positive and w is negative, and:

q = −w

IV. The first law of thermodynamics.

The common statement of the first law is that the energy of the universe is constant.
But, the more formal statement is that for any process, the change in energy, E, is the
sum of the work done on the system and the heat absorbed from the surroundings:

∆E = q + w

We can see how this applies to the three examples from above:

• Adiabatic expansion without work.

q = 0

w = 0

∆E = 0

• Adiabatic expansion with work

q = 0

w < 0

∆E < 0

∆E = w

• Isothermal expansion with work

q > 0

w < 0

∆E = q + w = 0

q = −w
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Is there a proof of the first law? No! The laws of thermodynamics are postulates, and
our confidence in them comes from the fact that no one has ever found an exception.

In 1775 the French Royal Academy of Science effectively made the first law of ther-
modynamics (before it was called that) a real law by declaring that it would no longer
consider patent applications for perpetual motion machines.

V. Reversible expansion and compression

We have already seen that we can get extra work from the expansion of the gas by
allowing it to draw heat from its surroundings as it expands. Even if the temperature is
the same at the beginning and end of the expansion processes, different paths can lead
to different amounts of work being produced and different amounts of heat absorbed.

The maximum amount of work that can be generated from the expansion of a gas
is obtained by controlling the movement of the piston so that it is slow enough that
the temperature never actually drops. This cannot be done in practice, but it can be
approached as a limit, in the sense of limits in calculus, by allowing the piston to move
only in infinitesimal steps, as suggested in the drawing below:

Weight

Weight

Weight

Thermal Reservoir Thermal ReservoirThermal Reservoir

Because the piston moves in infinitesimally small steps, the temperature never falls
below that of the reservoir. If a larger step ever does take place, the temperature will
drop, causing the pressure to drop. As a consequence, less work will be produced by
the expansion. This is why we can argue that this is the path that will lead to the
maximum production of work (the most negative value of w).

The reverse of this process, diagrammed below, is the one that requires the least amount
of work to compress the gas to its original volume.

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Weight

Thermal Reservoir
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Again, the volume is changed in infinitesimally small steps. As the gas is compressed,
the piston imparts extra kinetic energy on the gas molecules, but (in the ideal case)
the excess energy is instantly transferred to the thermal reservoir and the temperature
remains constant. Because the volume of the gas decreases, the pressure increases,
and progressively more work must be done for each decrease in the volume. But, if
larger steps were taken, the temperature would increase temporarily, causing a larger
increase in pressure and requiring more work for the next step.

The two processes described above are said to be reversible, and that term can be
taken in two senses. In the first sense, the two processes are reversible because they
are exact opposites. The maximum work that can be done during expansion is also
the minimum amount of work that is required for compression. Thus:

wexp,rev = −wcomp,rev

Since ∆E = 0 for both processes, and q = −w for each, we can also conclude that

qexp,rev = −qcomp,rev

We can also imagine a cycle formed by the two processes, as illustrated below:

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Weight

Thermal Reservoir

Because wexp,rev = −wcomp,rev and qexp,rev = −qcomp,rev, w and q for the complete cycle
must be zero. Thus, the system is restored to its original volume, pressure, temperature
and energy with no net input or output of either work or heat.

Of course, no real process can meet this ideal. As noted above, any real expansion
process will produce less work than the ideal, and any real compression will require
more work than the ideal. As a consequence, there is a net amount of work applied to
the system and w for the cycle will be greater than zero. If the original temperature is
restored ∆E = 0 and q = −w, and q will be negative, meaning that heat is transferred
to the surroundings. This is the general nature of less-than-ideal processes, they require
more work (or produce less) than the ideal process and they release more heat.

The ideal expansion and compression processes described above are also reversible in
a second sense: Either process can be reversed at a given point by an infinitesimal
force in the opposite direction. This is the meaning usually implied by the term in
thermodynamics.
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VI. The maximum work from expanding a gas at constant temperature

We can calculate the work from the reversible isothermal expansion with a bit of
calculus, starting with the integral for any work function:

w =

∫ x2

x1

fdx

where x1 and x2 are the initial and final positions of the piston, and f is the force. Dur-
ing the reversible gas expansion, the force does not remain constant, but rather drops
as the pressure decreases. At any instant, the force is proportional to the pressure:

f = −P · A

where A is the area of the piston. The negative sign reflects the fact that the work
done on the system by expansion will be negative. For each small increment of x, there
is a corresponding small increment in the volume of the gas:

dV = Adx

or, we can write:

dx = dV/A

We can replace dx in the integral with dV/A, and f with −P · A, so that:

w = −
∫ V2

V1

(P · A)dV/A

= −
∫ V2

V1

PdV

(recall that the product PV has the units of energy, or work!) We can also express
pressure in terms of volume, P = nRT/V :

w = −
∫ V2

V1

nRT

V
dV

n, R and T are all constant, so they can be moved outside of the integral.

w = −nRT
∫ V2

V1

1

V
dV

= −nRT ln(V )
∣∣∣V2

V1

= −nRT ln

(
V2
V1

)
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Since we have the same number of molecules at the beginning and end of the process,
the concentration is inversely related to the volume. So, we can write this expression
in terms of concentration:

w = −nRT ln

(
C1

C2

)
The form of this expression will likely be familiar to you, or will be soon. This is
the origin of all of the expressions like −RT ln(C1/C2) that occur so frequently in
chemistry!

Since the energy of the gas molecules is the same at the beginning and end of the
process, ∆E = 0, and we can write:

∆E = 0 = q + w

q = −w = nRT ln

(
V2
V1

)
= nRT ln

(
C1

C2

)
VII. State functions versus path functions

The quantities E, on the one hand, and q and w, on the other are fundamentally
different. The energy of a system depends only on the state of that system, irrespective
of how it got there. For an ideal gas, the energy depends only on the temperature and
the number of molecules. A change in energy, ∆E, depends only on the starting and
ending states.

But, will we always get the same amount of work for a given change in state? Our
examples clearly show that we won’t. For both the adiabatic expansion without work
and the isothermal expansion, ∆E is zero, but q and w are different for the two
processes. Furthermore, the amount of work produced by an isothermal expansion
(where the temperature is the same at the beginning and end) depends on just how
the expansions is carried out.

We say that the energy is a “state function”, while heat and work are path-dependent
functions. For a gas, the pressure, P and volume, V , are also state functions.

Although work and heat are not state functions, the changes in these quantities asso-
ciated with the ideal, reversible process separating two states do represent changes in
state function. Thus, there are quantities, wrev and qrev, that are associated with any
two states that can, in principle, be interconverted by a reversible process.

The quantity wrev is described as being the “free energy change”, ∆F , for the conversion
of one state to another.1 ∆F represents the maximum amount of work that can be
obtained from a favorable process, or the minimum amount of work required to drive an
unfavorable process. The energy change is “free” in the sense that it is the maximum
amount of energy that is available to do work. In a more practical sense, free energy
is anything but free, since it is the kind of energy that we pay for when we buy, for

1More specifically, ∆F is the change in Helmholz free energy, as distinguished from the Gibbs free energy
that will be introduced later.
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instance, electrical power or gasoline. On the other hand, molecular kinetic energy is
“free” in the sense that it is always there, but it can’t actually be used to do any work.

The quantity qrev for any two states is also very important, as we will soon see when
we discuss the elusive concept of entropy.

5.2 Entropy and the Second Law

The term entropy is commonly associated with the idea of randomness, and this general
meaning is used very widely, even entering every-day language. In the context of thermo-
dynamics, where the term originated, a much more specific definition is required, however.
There are, in fact, two different and precise ways in which entropy is defined, reflecting the
classical and statistical approaches to thermodynamics. Here, we will look at both definitions
and show that they are equivalent for at least one process, the expansion of a gas.

I. The classical definition of entropy.

The maximum work that we calculated for the expansion of a gas is simply a function
of the temperature and the starting and finishing volumes. This allows us to define
this quantity as a state function. It also describes what is lost when a gas expands,
the ability to do work, and it seems to be related to the increased disorder of the gas,
i.e., its entropy.

In fact, the thermodynamic definition of entropy is based on the heat absorbed, q, via
the path leading to maximum work, that is the reversible process:

∆S =
qrev
T

where qrev is the heat absorbed by the system in the reversible process, which is −wrev.

We can apply this definition to the case of a gas expansion, when the temperature
is the same at the beginning and end of this process. Among the examples we have
considered, this could be either the adiabatic expansion without work or the isothermal
expansion with work. Because entropy is a state function, the change in entropy is
independent of the path between states. But, the heat quantity used to calculate the
entropy change is the one associated with the reversible process. For the reversible
isothermal expansion of a gas, we showed that the heat absorbed is:

qrev = −wrev = nRT ln

(
V2
V1

)
The entropy change is then calculated as:

∆S =
qrev
T

= nR ln

(
V2
V1

)
The entropy change is easiest to calculate for a process in which the temperature stays
constant, but there is still a maximum amount of work that can be obtained for the

142



5.2. ENTROPY AND THE SECOND LAW

transition between two states that have different temperatures, and this maximum
amount of work is also obtained through a reversible, (i.e., infinitely slow) path. In
this case, the entropy change is calculated as an integral:

∆S =

∫ T2

T1

qrev
T
dT

where T1 is the initial temperature and T2 is the final temperature, and qrev may be a
continuously changing function of temperature.

Now, entropy is supposed to be a quantity that increases spontaneously and is related
to disorder. In the case of the expanding gas, the quantity we calculated above does
seem to be related to disorder, since the molecules are less ordered in a larger volume.

The entropy of a system, as defined here, is a state function. The entropy changes by
the same amount irrespective of how much work, for instance, was obtained from the
expansion.

But, it is important to point out that this definition only applies to the isolated system.
We haven’t said anything about how the entropy of the surroundings change. We will
come back to this when we talk about the second law, which concerns the entropy of
the system and its surroundings.

II. The statistical definition of entropy.

The classical definition of entropy is probably not the one that you are most familiar
with, which probably refers to the idea of randomness or disorder. In fact, the classical
definition is is not an easy concept to work with and is only useful in rather restricted
cases, like heat engines.

The important point from the earlier discussions of gas expansion and contraction is
that the energy, E, is a function that helps define a state, but the change in energy
for a change from one state to another is not sufficient to tell us whether or not the
change is favorable or how much work can be obtained. In addition to the internal
energy, there is this other quantity that defines the states and determines how much
work can be obtained.

In the case of the expanding gas, it appears that the driving force is the tendency of the
individual molecules to occupy as large a volume as is made available to them. As we
have repeatedly discussed, this is a purely probabilistic phenomenon. If the molecules
begin on one side of the container and are allowed to move freely to the other, there
is a 50% probability that any one molecule will wind up on the other side. There will
be a net flow to the other side until the concentrations on the two sides are equal.

The statistical definition of entropy of a state can be expressed as:

S = k lnΩ

where k is the Boltzmann constant, and Ω is the number of equally probable mi-
crostates that make up the state. In other words, Ω is the number of different ways of
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arranging the components of the system. This is the fundamental postulate of statisti-
cal mechanics. It was deduced (not proven!) by Ludwig Boltzmann, and it is engraved
on his tombstone in Vienna. Like the laws of thermodynamics, we believe it because
it works!

So, all that we have to do to calculate the entropy is count up the ways of arranging the
components. How do we do that? This is not at all trivial, and all we can usually do is
apply this definition to idealized simple systems. But, the problem is made a little bit
easier if we only try to calculate the change in entropy for a process. For instance, we
can go back to our example of a gas expanding. For even a modest number of molecules,
there are a vast number of microstates, each defined by the position and momentum
of each molecule. We obviously can’t count them all. But, if the temperature stays
constant, then the number of possible values for the momentum of each molecule stays
the same. So, that all we have to consider is the number of different positions for each
molecule.

Suppose that we divide up the initial volume into a grid of small cubes, say 1 nm on a
side, as diagrammed below:

If the number of molecules is N and the number of cubes is Nc, then we can calculate
the number of ways of arranging the N molecules into the Nc cubes. To simplify things,
we can assume that Nc is much larger than N , so that once we place a molecule in a
given cube, it doesn’t significantly reduce the number of places available to the next
molecule. So, taking one molecule at a time, the number of ways of arranging them is:

Nc ·Nc ·Nc · · · · = NN
c

But, if all of the molecules are indistinguishable, then we have to divide by number of
ways of choosing the molecules sequentially, N !. So:

Ω =
NN

c

N !
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So, the initial entropy would be:

S = k lnΩ = k ln

(
NN

c

N !

)
But, this is a little suspect, since the result depends on the number of cubes that I
divided the volume up to. Would the entropy suddenly become larger if I decided to
use smaller cubes? That doesn’t sound right. But, it turns out to be OK if we consider
a change in volume.

To describe a change in volume, we keep the size of the cubes the same, and the volume
change is specified by the change in the number of cubes. If we call the initial number
of cubes Nc,1 and the final number Nc,2, the change in entropy is given by:

∆S = S2 − S1 = k ln

(
NN

c,2

N !

)
− k ln

(
NN

c,1

N !

)

= k(N ln(Nc,2)− ln(N !))− k(N ln(Nc,1)− ln(N !))

= kN ln

(
Nc,2

Nc,1

)
Thus, the change in the entropy change depends on the ratio of the number of cubes at
the beginning and end of the process. If we make the volume of the individual cubes
larger or smaller, this ratio is not affected.

If we want to express the entropy change on a molar basis, n, the number of moles, is
equal to N divided by Avogadro’s number, NA, and N = nNA:

∆S = nNAk ln

(
Nc,2

Nc,1

)
Since k is the gas constant, R divided by Avogadro’s number, we can write:

∆S = nR ln

(
Nc,2

Nc,1

)
Finally, Nc,2 and Nc,1 are proportional to the volumes before and after and we can
write the expression as:

∆S = nR ln

(
V2
V1

)
Notice that this is exactly the same as the expression we derived from the classical
definition of the entropy change for this process.

III. Microstates with different probabilities

What if the state is defined by microstates that do not all have equal probabilities?
For instance, what if we were to divide up the total volume into cubes of different sizes,
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so that they had different probabilities of being occupied. Would the calculated en-
tropy be different? More significantly, what if we were considering a more complicated
environment, like the interior of a cell, where certain molecules have specific affinities
for different compartments Could we still use this approach to calculate entropy, or at
least entropy changes?

The more general expression for the statistical entropy is:

S = −k
N∑
i=1

pi ln pi

where N is the number of microstates, and pi is the probability of microstate i. We
won’t try to prove this, but we can consider a couple of extreme cases. At one extreme,
if we have N states with equal probabilities, the probability of each state must be
pi = 1/N . The entropy is then calculated as:

S = −k
N∑
i=1

pi ln pi = −k
N∑
i=1

1

N
ln

1

N

= −kN 1

N
ln

1

N

= k lnN

consistent with the original expression for Ω microstates with equal probabilities. At
the other extreme, if there is only a single state, its probability must be 1, and the
entropy is:

S = −k
N∑
i=1

pi ln pi

= −k1 ln(1)

= 0

So, this state has an entropy of zero. In general, for a given number of microstates, if
some of the microstates are more probable than others, the entropy will be lower than
if all of the microstates have equal probabilities. So, for instance, if some configurations
of a molecule are more probable because certain atoms tend to interact with each other,
the molecule will have a lower entropy than if all of the possible conformations had
equal probabilities.

IV. Entropy and information

There is another way of thinking about entropy that comes from a quite different dis-
cipline, information theory, which is concerned about how to efficiently and accurately
transmit and manipulate information. This was a subject that was developed during
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the middle decades of the 20th Century, largely at the late great Bell Laboratories,
which did basic research for the major U.S. telephone company of the time (AT&T).

In this view, entropy can be described as the amount of information required to specify
the exact state of a system. So, for instance, a crystal of a pure substance can be
described with relatively little information, because each molecule is in an equivalent
position of the crystal. If we know the structure of the molecule and the parameters
describing the crystal lattice, then we can completely reconstruct the structure of the
crystal. On the other hand, to completely describe a gas of the same molecules requires
that we individually specify the position, orientation and momentum of each molecule.

This idea can be quantified, to give a function that calculates, for instance, the number
of bits required to transmit a particular message or other information such as images
or audio signals. Some messages contain a great deal of repetition and so can be
encoded with relatively few bits, meaning that they have low entropy. A message
composed of randomly-chosen letters has a high entropy and requires more bits to
communicate. The equations for calculating information content have exactly the same
form as the statistical definition of thermodynamic entropy, and information content
is often described as information entropy.

The science of information theory has become very important in the digital age, as
it defines the minimum amount of resources (including time) required to transmit a
message or other information. The algorithms that are used to compress computer files,
images and mobile-phone transmissions take advantage of the fact that the information
is not random, i.e., has a relatively low entropy, to represent it with less data.

There is another interesting aspect to the relationship between information and entropy.
Reducing thermodynamic entropy requires work, or energy. Similarly, manipulating
information and reducing its entropy (such as in compressing it) requires work. There
are people working on the theory of quantifying exactly what is the minimum amount
of energy required for specific computational tasks.

We don’t always think about it, but the information technologies that we take advan-
tage of use huge amounts of energy. Google is a major energy consumer. In 2009, the
London Times published an article saying that a Google search produced about 1 g of
CO2, and this number is widely cited. This claim was quickly denied by Google, which
a couple of years later released its own estimates of its energy consumption, indicating
that a single search uses 0.3watth (the energy required to power a 60-watt light bulb
for about 20 s, or 3.600 J). If produced by burning coal, this would produce about
0.2 g of CO2, far less than the original estimate. To its credit, Google has also invested
heavily in renewable energy sources.

V. The second law

Now that we have defined this new state function, entropy (twice in fact), we can state
the second law of thermodynamics. There are several equivalent ways to state this law,
but the most common one is probably the following:

For a spontaneous process, the total entropy of the system and its surround-
ings increases.
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This leaves us with two questions, though:

• What do we mean by spontaneous?

• How do we define, measure or calculate the entropy change for the surroundings?

By spontaneous, we mean that the process will occur without any mechanical work
being applied to the system. In other words, w ≤ 0. If w < 0, then we can actually
use the process to do work. A gas expansion is an example of a spontaneous process,
and one that can do work. Compressing a gas, on the other hand, requires work.

For a specified process, the entropy change for the surroundings is defined as:

∆Ssurr = − q

T

The important point here is that q is the heat absorbed by the system for the actual
process, not the maximum-work reversible process. The entropy of the surroundings
is not a function of the state of the system.

The entropy of the surroundings increases whenever heat flows from the system out-
wards. This only occurs when the system is warmer than the surroundings, and the
flow of heat represents an increase in the disorder of the surroundings. If the system
has a lower temperature than the surroundings, heat will flow inward, and the entropy
of the surroundings will decrease. These are the only ways that the system can affect
the entropy of the surroundings.

If there is a net flow of heat from the system to the surroundings, the entropy of the
system can decrease in a spontaneous process.

Consider two cases for the expansion of an ideal gas:

1. Adiabatic expansion with no work. ∆E = 0, q = w = 0.

∆Suniv = ∆Ssys +∆Ssurr = nR ln

(
V2
V1

)
So long as V2 > V1, ∆Suniv > 0, and the process is spontaneous, which we knew
already! But, now we have a way of quantifying the tendency of the gas to expand.

2. Reversible isothermal expansion with maximum work. ∆E = 0, q = qrev

∆Suniv = ∆Ssys +∆Ssurr

=
qrev
T

+
−qrev
T

= 0

So, the reversible process is right on the edge of being spontaneous, which we can
take as the meaning of a reversible process.
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The key thing to keep in mind about the second law is that it refers to the entropy of
universe, not just the system. This means that the entropy of the system can decrease
in a spontaneous process, as long as there is a flow of heat to the surroundings. Heat
flow to the surroundings can only occur if the system is warmer than its surroundings,
and the overall effect is to equilibrate the temperature of the universe, which represents
an increase in entropy of the universe.

Although we can use the second law in this form, this approach becomes quite awk-
ward when it is applied to things like chemical reactions, which is the major context
in which thermodynamics is used in biology. In the next section, we consider the ther-
modynamics of chemical reactions and introduce a more practical way of applying the
second law.

5.3 Thermodynamics of Chemical Reactions

I. E and ∆E reconsidered

Most generally, the change in internal energy for a process, ∆E, is defined by the first
law of thermodynamics, stated as ∆E = q + w, where q is the heat absorbed by the
system and w is the work done on the system. Heat, in turn, is defined as the flow of
energy that can increase temperature (but doesn’t necessarily for a given process), and
work is the integral of force with respect to distance. The internal energy of the system,
E, is a state function, and ∆E is independent of the path taken from the beginning
state to the ending state. The heat, q, and work, w, however, are path dependent.
But, whatever the path ∆E must equal q + w.

Although these definitions stand on their own, it is helpful to have a molecular in-
terpretation. When considering an ideal gas, the only form of energy present is the
translational kinetic energy, and E can be calculated from the relationship Ek = 3kT/2.
Any change in internal energy, ∆E, can only be due only to a change in temperature.

The two distinguishable components of the internal energy are the kinetic energy and
potential energy. In the simplest case, an ideal gas, there is only the kinetic energy
associated with translational motion, and E = 3nRT/2, for n moles at temperature T .
Since the particles making up the gas have no internal structure, there is no potential
energy or internal thermal motions. If the temperature is the same at the beginning
and end of the process, ∆E = 0.

When we deal with real molecules, even in the gas phase, things get more complicated.
There are now internal motions that contribute to the kinetic energy, and the internal
structures of the molecules give rise to potential energy. The potential energy represents
energy that can be converted to heat or mechanical energy if the structures of the
molecules change, such as by forming or breaking chemical bonds. Potential energy
can also be absorbed or released by changes that do not involve covalent bonds, such
as the formation or breaking of hydrogen bonds or other “weak” interactions.

In liquids and solids, there are additional forms of potential energy, due to interactions
among molecules.
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For systems involving real molecules, the first law (∆E = q + w) still holds for any
process, but there may be redistributions of kinetic and potential energy within the
system that do not change the total internal energy, E. These redistributions will not
be reflected in ∆E.

II. Enthalpy (H)

For practical problems involving chemical reactions, we usually apply the second law of
thermodynamics using an approach developed by Josiah Willard Gibbs (1839–1903),
who was arguably the first really great American physical or theoretical scientist.
Gibbs, working mostly on his own, put together the ideas of thermodynamics into
a consistent system. He spent his entire career at Yale College (as it was then called),
and published all of his work in the Transactions of the Connecticut Academy of Sci-
ences. His work was very slow to be fully appreciated, especially in his home country.

One of Gibbs’ major accomplishments was formulating the application of thermody-
namics to chemical reactions. In doing so, he introduced two new state functions,
which we now call enthalpy (H) and the Gibbs free energy (G).

The formal definition of enthalpy is:

H = E + PV

where P and V are pressure and volume respectively. Like E, P and V are state
functions, so H must be also. At first glance, however, determining H or ∆H doesn’t
look any easier than determining E or ∆E!

But, for chemical reactions, especially in relatively dilute solutions, we can often impose
additional restrictions. First, and most important, we can specify that the the process
occurs under constant pressure. Using the subscripts 1 and 2 to indicate the beginning
and ending states, respectively, the change in enthalpy can then be written:

∆H = H2 −H1 = E2 − E1 + PV2 − PV1

= ∆E + P∆V

If ∆V is not zero, the volume change represents work, as we discussed in the case of
gas expansion or compression. For most chemical reactions, this is the only form of
work associated with the reaction.2 If the volume of the system increases, then work
is done by the system, and w is negative. If this form of work is designated wp(the
subscript “p” indicating constant pressure), then we can write:

wp = −P∆V

Assuming that this is the only form of work associated with the process at constant
pressure, and designating the associated heat absorbed qp, we have:

∆H = ∆E + P∆V = qp + wp − wp

= qp

2Notable exceptions are found in the molecular motors in living organisms, as well as some synthetic
systems, but here we are focusing on relatively simple chemical reactions.
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This gives the usual working definition for ∆H: The heat absorbed by the system at
constant pressure. Although q is not, in general a state function, because qp refers to a
specific path between two states, it is a state function. In this respect, the use of qp to
define ∆H is analogous to the use of qrev to define ∆S. This makes it relatively easy
to measure ∆H for a reaction, using a calorimeter.

With the above restrictions, we can also express ∆H in terms of ∆E:

∆H = ∆E − wp

III. ∆G, the change in Gibbs free energy.

The free energy function named for Gibbs, G, is defined as:

G = H − TSsys

and the change in G at constant temperature is:

∆G = ∆H − T∆Ssys

As noted earlier, the term T∆Ssys represents the heat absorbed during the reversible
path. As argued above, ∆H is the heat absorbed by the process at constant pressure,
and with no work other than wp. Recall that the entropy change for the surroundings
for a specific process is defined as:

∆Ssurr = − q

T

For the constant pressure process (again assuming constant temperature):

∆Ssurr = −qp
T

= −∆H

T

and, for any constant temperature process:

∆Ssys =
qrev
T

If we then restrict ourselves to processes where both pressure and temperature are
constant, the total entropy change for the universe is:

∆Suniv = ∆Ssurr +∆Ssys = −∆H

T
−∆Ssys

= −∆G

T

This result demonstrates that the sign of ∆G indicates whether or not the process
is spontaneous: If ∆G is negative, ∆Suniv is positive and the process is favorable. If
∆G is positive, ∆Suniv is negative and the process is unfavorable. Because ∆G is a
state function, as are ∆H, T and ∆S, we can determine whether or not a process is
spontaneous without consideration of the surroundings, given the constraint of constant
pressure. (Here we are assuming that temperature is also constant, but this assumption
is not necessary in order to use the Gibbs free energy to determine if a process is
spontaneous; The math just gets more complicated if temperature changes.)
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IV. Free energy and available energy for work.

Earlier (page 141), another free energy function, the Helmholz free energy, was intro-
duced and identified with the work associated by a process carried out along a reversible
pathway:

∆F = wrev

Since the reversible process yields the maximum amount of work obtainable from a
transition between two states, −∆F is the maximum work available from a favorable
process. For an unfavorable process, ∆F is the minimum amount of work required to
drive the process.

Though it’s not very obvious from the relationship above, the Helmoltz free energy, F ,
is closely related to the Gibbs free energy, G. From the first law, we can write:

∆E = qrev + wrev

wrev = ∆E − qrev

Therefore:

∆F = ∆E − qrev

Recall that ∆S, for a process at constant temperature, is qrev/T . Substituting, we
have:

∆F = ∆E − T∆S

The formal definition of the Helmholtz free energy is:

F = E − TS

For comparison, the definition of the Gibbs free energy is:

G = H − TS

and the change in Gibbs free energy at constant temperature is:

∆G = ∆H − T∆S

Thus, the difference between F and G is the difference between E and H. From before,
the definition of H is:

H = E + PV

where P and V are the pressure and volume, respectively. For a process at constant
pressure:

∆H = ∆E + P∆V
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Therefore, ∆G and ∆F are related according to:

∆G = ∆F + P∆V

The term P∆V represents the work due to any change in volume, and can be either
positive or negative. Since −∆F is the maximum amount of work available from a
process, −∆G is that amount of work minus any work due to a volume change.

If the the volume change is negligible, then ∆H = ∆E, and ∆G = ∆F . With this
provision, ∆G can be interpreted as the minimum work required to drive an unfavorable
process (for ∆G > 0) or the negative of the maximum work that can be obtained from
a favorable process (∆G < 0). This condition is often satisfied for chemical reactions
in dilute solution and is frequently assumed to be valid for such reactions.

V. Free energy changes for chemical reactions

Most of the transformations of energy in biology involve chemical reactions. When
we considered gas expansion problems, one of our underlying assumptions was that
the internal energy of the system was only a function of temperature. But, when
chemical reactions are involved, there is usually a change in the internal energy of the
molecules. Forming and breaking chemical bonds almost always involves a change in
potential energy. Bonds form because the atoms involved find a lower energy state
in which they “share” electrons. The changes in internal potential energy must be
accompanied by either changes in the thermal (kinetic) energy of the system, heat flow
to or from the surroundings or mechanical work, or some combination of the above.

In biological systems, the energy changes associated with reactions are frequently cou-
pled to other processes. In that way, the energy change for a favorable process can be
used to drive an unfavorable one. The most commonly used tool for keeping track of,
and understanding, these energy conversions is the Gibbs free energy.

For the simple case of the interconversion of one compound to another, we can write a
generic chemical reaction as:

A −−⇀↽−− B

In principle, any chemical reaction is reversible, in that there is a finite probability
that it can occur in either direction. The probability that any molecule of A will be
converted to B is the same as for any other molecule of A. As a consequence, the total
rate of conversion of A to B will be proportional to the number of A molecules, or
equivalently, their concentration. Similarly, the rate of conversion of B to A will be
proportional to the concentration of molecules of B. The net rate in the change in the
concentration of A will be the difference between these two rates, which we can write
as a differential equation:

d[A]

dt
= −kf [A] + kr[B]

where kf and kr are rate constants that relate the probability of each reaction to the
concentration of the molecules. The net rate of conversion from B to A is the negative
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of the rate of conversion from A to B, which we can write as:

d[B]

dt
= −d[A]

dt
= kf [A]− kr[B]

We won’t worry about solving these equation, except to note that if we start out with
all A, some of it will be converted to B. As the concentration of A decreases, the rate
of conversion to B will decrease, and the rate of conversion of B to A will increase.
At some point, the flow in each direction will be equal, and the rate of change in
concentration will be zero. At this point:

d[A]

dt
= 0

kf [A] = kr[B]

[B]

[A]
=
kf
kr

At this point, we say that the reaction is at equilibrium, and we can define an equilib-
rium constant:

Keq =
kf
kr

=
[B]eq
[A]eq

where the subscripts indicate that the concentrations are those that are measured at
equilibrium. This is not the most rigorous derivation of an equilibrium constant, but
it will do.

One of the implications of the equilibrium state is that there is no way in which to
obtain work from the reaction. If the system is at equilibrium, then an infinitesimal
amount of work could shift it in either direction, by an infinitesimal amount. Looked at
another way, if we were to have an immense volume of the reactants at the equilibrium
concentrations, one mole of A could be converted to one mole of B (or vise versa)
without doing any work, provided that the concentrations didn’t change significantly.
Therefore, the free energy change for the reaction must be zero.

Suppose, though, that we were to change the concentrations from their equilibrium
values, say by adding one or the other of the reactants. Then, we would expect the
concentrations to shift towards those that would satisfy the equilibrium constant, and
during this process we could, at least in principle, extract some work. At concentrations
that do not satisfy the equilibrium conditions, ∆G is negative if the concentrations
favor the forward reaction, and ∆G is positive if the concentrations favor the reverse
reactions.

For any set of reactant and product concentrations, ∆G is defined as the free energy for
converting one mole of reactants to one mole of products, A to B in the example used
here, in a volume large enough that the concentrations do not change significantly.
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We can derive an expression to calculate ∆G for an arbitrary set of concentrations by
considering the sum of three processes:

1. A([A]eq) −−→ B([B]eq)

2. A([A]) −−→ A([A]eq)

3. B([B]eq) −−→ B([B])

where the concentrations of A and B in the three processes are indicated in the paren-
theses: [A]eq and [B]eq represent the equilibrium concentrations and [A] and [B] are
the concentrations at which ∆G is to be calculated. The sum of the three reactions is:

4. A([A]) −−→ B([B])

A general principle of chemical thermodynamics states that the changes in state func-
tions (including ∆E, ∆H, ∆G and ∆S) associated with individual reactions can be
added to yield the change in state functions for the corresponding sum of the reactions.
Thus, we can write:

∆G4 = ∆G1 +∆G2 +∆G3

Since process 1 represents the equilibrium condition, ∆G1 = 0. Process 2 represents a
change in the concentration of A, from the concentration of interest, [A], to the equi-
librium concentration, [A]eq. If we assume the results for ideal gasses can be extended
to the reaction in dilute solution, the reversible work for the change in concentration,
wrev, is calculated as:

wrev = RT ln
[A]eq
[A]

If we further assume that the volume change at constant pressure is negligible, then
wrev = ∆G, and we can write the free energy change for process 2 as:

∆G2 = RT ln
[A]eq
[A]

From analogous arguments, the free energy change for process 3 is:

∆G3 = RT ln
[B]

[B]eq

The free energy change for process 4, the reaction at concentrations [A] and [B] is then
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given by:

∆G4 = ∆G1 +∆G2 +∆G3

= 0 +RT ln
[A]eq
[A]

+RT ln
[B]

[B]eq

= RT ln
[B][A]eq
[A][B]eq

= RT ln
[B]

[A]
−RT ln

[B]eq
[A]eq

= RT ln
[B]

[A]
−RT lnKeq

In order to define and calculate the free energy change for a reaction at different
concentrations, it is useful to define a standard state for measuring and reporting free
energy changes, and the most widely used standard is to specify that all of the reactants
and products are at 1M concentration. (Or, for the gas phase, that the pressures of
each component is 1 atm.) The free energy change under these conditions is defined
as the standard free energy change, ∆G◦. From the equation above, the standard free
energy change is calculated as:

∆G◦ = RT ln
1M

1M
−RT lnKeq

= −RT lnKeq

This then provides a link between the standard free energy change and the equilibrium
constant. Both represent essentially the same thing: the extent to which one side of
the reaction is favored. If the forward reaction (A −−→ B) is favored, then Keq > 1
and ∆G◦ < 0. A negative value of ∆G◦ also implies that work can be obtained from
the reaction if the reactants are initially at their standard-state conditions.

Measuring the equilibrium constant is generally the most straight forward way of mea-
suring ∆G◦. Once this value is known, the free energy change for other concentrations
can be easily calculated. If ∆H is also know, for instance by measurement with a
calorimeter, the entropy change, ∆S, can then be calculated from the relationship
∆G = ∆H − T∆Ssys.

The commonly used form of the equation for calculating the free energy change at
concentrations other than the standard state ones is:

∆G = ∆G◦ +RT ln
[B]

[A]

Especially for reactions that involve more than one reactant or product, it is convenient
to introduce a quantity called the reaction quotient, Q. This quantity is defined as the
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product of the reaction product concentrations divided by the product of reactant
concentrations. For the reaction:

aA + bB −−⇀↽−− cC + dD

The reaction quotient is:

Q =
[C]c[D]d

[A]a[B]b

When the reaction is at equilibrium, Q is equal to the equilibrium constant, Keq, and
the free energy associated with the reaction is zero. At other concentrations, the free
energy change is calculated as:

∆G = ∆G◦ +RT lnQ

VI. Concentrations and standard states

Things become a little more complicated when the number of reactant and product
molecules are not equal. For instance, consider the reaction:

A + B −−⇀↽−− C

We can write an equilibrium constant:

Keq =
[C]eq

[A]eq[B]eq

And the expression for the free energy change is:

∆G = ∆G◦ +RT ln
[C]

[A][B]

But, there are some funny things here:

• The equilibrium constant has dimensions of inverse concentration. If different
units are used for concentration, the value of the equilibrium constant will change.

• The reaction quotient (Q) also has units of inverse concentration. How can we
take the logarithm of a quantity with units?

• The value of ∆G will also depend on the concentration units chosen.

We can solve the problem of the logarithms by stipulating that the reaction quotient
should be written in terms of the ratios of the actual concentrations and the standard
state concentrations. If the standard state concentrations are 1M, the the reaction
quotient is written as:

Q =
[C]/1M

([A]/1M)([B]/1M)
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Now, Q is dimensionless, and it is OK to take a logarithm. But, it is still true that
Keq, ∆G and ∆G◦ will all depend on the units of concentration chosen.

The underlying reason for this is that when the number of molecules changes in a
reaction there is an intrinsic change in entropy. In the example above, there will be a
reduction of entropy when two molecules are converted to one, and this will disfavor
the reaction. If the standard state is, for instance, 1mM instead of 1M, then the
loss of entropy will be larger, and this will be reflected in the numerical value of the
equilibrium constant and the free energy change.

VII. Calculating the entropy change for a bimolecular reaction.

Following the approach used when considering the expansion of a gas (pages 144–145),
we can use the statistical definition of entropy to estimate the entropy loss due to
converting two molecules into one.

As in the example of gas expansion, we begin by dividing up the volume of interest
into small cubes with volume Vc. The total volume is NcVc, where Nc is the number
of small cubes.

Considering just one molecule each of A and B, the number of ways of placing these
two molecules in the lattice of cubes, ΩA,B is N2

c . This again assumes that the number
of cubes is much larger than the total number of molecules. Because, the two molecules
are assumed to be different, N2

c is not divided by two, since swapping the positions of
A and B results in a distinct arrangement. If the two reacting molecules were identical,
then ΩA,B would equal N2

c /2

The number of arrangements of a single molecule of C in the volume is ΩC = Nc.

The entropy change for a single pair of A and B molecules being converted to C is then
given by:

∆S = k ln

(
ΩC

ΩA,B

)
= k ln

(
Nc

N2
c

)
= −k lnNc

This result indicates that the entropy decreases for the reaction, as we expect. But,
the result is also somewhat problematic, because the number of cubes, Nc, does not
cancel out, as it did for the example of a gas expansion. Therefore, the size of the
cubes does matter in this case.

Though there is no absolutely certain way to define the size of the cubes, we can at
least make a reasonable estimate. The cubes should be just big enough to hold one
of the reactant or product molecules. The product is probably larger than either of
the reactants, making it difficult to specify a single size, but a reasonable estimate
would be a cube 1 nm on each side, or a volume of 1 nm3. The number of cubes is then
calculated by dividing the reaction volume, V , by the volume of a single cube, Vc. We
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will specify that the total volume is given in liters. Taking into account the necessary
conversion factors, Nc can be expressed as:

Nc =
V (L)

1 nm3
× 103m3

L
×
(
109 nm

m

)3

≈ V (L)× 1024

The entropy change is then:

∆S = −k ln(Nc) = −k ln(V (L)× 1024)

Note that the entropy change is closely related to the reaction volume, V , and becomes
more negative with larger volume. This can be understood by recognizing that all of the
molecules gain entropy when the volume is increased, but the two reactant molecules,
together, lose more than the single product molecule.

For one mole each of A and B converted to C, the result above is multiplied by Avo-
gadro’s number:

∆S = −NAk ln(V (L)× 1024)

= −R ln(V (L)× 1024)

If the volume is specified as 1 L, a numerical result can be calculated:

∆S = −R ln(1024) = −8.31 J/K× 53

= −460 J/K

The contribution to the free energy change at 298K is:

−T∆S = −460 J/K× 440 J/K = 140 kJ

In order for the reaction to be favorable, this large contribution would have to be
compensated for by other factors, such a favorable enthalpy change due to covalent
changes in the molecule or other entropic factors.

This simple calculation shows that the change of entropy associated with a reaction
in which the number of molecules changes can be very significant. It is particularly
significant in the context of biological systems, where very large molecules, such as
proteins, nucleic acids and polysaccharides, are assembled from small building blocks
(amino acids, nucleotides and sugars). However, accurately calculating these entropy
changes is challenging and a source of some controversy. The calculation above consid-
ers only the loss of translational degrees of freedom, and a large reduction in rotational
freedom is also to be expected in a bimolecular reaction. Other factors, including
the changes in internal motions (bond rotations and vibrations) and interactions with
solvent molecules may also contribute to the total entropy change. Among various
estimates, the one above represents the lower range of calculated entropy changes for
the association of two molecules.
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VIII. Activity versus concentration

The expression relating the free energy and concentrations is strictly valid only for
ideal gas molecules. If there is any tendency for the molecules to interact with one
another or with solvent molecules, this can affect the free energy change. The formal
way of dealing with this problem is to replace the concentrations with “activities” for
each of the reactants and products:

∆G = ∆G◦ +RT ln
aAaB
aCaD

The activities are dimensionless quantities, but they are defined relative to a specific
standard state (e.g., 1M). At relatively low concentrations, the activities are often
close to being proportional to concentration and are often expressed in terms of activity
coefficients, γ:

aA = γA[A]

The activity coefficient can depend on concentration. If γ = 1/(1M), then the species
behaves ideally, and the activity is equal to the concentration divided by the standard
state concentration.

For most biochemical reactions, at relatively low concentrations, the deviations from
ideal behavior are not very large (or at least we hope that they aren’t), and we rarely
worry about them. As a practical matter, we usually assume that we can use concen-
trations in the equilibrium expression.

5.4 “Chemical Energy” and Metabolism

It is common to hear people talk about “chemical energy” or refer to certain compounds as
having “high energy” or “high energy bonds”. We can even eat “energy bars” and drink
“energy drinks”. This language can be rather vague, or even misleading. Here we consider
some specific examples of biochemical processes and the meaning of chemical energy in this
context.

I. Glucose oxidation

The most useful measure of chemical energy is the free energy change. For instance,
the oxidation of glucose by molecular oxygen is written as:

C6H12O6 + 6O2
−−⇀↽−− 6CO2 + 6H2O

Like any reaction, this reaction is reversible and has an equilibrium constant. The
extent to which it is favorable depends on the concentrations of all of the reactants and
products. The standard free energy change for this reaction is about −2.700 kJ/mol,
meaning that it is an extremely favorable reaction when all of the reactants are at
their standard states (1 M or 1 atm). But, if the O2 concentration is very low, the
reaction is much less favorable. Prior to about 2.5 billion years ago, the concentration
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of oxygen in earth’s atmosphere was about 105-fold less than it is now. Under those
conditions, the oxidation of glucose was not favorable at all. Glucose was used as a
source of “energy” through glycolysis (a partial enzymatic breakdown of glucose), and
this is still an important metabolic reaction. But glycolysis is a much less favorable
overall reaction than complete oxidation (at the present atmospheric concentrations
of O2 and CO2), meaning that glucose or other carbohydrates can provide much less
“energy” under anaerobic conditions.

The nutritional calories that are listed for foods are not free energy changes. They are
measured by burning the foods (or their digestible ingredients) and directly measuring
the heat in a calorimeter at constant volume, with an excess of oxygen. So, these
calories actually represent ∆E. For glucose, the dietary value is about 4 kcal/g, which
corresponds to about 175 kJ/mol, much less than the standard free energy change.
This is because there is a large entropy change in the reaction as well, as 7 molecules
are converted to 12.

The nutritionists then estimate how much work must be done by the body in order to
offset the metabolism of, for instance, 1 g of sugar. Most of the free energy is lost as
heat. Relating food calories to free energy changes is not straight forward (to me at
least!)

The important point is that in our atmosphere, the oxidation of glucose and related
molecules is very favorable, and organisms can couple this very favorable reaction to
processes that otherwise would not be favorable.

The synthesis of glucose and related molecules is unfavorable and depends on coupling
to other favorable reactions, which are driven by absorbing the energy of light from
the sun.

For our cars and some electric power plants, we (mostly) use as a fuel hydrocarbons
or coal, which also are oxidized with a large negative free energy change. All of the
energy in hydrocarbons and coal, was originally captured by photosynthesis. Plants
and animals that ate plants died and the carbon was converted into the forms we now
extract and burn. We are quickly consuming the vast amounts that were accumulated
over billions of years, and we are moving the carbon into the atmosphere.
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II. ATP hydrolysis

Another compound that is often described as having “high energy” is ATP, with the
hydrolysis reaction shown below:
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The bond linking the second and third phosphate groups is often described as a “high
energy bond”. In fact, there is nothing very special about this bond. What is impor-
tant is that the reaction has a large negative free energy change under physiological
conditions, about −30 kJ/mol.

We won’t worry for now how this compound gets made in the first place. Basically, ATP
serves as a kind of energy currency, it is formed during the oxidation of glucose (and
other favorable reactions) and it is hydrolyzed to provide energy for other processes.

In considering why this reaction is so favorable, the first thing to emphasize about this
reaction is that it occurs in the presence of water, and water is one of the reactants.
We will talk more about water later, but for now, the important thing is that water is
a polar molecule, meaning that the electrons of the molecule are unevenly distributed
leading to partial charges on the hydrogen and oxygen atoms:

The partial charges of the water molecule can interact with charges on other molecules
making the charged forms much more stable than they would be otherwise.

ATP, as suggested by its name, has three phosphate groups:
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In water, at neutral pH, one or more of the oxygen atoms will be in an ionized, nega-
tively charged, state. In ATP, there are four negative charges on the three phosphates
(one each on the first and second and two on the third phosphate). This results in a
quite high density of negative charge. When the third phosphate is removed by hy-
drolysis, the charges are not so close together and are shielded by the water molecules,
leading to a reduction in potential energy. There are other factors, but this is the
major one. Further hydrolysis, of the remaining phosphate-phosphate ester bond, is
also favorable, but not by quite so much.

Even if a reaction is thermodynamically favored, it may not occur very rapidly. This
is obviously true for oxidation of glucose, and it is also true for ATP hydrolysis, for
which the half time is about 20 days at neutral pH and 60 ◦C.

It’s useful to represent the relationship between thermodynamics and kinetics as a
reaction coordinate, or energy profile:

ATP

ADP + Pi

[transition state]

The central idea here is that the molecules have to acquire a high energy state in order
for the reaction to proceed. This high energy state is called a “transition state” or
“activation complex” and is a bit of a mythical beast. It is imagined to be in equilibrium
with the products and reactants, but present at only very low concentrations. As soon
as it forms, it breaks down to either products or reactants, with equal probability. The
higher the transition-state energy, the slower the reaction.

The theory for relating reaction rates to energies was developed by Henry Eyring. See
the painting in the lobby of building named for him!

In the absence of a catalyst, the reaction rate under physiological conditions would be
insignificant. This is important: If ATP spontaneously hydrolyzed, it wouldn’t be an
effective way of storing energy. It would be like trying to use a fuel that spontaneously
combusts.

The key to using chemical energy in biology is controlling the reaction by catalysts,
enzymes. Enzyme can increase the rate of a reaction by several orders of magnitude.
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A somewhat glib way of saying what enzymes, or other catalysts, do, is to say that
they lower the transition state energy3:

ATP

ADP + Pi

Uncatalzyed

Catalyzed

How do enzymes increase reaction rates? This is a major sub-discipline of biochemistry,
and there are many different effects, not all of which are fully understood or agreed
on. But, the basic idea is that the enzyme, which is a protein (or sometimes RNA)
molecule, binds to the reactants and creates a local chemical environment that makes
the reaction much more likely to proceed. One important part of this is that the local
concentrations are much higher than they are when the molecules are free in solution.
The enzyme can also help stabilize charges that form in the transition state.

An enzyme cannot alter the thermodynamics of a reaction! If it catalyzes the forward
reaction, it must also catalyze the reverse reaction by the same factor. Any scheme
that suggests that both reactions are not catalyzed equally violates the first law!

III. Enzymatic coupling

An enzyme that simply catalyzed ATP hydrolysis would not be very useful. Essentially
all enzymes that catalyze ATP hydrolysis do so in a way that couples the favorable
reaction with another reaction that would otherwise be unfavorable. The structure
and mechanism of the enzyme is such that the hydrolysis reaction can only occur if
the other reaction also occurs.

Enzyme

ATP ADP + Pi

A B

3The statement is glib because it doesn’t really provide any additional information about the mechanism
of the catalyst. But, considering the transition state and what determines its free energy is a valuable way
of framing mechanistic questions
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The enzyme links the two reactions together so that one can’t occur without the other,
so that the overall reaction is:

A + ATP −−⇀↽−− B + ADP + Pi

The free energy changes for the individual reactions are added together. Even if ∆G
for the second reaction is positive, the overall reaction can be favorable.

The coupled process can be a chemical reaction, but it can also be a physical process
such as movements of molecules across a membrane against a concentration gradient
or the generation of mechanical force, as in muscle.

The details of how this coupling occurs depends on the structures of the proteins that
catalyze the reactions.

The enzyme creatine kinase offers a good example of enzymatic coupling. Like ATP,
creatine phosphate (also called phosphocreatine) has a large negative free energy of
hydrolysis

∆G◦= −43 kJ/mol

The enzyme creatine kinase catalyzes the exchange of phosphate between ATP/ADP
and creatine phosphate/creatine (CP/C):

ADP + CP −−⇀↽−− ATP + C

The standard free energy change for the overall reaction is: −43 kJ/mol + 30 kJ/ml =
−13 kJ/mol

Creatine, creatine phosphate and the enzyme creatine kinase are found in a variety of
animal tissues, including muscle and brain cells, where creatine phosphate serves as a
short-term source of reserve chemical energy.

In resting muscle cells, the typical concentrations are:

4mM ATP
0.013mM ADP
25mM creatine phosphate
13mM creatine

We can calculate the free energy change for the formation of ATP from CP under these
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conditions:

∆G = ∆G◦ +RT ln
[ATP][C]

[ADP][C]

= −13 kJ/mol +RT ln
4mM · 13mM

0.013mM · 25mM

= −13 kJ/mol + 8.314 J/K · 310K ln(160)

= −13 kJ/mol + 13 kJ/mol

≈ 0

The four compounds are at equilibrium, because the enzyme quickly equilibrates them.
But, when there is a large demand for ATP, the concentration of ATP goes down, the
concentration of ADP goes up, and the forward reaction, as written above, becomes
favorable, to restore ATP concentration.

But, the reserve of creatine phosphate is relatively limited and lasts about 4 seconds
in a sprinter. After that, either ATP is restored by oxidative phosphorylation, or
glucose is metabolized by glycolysis. The latter provides much less ATP than oxidative
metabolism and leads to the accumulation of lactic acid.
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Chapter 6
Formation of Biomolecular Structures

Now, we are going to shift direction a bit and start discussing the question of how biological
structures form on the molecular and cellular level. The thermodynamic principles that we
have been discussing create a framework for this subject. At a first glance, it seems that
biology somehow violates or circumvents the second law of thermodynamics, since highly
ordered structures seem to form spontaneously. Our goal is to understand how that can
happen within the constraints of the thermodynamic laws.

6.1 Water, Ionization and the Hydrophobic Effect

A key factor in biological assemblies is water and its special properties. We tend to take
water for granted, since it is the liquid that we know the best, but it is actually a very special
liquid.

The unique properties of water become obvious when we try to mix it with other liquids,
especially oils. Everyone knows about this experiment: oil and water don’t mix. This is,
in fact, the major driving force for the formation of biological structures at the molecular
level. But, why don’t they mix? What is so fundamentally different about the two kinds of
liquids?

I. Hydrogen bonding

The key property of water is something that we briefly discussed earlier, the unequal
sharing of electrons in the chemical bonds between oxygen and hydrogen:

This results in a partial positive charge on the hydrogen atoms and a partial negative
charge on the oxygen atoms, which lead to a strong tendency of the molecules to
interact. This is an example of a more general phenomenon, the hydrogen bond.

Hydrogen bonds form when a hydrogen atom is covalently bound to an electronegative
atom (most often oxygen or nitrogen) and a second electronegative atom is in the
vicinity. To a first approximation this is an interaction between charges, but there is
also a small degree of covalent bonding, that is electron sharing, involved.

To form a hydrogen bond, the two molecules (or groups within a single molecule) must
be arranged so that the two electronegative atoms are about 3–3.5 Å apart, as shown
below:
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N H

O Acceptor

Donor

The electronegative atom that is covalently bound to the hydrogen atom is referred to
as the hydrogen-bond donor and the other electronegative atom is called the acceptor.
In order to form a stable interaction, the three atoms must be approximately collinear
with the angle indicated in the drawing no more than about 40◦.

The oxygen atom of a water molecule can accept two hydrogen bonds and can act as
a donor for two, thus enabling a water molecule to form up to 4 hydrogen bonds.

When water freezes it forms a lattice in which each molecule forms all four of the
possible hydrogen bonds. The geometry is very similar to the lattice in a diamond,
except that the bonds are much weaker.

In liquid water, each molecule forms, on average, three hydrogen bonds at any instant.
Thus, only 1/4 of the hydrogen bonds break when ice melts. This is a major reason
that the boiling temperature of liquid water is relatively high for a molecule of its size.
(In general, the boiling points of liquids increase with the size of the molecules because
they can form more extensive van der Waals interactions.)

The hydrogen bonds in liquid water rapidly break and reform constantly. At any
instant, there is an extensive network of hydrogen bonds that can be traced from
one side of a beaker to another (in principle), but this network is constantly being
rearranged.

The picture below is a “frame” from a simulation of 1,000 water molecules, provided
by Prof. Valeria Molinero of the University of Utah Chemistry Department:
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II. Ionization

Another consequence of the uneven sharing of electrons in water is that the covalent
hydrogen-oxygen bonds break rather easily, generating H+ and OH– ions. This is a
reversible and very rapid process:

H2O −−⇀↽−− H+ +OH–

A major reason that this (and similar) reactions occur to a significant degree in water
is that the ionic species can interact favorably with the other water molecules. In fact,
the H+ ions are not really free. Instead, they interact with groups of water molecules
through hydrogen bonds. The hydrogen ion in solution is often represented as H3O

+

to indicate that the ion is in close association with water molecules, but this, too, is a
simplification. In non-polar solvents, there is essentially no tendency for molecules to
ionize, because the solvent does not interact favorably with charged species.

Like any other reversible chemical reaction, there is an equilibrium constant for the
dissociation of water:

K =
[H+][OH−]

[H2O]
= 1.8× 10−16M

Because only a tiny fraction of the water ionizes, the concentration of neutral water is
essentially constant, and the usual representation of the equilibrium constant ignores
the water:

Kwat = [H+][OH−] = 10−14M2

It is common to write the concentrations of the H+ and OH– ions in a logarithmic
form:

pH = − log [H+]

pOH = − log [OH−]
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The equilibrium expression can then be written as:

pH + pOH = 14

This equation implies that if, for instance, we add H+ ions to water (by adding an
acid), the concentration of OH– ions will go down. The reason for this is that some of
the added H+ ions combine with OH– ions to form water. In general, pH is used much
more commonly than pOH, but they both convey the same information, the balance
between H+ and OH– ions.

The reason that chemists and biochemists give so much attention to pH is that other
molecules can release or bind hydrogen ions as well, and the pH determines the balance
of charged species.

Two important examples of ionizing functional groups in organic molecules are the
carboxyl groups and amino groups:

Groups that ionize do so for same basic reason as water does, an uneven distribution
of electrons in covalent bonds. Different functional groups have different tendencies to
release or take up H+ ions. Ions are shuttled among different molecules in solution,
including the water molecules. These reactions are typically very fast, on the order
of microseconds. The exact balance between different charged forms of a molecule
depends on the total concentration of free H+ ions. Because a change in ionization
results in a change in the electrical charge of a molecule, its chemical, structural and
functional properties can be very sensitive to pH.

III. Dynamics of hydrogen ion diffusion.

Water, and molecules in it, form a highly dynamic solution, with the charges of
molecules rapidly changing. Rates of exchange of H+ ions from one molecule to another
occur with times on the order of 1µs, or less, allowing electric charge to be displaced
in water very rapidly through relay processes. A mechanism for the rapid diffusion
of hydrogen ions in water was was proposed by Theodor Grotthuss in 1806 and is
illustrated below:
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If you examine this diagram closely, you will see that the hydrogen ion that starts
on the top-most water molecule doesn’t really change position, but the electric charge
moves through the rearrangement of hydrogen bonds. The basic idea of this mechanism
is still thought to be correct, but details are still being studied and debated. This type
of mechanism may also be important for the transport of hydrogen ions through some
membrane channels.

IV. The hydrophobic effect

As mentioned earlier, one of the most important features of water is the fact that
it doesn’t mix well with non-polar molecules. This is a major driving force for the
assembly of biological structures, because it leads to structures in which non-polar
parts of molecules are sequestered away from water.

Why are non-polar molecules not very soluble in water? This is often referred to as
the “hydrophobic effect”, but, as we will see, non-polar molecules aren’t really afraid
of water.

Remember, water molecules love to form hydrogen bonds. What happens if a non-
polar molecule does try to enter water? One thing it doesn’t do is form hydrogen bonds
with the water!

Does the non-polar molecule cause hydrogen bonds to break? It seems plausible. How
can we find out?

Most of what we know about this phenomenon (or think we know) comes from ther-
modynamic measurements. The hydrophobic effect can be quantified by measuring
the thermodynamics of transferring a non-polar molecule from a non-polar solvent to
water. For instance, a molecule of methane from octanol to water:

Methane in a
non-polar solvent

Methane in 
Water

CH4 CH4

In practice, the free-energy change is measured by determining the solubility of the
molecule in each of the two solvents. As expected, the free energy of the process is
positive, which simply means that oil and water don’t mix.

We can also measure the enthalpy change for this process:
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Methane in a

non-polar solvent

Methane in 

Water

CH4 CH4

CH4

Gas Phase

What is surprising is that ∆H is actually negative, which means that heat is released.
This implies that, on average, there are more or stronger bonds in the aqueous solution
with the non-polar molecule dissolved than when the non-polar molecule is in a non-
polar solvent.

It’s also possible to measure the enthalpy change for transfer of the non-polar molecule
from each of the solutions to the gas phase. There is actually only a small positive ∆H
for moving from the non-polar liquid to the gas phase, but a large negative ∆H for
moving from the gas phase to water. Water and non-polar molecules actually interact
quite strongly.

If ∆G is positive and ∆H is negative, ∆S must be negative for the transfer of the
non-polar molecule to water. Somehow or other, the molecules become more ordered
when a non-polar molecule is dissolved in water. Favorable processes for which ∆H is
less than zero are often said to be entropically driven.

These observations lead to a model in which the water molecules rearrange themselves
in some way around the non-polar molecule so that they lose entropy but actually form
more or stronger hydrogen bonds. This seems rather counter intuitive, since it would
seem easy for the water to just give up a few hydrogen bonds to accommodate the
non-polar molecule. None the less, it seems that giving up some entropy is least bad
way for water molecules to live with a non-polar molecule in their midst.

Further support for this model comes from another thermodynamic parameter, the
heat capacity change at constant pressure, ∆Cp. This parameter is the derivative of
∆H with respect to temperature:

∆Cp =
d∆H

dT

∆Cp can be measured by measuring ∆H as a function of temperature. For the transfer
processes we are discussing, this gives a linear, or very nearly linear, plot and the slope
is ∆Cp.
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We can think about heat capacity as the amount of heat that is required to raise the
temperature of a substance by 1◦C. For either side of the reaction, we can write:

dH = CpdT

Different substances have different heat capacities, because they have different ways of
absorbing heat, including modes of motion and potentially breaking bonds.

The heat capacity change for the transfer of a non-polar molecule to water is quite
large and positive. This means that it takes more heat to raise the temperature of
water when a non-polar molecule is present. This is consistent with the idea that the
water forms more or stronger hydrogen bonds when the non-polar molecule is present,
and these bonds break or weaken when the temperature is increased.

The positive heat capacity change also means that ∆H becomes less negative as the
temperature increases. At higher temperatures, ∆H becomes positive, suggesting that
introducing a non-polar molecule in water does lead to a net loss of hydrogen bonds.

This model is sometimes referred to as an “iceberg” model, but no one really under-
stands it on a detailed structural basis.

“Hydrophobic effect” is a bad name, but it’s somewhat better than “hydrophobic
bonds” or “hydrophobic interactions”, which are also used. The non-polar molecule
doesn’t fear water; it actually likes it pretty well! It’s the water that has problems
with its guest.

Another important observation about the hydrophobic effect is that the magnitude of
the transfer free energy is proportional to the size of the non-polar molecule. This was
pointed out in a classic review article by Fred Richards in 1977, which included a graph
like the one below1:
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In this graph, the filled circles represent hydrocarbons, the filled squares represent
non-polar amino-acid side chains and the open squares represent polar amino-acid side
chains.

1Figure adapted from Richards, F. M. (1977). Areas, Volumes, Packing and Protein Structure. Annu.
Rev. Biophys. Bioeng., 6, 151–176. http://dx.doi.org/10.1146/annurev.bb.06.060177.001055
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The quantity plotted on the horizontal axis is called the accessible surface area (ASA)

and has units of Å
2
. The process for calculating the accessible surface area for a known

structure can be visualized as rolling a sphere representing a solvent molecule over the
surface of the molecule and recording path followed by the point of the sphere closest
to the molecule, as diagrammed in the figure below:

In this illustration, the molecule of interest is the side chain of a tryptophan residue
and probe sphere has a radius of 1.4 Å, representing a water molecule. The surface area
is represented by the wire cage surrounding the stick representation of the tryptophan
side chain. For these calculations, the hydrogen atoms of both the molecule of interest
and the water molecule are often ignored because they contribute relatively little to
volume and surface area. Other measures of molecular size, such as volume, do not
correlate with free energy of transfer nearly as well as surface area does. This is
consistent with the idea that it is the interaction of the non-polar molecule with water
and the interference with hydrogen bonding that define the hydrophobic effect.

Another important point that is illustrated in the graph on the previous page is that the
amino-acid side chains that include polar groups lie on a distinct line from the one for
those that contain only carbon and hydrogen atoms. The free energy of transfer for the
side chains with polar groups are systematically less positive than the hydrocarbons.
This reflects the more favorable interactions of non=polar groups with water.

The relationship between the hydrophobic effect and accessible surface area helps to
explain how the hydrophobic effect can favor the assembly of biological structures, as
illustrated in the cartoon below:

+

The cartoon represents two molecules with non-polar surfaces. As discussed above,
these surfaces favor the ordering of water molecules in their vicinities, a process that
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leads to the reduction of solvent entropy. When the two molecules interact via their
complementary surfaces, the water that is closely associated with those surfaces is
displaced, leading to an increase in entropy. Because many water molecules may be
released by the association of two larger molecules, the increase in the solvent entropy
can be significantly greater than the decrease in the associating molecules.

Other molecules or ions that are closely associated with the surfaces of relatively large
molecules can also contribute to a favorable association reactions. An important exam-
ple is the association of nucleic acids with proteins. Because they have a high density
of negative charge at their surfaces, nucleic acids in solution are frequently associated
with divalent cations, such as Mg2+. The proteins that bind nucleic acids often con-
tain positively charged side chains that interact with the negative charges of the nucleic
acids and displace the cations. This results in an increase in entropy of the cations
and contributes to a favorable free energy change for interaction between the protein
and nucleic acid.

6.2 Lipid Bilayers and Membranes

Some of the most important structures in living organisms are the membranes that separate
the contents of cells from the extracellular environment and separate different intracellular
compartments. The structures and properties of these membranes are largely determined by
the hydrophobic effect discussed in the previous section.

I. Amphiphilic molecules, micelles and bilayers

When non-polar molecules exceed their solubility in water they simply form a separate
phase, like in salad dressing. But, there are molecules that contain both polar and non-
polar parts, and these molecules, called amphiphiles, can form more specific structures.
An example of this type of molecule is a detergent. The structure of a typical detergent,
sodium dodecyl sulfate (SDS), is shown below:

O S

O

O

O
-
 - Na

+ 

SDS is commonly used in biochemistry experiments, especially electrophoresis, and
is also a common ingredient of household cleaning products, such as shampoos. The
two parts of the molecule are a hydrocarbon chain (commonly referred to as the tail)
with 12 carbon atoms and a sulfate group, a highly charged ion (the polar head).
When molecules like this exceed their solubility, they assemble into a structures that
sequester the non-polar part away from water while keeping the charged polar group
exposed. These structures are called micelles and are roughly spherical, as illustrated
in cross-section below:
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These structures have a modest degree of specificity. For a given molecule, there
will be a characteristic preferred size of micelle that optimizes the packing of the
hydrophobic tails, while keeping the polar head-groups solvated with water. Typical
micelle diameters lie in the range of about 3 to 50 nm.

Molecules like this help us clean things up by solubilizing greasy molecules in the
middle of the micelles.

The major amphiphilic molecules in biology have a slightly more complicated structure.
These molecules typically have two hydrocarbon tails that are linked together by a
glycerol molecule, a three carbon sugar, which is also linked to a polar phosphate
group:
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These molecules are called phospholipids, and there is wide variety in their structures.
Different phospholipids have different hydrocarbon tails and different chemical groups
attached to the phosphate.

Like detergents, phospholipids form structures in water, with the non-polar groups
sequestered and the polar groups interacting with water. But, rather than forming
spheres, these molecules form extended (nearly) flat structures with two layers, as
diagrammed below:

These structures form the membranes of cells, creating compartments with different
chemical compositions.
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The very different structures formed by detergents and phospholipids is largely due to
the difference in the shapes of the molecules. Detergents tend to have a wedge shape
that leads to sharp curvature, while phospholipids, because they contain two lipid tails,
are more rectangular and form flat structures.

Treating phospholipids with strong bases (lye) hydrolyzes the ester bonds between
fatty acids and glycerol, resulting in salts of the fatty acids, which are soaps.
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Like the detergents, soaps have a bit of a wedge-like structure, leading them to form
micelles, rather than bilayers, so that they act in the same way as synthetic detergents.
This reaction is probably one of the earliest examples of practical chemistry, dating
back to the Roman Empire.

II. Permeability of bilayers

The major role of lipid bilayers is to enclose cells and form compartments within them
with distinct chemical compositions. So, an important property is their permeability
to different molecules.

Permeability can be measured by forming vesicles in the presence of specific molecules,
separating the vesicles from free molecules, and then measuring the rates at which the
molecules diffuse out of the vesicles, as illustrated below:

The rate at which the concentrations equilibrate is determined by Fick’s first law:

J = −DdC
dx
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where J is the flux (with units of mol · s−1m−2); D is the diffusion coefficient (with
units of m2s−1) and dC/dx is the concentration gradient across the membrane.

In this case, the area is the total area defined by the surface of the vesicle. The
concentration gradient is the difference in the concentration divided by the thickness
of the bilayer. The diffusion coefficient is a property of the molecule and the bilayer,
and will generally be very different (smaller) than the diffusion coefficient of the same
molecule in water. A typical vesicle might have a diameter of about 50 nm and typical
bilayers have thicknesses of 3–4 nm. Thickness is a bit ambiguous, since it depends on
how much of the polar head group is included, and different lipids have different lengths.
In fact, the diffusion coefficient is not so easily defined because of the heterogeneous
structure that the molecule has to cross.

Instead of using diffusion coefficients, the common practice for describing diffusion
across bilayers is to introduce a permeability coefficient defined so that:

J = −DdC
dx

= −P∆C

where ∆C is the difference in concentration across the membrane. In effect, the perme-
ability coefficient combines the diffusion coefficient and the thickness of the membrane,
so that:

P =
D

∆x

where ∆x is the thickness of the membrane, which is about 4 nm. The units for the
permeability coefficient are m/s.

Some experimental values for the permeability coefficient are plotted below on a loga-
rithmic scale2:

serine

tryptophan glycerol

2Values in the figure are from: Chakrabarti, A. C. & Deamer, D. W. (1992). Permeability of lipid bilayers
to amino acids and phosphate. Biochim. Biophys. Acta - Biomembranes, 111, 171–177.
https://doi.org/10.1016/0005-2736(92)90308-9

and
Paula, S., Volkov, A. G., Van Hoek, A. N., Haines, T. H. & Deamer, D. W. (1996). Permeation of protons,
potassium ions and small polar molecules through phospholipid bilayers as a function of membrane thickness.
Biophys. J., 70, 339–348. https://doi.org/10.1016/S0006-3495(96)79575-9
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Some important points to note from these values are:

• The permeabilities cover 9 orders of magnitude.

• Ions have extremely low permeabilities, but H+ is a notable exception.

• Polar molecules also have low permeabilities.

• Water has a quite high permeability.

We can compare the permeability coefficients to the diffusion coefficients for small
molecules in water. The two parameters are related to one another according to:

D = P∆x

For the amino acid serine, assuming ∆x = 4nm:

D = 5× 10−15m · s−1 × 4× 10−9m

= 2× 10−23m2s−1

This is much less than the diffusion coefficient of a small molecule in water, which is
about 10−10m2s−1.

For water:

D = 1.6× 10−5m · s−1 × 4× 10−9m

= 6.4× 10−14m2s−1

This is still quite small.

For many molecules, the observed permeability coefficients can be accounted for by a
model in which there is an equilibrium between the molecule in water and in the lipid
bilayer, coupled to diffusion within the bilayer and then rapid escape from the bilayer
back to the water phase:
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∆Gtr is the free energy of transfer from water to a non-polar environment and is very
unfavorable for a polar molecules . This model, referred to as the solubility-diffusion
model, can be used to predict the permeabilities of molecules from the values of ∆Gtr

and the diffusion coefficients in oils. This model assumes that the overall rate of crossing
the bilayer is determined by the fraction of molecules that are present in the bilayer,
relative to the water phase on each side, and the diffusion coefficient in the non-polar
part of the bilayer. The fraction of molecules in the bilayer is equal to the equilibrium
constant for transfer from water to the non-polar environment, Ktr, provided that this
equilibrium constant is much less than 1. The effective diffusion coefficient is then
given by:

Deff = Ktr ×D

and the permeability coefficient can be expressed as:

P = P =
Deff

∆x
KtrD/∆x

This model predicts that the permeability coefficients for different molecules should be
correlated with their relative solubilities in non-polar liquids. This prediction has been
borne out for many, but not all, molecules that have been examined, as illustrated in
the figure below:3

This correlation provides a strong argument that the solubility-diffusion model is a
good description for the permeabilities of small molecules, both polar and non-polar,
and most small ions. The largest discrepancies appear to be for water and H+ ions,
which have anomolously high permeability coefficients.

3Figure from Walter, A. & Gutknecht, J. (1986). Permeability of small nonelectrolytes through lipid
bilayer membranes. J. Membrane Biol., 90, 207–217.
http://dx.doi.org/10.1007/BF01870127
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An alternative model would be that holes transiently form in the bilayer and allow
molecules to pass through. However, this model would suggest that the permeability
coefficients would be relatively independent of the polarity of the molecules, which
is clearly not the case. On the other hand, the permeability data for some species,
especially H+ ions and water, do not fit the solubility-diffusion model, indicating that
other factors may play a role. It has been suggested that chains of hydrogen-bonded
water molecules may cross the bilayer and allow the net movement of both water
molecules and H+ ions, the latter by a Grotthuss mechanism (page 170). In addition,
transient defects may form and contribute to permeability, but this appears to be a
relatively small factor for most molecules.

One important application of kind of data is in the design of pharmaceuticals, since
drug molecules generally have to cross multiple membranes to reach their targets. It
may also be important to keep the drug from crossing other membranes. This can
make or break a potential drug.

We can apply the permeability coefficients to estimate the rate of molecules entering
or leaving cells by passive diffusion across the bilayer (in the absence of transport by
specific membrane proteins). Suppose that we have a cell with a diameter of 20µm,
and it contains no glucose, but is surrounded by a solution that is 0.1M in glucose.
How rapidly will glucose, with a permeability coefficient of about 5× 10−10m/s, enter
this cell? From the permeability coefficient and the concentration difference, we can
calculate the flux, J , in units of mol · s−1m−2:

J = P∆C

= 5× 10−10m/s× 0.1M

= 5× 10−11mol · L−1m · s−1

= 5× 10−8mol · s−1m−2

Next, we calculate the surface area of the cell:

A = 4πr2

= 4π(10−5m)2

≈ 10−9m2

The total flow into the cell is the flux multiplied by the surface area:

flow = 5× 10−8mol · s−1m−2 × 10−9m2

= 5× 10−17mol · s−1

That’s not a lot of moles per second, but it is about 30 million molecules per second.

181



CHAPTER 6. FORMATION OF BIOMOLECULAR STRUCTURES

How rapidly would the intracellular concentration change? We need to calculate the
volume:

V =
4

3
πr3

=
4

3
π(10−5m)3

≈ 4× 10−15m3 × 103 L

1m3

≈ 4× 10−12 L

So, the rate of change in concentration is:

dC

dT
=

5× 10−17mol · s−1

4× 10−12 L

≈ 10−5mol · L−1s−1

It will take a long time for the intracellular concentration to equilibrate with the
extracellular environment.

III. Primitive membranes

The impermeability of bilayers raises an interesting question with regard to the origins
of life, one of the great intellectual challenges. The basic problem is that modern life
forms appear to be so perfect and complicated that it is hard to imagine how any part
of it could have evolved by itself. Modern organisms have to:

• Collect nutrients

• Convert nutrients into useable forms of energy

• Build complicated macromolecules, including enzymes and genetic material

• Create compartments bounded by membranes

• Reproduce themselves

For a long time, a big issue was whether proteins or nucleic acids came first. Pro-
teins are needed for enzymes, but DNA and RNA are needed to encode proteins. In
the 1980s, however, it was discovered that some RNA molecules have catalytic activ-
ities. It’s now widely believed that the earliest biological macromolecules were RNA
molecules that had very limited ability to catalyze their own replication.

Membranes also present a problem. A key event in the evolution of early cells must
have been the formation of membranes, so that nutrient molecules could be sequestered
and not shared with competing cells or molecules. Modern lipid bilayers are extremely
impermeant to polar molecules and ions. Translocation of molecules across membranes
depends on protein molecules embedded in the bilayer, which allows for the transport
to be controlled. But, how could primordial membranes have worked?
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It turns out that some fatty acids can form bilayers that are much more permeant
to polar and even charged species. A current idea is that vesicles of this type formed
and trapped RNA, or related molecules, that could polymerize. Precursors to polymers
could diffuse across the membranes, but when they were incorporated in polymers they
were trapped. As molecules inside the vesicles got larger and more numerous, vesicles
were forced to expand and eventually divide.

Figure from:

Mansy, S. S., Schrum, J. P., Krishnaurthy, M., Tobé, S., Treco, D. A. & Szostak, J. W.
(2008). Template-directed synthesis of a genetic polymer in a model protocell. Nature,
454, 122–125.
http://dx.doi.org/10.1038/nature07018

Another, related, reference:

Monnard, P.-A., Luptak, A. & Deamer, D. W. (2007). Models of primitive cellular
life: polymerases, and templates in liposomes. Phil. Trans. Royal. Soc. Lond. B ,
362, 1741–1750.
http://dx.doi.org/10.1098/rstb.2007.2066

6.3 Protein Folding and Unfolding

One of the most important examples of biological structure formation is the folding of
polypeptide chains into stable three dimensional structures. This process occurs largely
after proteins are synthesized by ribosomes, although the first segments of a protein that
are synthesized may begin to fold while the rest of the chain is still being synthesized. For
most proteins, the folded conformation is required for function, and this conformation is
specified by the amino acid sequence. As a consequence the folding process represents a
point in which one-dimensional information encoded in the genome is expressed as a three-
dimensional structure. With many proteins, it is possible to unfold the folded, or native,
structure by altering the solution conditions and then reform the structure by again changing
the conditions. This provides the means of studying the thermodynamics and mechanisms
of protein folding. Because of its central importance in biology, this process has been studied
extensively, both experimentally and by theoretical and computational methods.
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I. Native and unfolded protein states

Although there is tremendous variety in the size and architecture of protein molecules,
the great majority of the experimental work that has been done to date has focused
on relatively small proteins, containing about 50–200 amino-acid residues, and our
discussion will be largely limited to this class of proteins. Proteins of this size typically
fold into a single compact structure, termed a domain, whereas larger proteins are often
formed of multiple domains. One important characteristic feature of single-domain
proteins is that the unfolding and folding processes is highly cooperative, meaning
that partially folded structures are significantly less stable than either the native state
or completely disordered molecules. In addition, the kinetics of folding and unfolding
can often be described by models involving a single major transition state or energy
barrier, as diagrammed below:

The structures in the diagram represent ribonuclease A (RNAse A), which contains
124 amino-acid residues, in its folded conformation (on the left) and a disordered
conformation. As indicated in the diagram, the native state is more stable than the
unfolded by a few tens of kJ/mol. The activation free energy indicated in the diagram,
80 kJ/mol corresponds to a rate constant for folding of about 0.1 s−1, or a half time of
about 6 s. This value falls within the quite wide range of observed folding times, from
minutes to microseconds.

Whereas the folded conformation is a relatively unique structure, the unfolded state is a
broad distribution of rapidly interconverting conformations, contrary to the impression
that may be conveyed by the figure above. The conformation shown in the diagram is
one of many generated in a computational simulation designed to explore the properties
of unfolded proteins4 This simulation generated approximately 200,000 conformations,
and the figure below shows their distribution with respect to overall dimension:

4Goldenberg, D. P. (2003). Computational simulation of the statistical properties of unfolded proteins.
J. Mol. Biol., 326, 1615–1633. http://dx.doi.org/10.1016/S0022-2836(03)00033-0
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The radius of gyration, as plotted on the horizontal axis, of a polypeptide chain is the
root-mean-square distance between the center of mass and each non-hydrogen atom
in the molecule5. It is thus a useful measure of the overall size of a molecule in a
particular conformation. For reference, the figure also indicates the radii of gyration
of native RNAse A and a fully extended conformation. Although the distribution
includes conformations that are nearly as compact as the folded state, there are none
that approach the radius of gyration of a fully extended chain. One consequence of the
very broad distribution of unfolded states is that it has much more entropy than the
native conformation, as discussed further below.

II. Entropy of the unfolded state

The large difference in entropy between the native and unfolded states of a protein is
expected to disfavor the native state. It is thus useful to try to estimate the magnitude
of this difference. If we can somehow count the number of microstates making up the
two states, we can use the Boltzmann equation to calculate the entropy difference. To
do this rigorously would require consideration of all of the possible alternate confor-
mations in the two states, which is a formidable challenge. We can, however, make
some simplifying assumptions that allow for a very rough approximation. The key
assumptions are that the folded protein has a single, unique conformation and that the
individual amino-acid residues are able to take on multiple, independent conformations
in the unfolded state.

The conformations accessible to an individual reside can be defined by the dihedral
angles that describe the rotations about single covalent bonds, as illustrated below for
a glutamine residue:

5This definition is somewhat simplified from the more general definition of the radius of gyration, but it
is a good approximation for an object in which all of the elements have approximately the same mass.
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Amino acid residue

For each residue (other than prolines), there two rotatable bonds in the polypeptide
backbone, labeled ϕ and ψ, and additional rotatable bonds in the side chain, which are
labeled χ1, χ2 and so on, depending on the particular residue type. These bonds can
undergo rotation, to varying degrees, in both the folded and unfolded states. However,
these rotations are associated with changes in the potential energy of the molecule,
due to steric and other interactions among the atoms. These effect create a pattern
of valleys and peaks in the energy as a bond is rotated, as illustrated in the diagram
below for the simple case of a propane molecule:

As the central bond is rotated, the lowest energy is found when the methyl groups on
the two sides of the bond are pointed in opposite directions, and the highest energy is
observed when the methyl groups are on the same side of the central bond. There are
two other minima, where the bond is rotated by 120◦ from the lowest energy position.
Bonds in different contexts have different rotational energy profiles, but the patterns
are similar.

Within a folded protein, most of the rotatable bonds are restricted a single minimum,
but the dihedral angles fluctuate about those minima. In the unfolded state, the di-
hedral angles can sample all of the minima and fluctuate within these minima. Thus,
we can think of the reduction in conformational entropy as a reduction in the number
of accessible minima, and we can define the microstates in term of distinct conforma-
tions with the dihedrals in specified minima. This approximation is referred to as the
rotational isomeric state model.
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For the native protein we assume that there is a single microstate, recognizing that
this microstate includes all of the fluctuations about the dihedral minima, as well as
vibrational motions. For the unfolded state, we assume that the number of microstates
of each residue is approximately 10-times the number in the native state. Therefore
the ratio of the number of microstates for a single residue in the two states is:

ΩU

ΩN

= 10

For two residues, if the accessible conformations are independent, the ratio is 102; for
three residues, the ratio is 103, and so on. For an n-residue protein, therefore, the ratio
is:

ΩU

ΩN

= 10n

The entropy change is then:

∆Sconf = k ln
ΩU

ΩN

= k ln 10n

This quantity is designated ∆Sconf to emphasize that it reflects only the change in
polypeptide conformation for unfolding and that there are other contributions to
the overall entropy change for the process. For a protein containing 100 amino-acid
residues, the conformational entropy change is:

∆Sconf = k ln 10100 = 3.3× 10−21 J/K

On a molar basis:

∆Sconf = R ln 10100 = 1900 J/(K ·mol)

and the free energy contribution to unfolding at 300K is:

−T∆Sconf = −570 kJ/mol

Note that this is a large factor favoring unfolding. It is approximately ten-fold greater
than the net free energy change that favors folding for a typical protein of this size.

One important, and unrealistic, assumption that went into this calculation is that the
conformations of individual amino-acid residues are independent of one another in an
unfolded protein. Manipulating a physical model of a peptide containing only a few
residues will demonstrate that many combinations of dihedral angles will lead to steric
clashes among the atoms. Suppose that we assume that only one in 1010 (one in 10
billion) of the conformations that we assumed in our calculations is actually possible.
For the 100-residue protein, the ratio of microstates in the unfolded and native states
is then reduced to:

ΩU

ΩN

= 10100 ÷ 1010 = 1090
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The corresponding molar entropy and free energy changes are:

∆Sconf = R ln 1090 = 1700 J/mo

−T∆Sconf = 520 kJ/mol

Thus, even reducing the initial estimate of the number of possible conformations by a
factor of 10 billion does not alter the general conclusion from this calculation.

It is also possible to estimate the value of ∆Sconf from experimental measurements.
Recall, from Chapter 6, the general definition of the entropy change (for the system)
for a process at constant temperature:

∆Ssys =
qrev
T

where qrev is the heat absorbed by the system during the reversible change from one
state to another. If the process is carried out at constant temperature, and there are
no changes in the potential energies of the molecules making up the system, ∆E = 0
and qrev = −wrev, where wrev is the work done on the system during the process. If
we could somehow measure the work required to convert the very broad ensemble of
unfolded conformations (very slowly) to a single conformation, we could determine the
associated entropy change.

It might seem that the process to examine in this way would be the conversion of the
unfolded state to the native state. But, this is problematic because folding is associated
with the formation and rearrangement of numerous non-covalent interactions that alter
the potential energy of the molecule, so that ∆E is not equal to zero. On the other
hand, we can consider the conversion of the unfolded ensemble to a fully extended
conformation, as diagrammed below:

Unfolded 

ensemble

Single

conformation

Because the intramolecular interactions in the folded state are largely broken in the un-
folded state, there should not be significant changes in the interactions of the polypep-
tide chain with either itself or the solvent when the molecules is stretched to its max-
imum extension. Thus, in terms of conformational entropy, the fully extended chain
is equivalent to the fully folded chain! A caveat to this assumption is that the side
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chains of many residues will be more restricted in the native state than in the fully
extended conformation. Thus, the decrease in conformational entropy for stretching
the unfolded ensemble to a fully extended conformation is expected to be somewhat
less than that for folding.

To actually measure the work for stretching a single protein requires very sensitive
instrumentation, and two types of instrument have been employed in this kind of
experiment, optical tweezers and atomic-force microscopes (AFM). Here we will focus
on the AFM, a version of which is diagrammed below6:

This instrument was invented primarily for recording very high resolution images of
surfaces. The essential elements are a very fine probe, with a tip diameter of a few
nm or less, and a sample stage that can be moved with nanometer precision. The
probe is attached to a flexible cantilever and brought into contact with the sample
surface mounted on the stage. As the surface is moved in two directions, the probe
tip follows the surface, and the cantilever bends slightly to accommodate this motion.
The cantilever contains a reflective surface, and the light from a stationary laser is
reflected from it. As the sample is scanned, the direction of the reflected light changes
in response to the changes in vertical position of the tip. The fluctuations are recorded
and converted into a record of the height of the surface as a function of position,
thus generating an image. The tip can also be used to manipulate or move individual
molecules, and even atoms. The key to this precision is the ability to move the stage
in tiny, reproducible steps. This is made possible by the use of piezoelectric crystals
that undergo small size changes in response to electrical voltage changes.

An AFM can also be used to measure forces generated by the motion of the stage.
For this purpose, the cantilever, which acts as a spring, is calibrated so that the
displacement of the tip can be converted into a force value. An arrangement for
stretching a polypeptide chain is shown in the diagram below:

6Figure from https://en.wikipedia.org/wiki/Atomic-force_microscopy
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Using some combination of genetic engineering and protein chemistry, one end of the
chain is attached to the probe tip and the other to the movable stage. The stage is
then moved downward, which reduces the entropy of the chain and creates a downward
force on the tip. In response, the cantilever bends and, in doing so, exerts an opposite
force, which increases as the stretching proceeds. By carrying out this process very
slowly, to approach the ideal of reversibility, and continuously recording the force of
the cantilever, the total work can be determined as:

w =

∫
Fdx

Actually carrying out this kind of experiment, and properly analyzing the data is
very challenging. None the less, the measurement has been performed for a variety of
proteins and the quantitative results are quite consistent with the estimates of ∆Sconf

based on counting rotational isomers7.

To summarize, these experiments and calculations based on the rotational isomeric
state model indicate that a reasonable estimate for the change in conformational en-
tropy for a polypeptide of n residues is on the order of:

∆Sconf = k ln 10n

For a 100-residue protein, ∆Sconf is calculated from this relationship to be 1900 J/(K ·mol.
This factor favors unfolding, by 570 kJ/mol at 300K. In the next section, we consider
the factors that overcome this entropy penalty to make the folded structures of proteins
stable under physiological conditions.

III. Protein-stabilizing factors

The thermodynamics of unfolding have been studied experimentally for a large number
of single-domain proteins, most with chain lengths ranging from about 50 to 200 amino
acid residues. Although the values of the parameters vary substantially, the values
below, for hen egg-white lysozyme at 25◦C8, are typical for a protein in this size class:

7Thompson, J. B., Hansma, H. G., Hansma, P. K. & Plaxco, K. W. (2002). The backbone conformational
entropy of protein folding: Experimental measures from atomic force microscopy. J. Mol. Biol., 322, 645–
652. http://dx.doi.org/10.1016/S0022-2836(02)00801-X

8Baldwin, R. L. (1986). Temperature dependence of the hydrophobic interaction in protein folding. Proc.
Natl. Acad. Sci., USA, 83, 8069–8072. http://dx.doi.org/10.1073/pnas.83.21.8069
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∆Gu 60.7 kJ/mol

∆Hu 236 kJ/mol

∆Su 586 J/(K ·mol)

-T∆Su 175 kJ/mol

Hen lysozyme contains 129 amino-acid residues, leading to a predicted value of ∆Sconf of
about 2500 J/(K ·mol), based on the assumptions introduced in the previous sections.
Note that this value of ∆Sconf is approximately four-fold greater than the observed
entropy change for unfolding. Further, the magnitude of −T∆Sconf , −740 kJ/mol, is
about ten-fold greater than that of ∆Gu, but of the opposite sign, representing a large
factor favoring unfolding. We thus need to account for two apparent discrepancies
associated with the large calculated value for ∆Sconf :

• The conformational entropy change for unfolding is much larger than the observed
entropy change for the overall unfolding process.

• The free energy change associated with the conformational entropy change is far
larger than the free energy change for unfolding and greatly favors the unfolded
protein under conditions where the folded state is stable.

There must be at least one other factor that contributes a large negative change in
entropy upon unfolding and a positive contribution to the free energy change for un-
folding. The most likely explanation is the transfer of non-polar parts of the protein,
which are buried in the native state, to the water solvent in the unfolded state. Re-
call from the discussion of the hydrophobic effect (pages 171–175) that the transfer of
non-polar molecules from a non-polar liquid to water is associated with both a positive
free energy change and a negative entropy change. Although it is not completely un-
derstood, it is generally believed that the decrease in entropy is due to an increase in
order of water molecules directly surrounding the non-polar atoms, sometimes referred
to as an iceberg effect.

As discussed earlier, the magnitude of the positive free energy change for transfer of a
non-polar molecule to water is closely correlated with the accessible surface area (ASA)
of the molecule (pages 173–174). From transfer measurements of numerous molecules
and careful analysis of the data, simple relationships have been derived between surface
areas of non-polar parts the molecules (Anp) and the thermodynamic parameters for
transfer. The values vary quite strongly with temperature, and the expressions below
are for 298K.

∆Htr = Anp × 7 J/mol

∆Str = −Anp × 0.3 J/(mol ·K)

−T∆Str = −Anp × 90 J/mol

∆Gtr = Anp × 97 J/mol
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As discussed earlier, the overwhelmingly predominant component of the unfavorable
transfer free energy change is entropic. Polar surface area also influences the transfer
thermodynamics, but this effect is much smaller than the influence of the non-polar
surface area and will be ignored here.

From the structure of a folded protein, it is relatively straight forward to calculate the
accessible surface area, and to distinguish between the polar and non-polar components
of that surface. For the unfolded ensemble, some kind of model must be used because
of the broad range of conformations. Calculations for hen lysozyme lead to the values
listed below for the accessible surface areas of the native and unfolded states:

Native (Å2) Unfolded (Å2) ∆ASA(Å2)

Total 6,670 15,800 9,130

Non-polar 3,400 9,700 6,300

Polar 3,300 6,100 2,800

Note that both polar and non-polar groups are accessible to solvent in the native state,
contrary to the common perception that non-polar groups are almost entirely buried in
folded proteins. None the less, non-polar groups are disproportionately buried in the
native state and the non-polar accessible surface area increases greatly upon unfolding.
Using these values and the expressions relating non-polar surface area to the thermo-
dynamic parameters, we can estimate the contributions of the hydrophobic effect to
the overall unfolding thermodynamics. The table below includes these estimates for
hen lysozyme in an overall balance sheet.

∆H
kJ/mol

∆S
J/(mol ·K)

∆G
kJ/mol

Conformational entropy 2,500 -740

Hydrophobic effect 44 -1,900 610

Other 192 -14 190

Overall 236 586 61

The row labeled “Other” in the table above represents the additional contributions
to the enthalpy, entropy and free-energy changes that must be added to those from
conformational entropy and the hydrophobic effect in order to match the observed
values for unfolding of hen lysozyme. Note that the hydrophobic effect balances out
about 75% of the favorable conformational entropy change for unfolding, leading to
a residual (600 J/(mol ·K)) that very closely matches the overall entropy change for
unfolding. On the other hand, there is an additional contribution of about 200 kJ/mol
to ∆Hu that is not yet accounted for.
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Qualitatively, the positive enthalpy change for unfolding indicates that attractive inter-
actions are broken during unfolding. These interactions likely include hydrogen bonds
and van der Waals interactions, both of which are apparent in the folded structures of
proteins. Estimating the energetic contributions of individual interactions of this type
is quite difficult, however, because interactions in the native state that are disrupted
upon unfolding are likely compensated for by new interactions between the protein and
the solvent. For instance, the folded proteins contain a large number of hydrogen bonds
between the amide nitrogen atoms and carbonyl oxygen atoms of different residues, as
illustrated in the right-hand side of the figure below:

+ +

At the same time, the water molecules surrounding the protein are extensively hydro-
gen bonded to each other. When the protein unfolds and the intramolecular hydrogen
bonds are broken, the protein nitrogen and oxygen atoms can readily form new hy-
drogen bonds with water molecules. Breaking a hydrogen bond of this type, without
replacing it, requires an energy input of about 50 kJ/mol. However, estimating the net
energetic effect of breaking two hydrogen bonds (one in the protein and one between
water molecules, as in the illustration above) is very difficult and has been the sub-
ject of controversy for nearly sixty years. The net energy difference is likely to be far
smaller than the 50 kJ/mol for breaking a hydrogen in isolation, but the number of
hydrogen bonds in a folded protein is quite large, about 100 in a protein the size of hen
lysozyme. Thus the total contribution to hydrogen bonds could be quite significant.

One important source of information about the contributions of individual interac-
tions to protein stability is experiments in which specific amino-acid residues have
been modified by genetic engineering and the effects of these changes on unfolding
thermodynamics have been been measured. For instance, a serine residue, in which
the side-chain hydroxyl group forms a hydrogen bond with another protein group, can
be changed to an alanine residue to eliminate the hydrogen bond. A large number of
experiments of this type have been performed over the last few decades, and one of the
major observations has been that the effects of this kind of change can vary greatly
from protein to protein and among different sites within the same protein. Thus, the
contributions of different types of interactions appear to be highly context dependent.
For amino-acid replacements that remove hydrogen bonding groups, there is typically a
reduction in ∆Gu in the range of 5–10 kJ/mol per hydrogen bond. When multiplied by
the number of hydrogen bonds in a folded protein, these effects could readily account
for a large fraction of the enthalpy change observed for unfolding.

Estimates of the kind discussed here provide a reasonably satisfying accounting for
the observed thermodynamics of protein folding, with the predominant contributions
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assigned to conformational entropy and the hydrophobic effect. The balancing of the
conformational entropy change and the entropy change attributed to the hydropho-
bic effect seems particularly close. Some caution in interpreting these estimates is
called for, however, since they are based on assumptions with significant uncertainties.
Some of the greatest uncertainties concern the properties of the unfolded state, which
influences both the estimate of ∆Sconf and the net contribution of the hydrophobic
effect. Unfortunately, the very nature of unfolded states makes them much more dif-
ficult than folded proteins to characterize experimentally. This, among other areas of
protein conformation and dynamics, continues to be an important area of research.
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Chapter 7
Molecular Motors

The cells of nearly all (if not all) organisms contain protein complexes that are able to convert
chemical energy into mechanical work. These motors include:

• Myosin, which generates force by interacting with actin in muscle and other cells.

• Kinesin and dynein, which both move along microtubules, but in opposite directions.

• The ATP synthase that produces ATP from ADP in mitochondria and aerobic bacteria,
using the electrochemical potential of a H+ gradient. Force generation is not part of the
normal function of this protein, but its catalytic activity is coupled to rotary motion.

• The bacterial flagellar motor, which uses electrochemical gradients to rotate flagella
and enable swimming.

In all of these motors, conformational changes in protein complexes are coupled to chem-
ical changes, either ATP synthesis/hydrolysis or motion of ions across membranes.

7.1 Some Basic Principles

I. Steam engines

In thinking about how molecular motors might work, it is useful to consider first a
simple engine on a larger scale, such as a steam engine.

High Pressure

Steam Reservoir

Power Stroke

Recovery (exhaust) Stroke

Note the following important features of the engine illustrated above:
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• The energy source for the engine is a pressure difference, which is created by a
temperature difference.

• The free energy of the steam (its ability to do work) is lost as it expands, and its
entropy increases.

• Expansion of the gas is coupled to movement of the piston and, in turn, turning
the wheel and shaft.

• After the powerstroke, the momentum of the flywheel returns the engine to its
starting state so that the cycle can be repeated.

• If the coupling between the steam expanding and the mechanical motions is dis-
rupted, the free energy of the steam is wasted.

• The valves that control the flow of steam are essential, and their function must be
coupled to the movement of the piston to ensure that each one opens and closes
at the correct time in the cycle.

Some of these features can be found in molecular motors. Perhaps most important are
the mechanisms that couple a highly favorable process with an unfavorable mechanical
process. Molecular motors also function in a cyclical fashion. On the other hand, there
are important differences between molecular motors and steam engines:

• There cannot be significant temperature differences at the molecular scale.

• The molecular structures have no significant inertia, so that a flywheel cannot
restore the motor to its initial state.

II. Measuring forces at the molecular scale and stretching a DNA molecule

One of the technical advances that has enabled the study of molecular motors is the
development of instruments capable of measuring forces at the molecular level. In
the previous chapter, we briefly discussed one such instrument, the atomic force mi-
croscope (pages 189–190). Another instrument used to measure molecular forces and
manipulate individual molecules is called an optical trap or optical tweezers. This type
of instrument can be used to manipulate objects as small as individual atoms, but
when used in studies of biological macromolecular strategies, the usual strategy is to
attach the molecules to small glass or silica beads, typically about 1µm in diameter,
which are then manipulated. The optical trap is generated by focusing a beam of light
into a narrow spot. When viewed from the side, this beam has an hour-glass shape
with a narrow waist, as illustrated below1:

1Illustrations of the optical trap device are from https://en.wikipedia.org/wiki/Optical_tweezers
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When a transparent bead is placed within the light beam, it acts as a small lens and
refracts, or bends, the light. This effect represents a force of the bead acting on the
light, and, by Newton’s third law of motion, there must be an equal and opposite
force acting on the bead. As shown in the diagram above, light rays entering the bead
at different points generate forces in different directions, and the magnitudes of these
forces are determined by the intensity of light at different postions in the beam. All of
these forces, along with the gravitational force acting on the bead, are balanced when
the bead is in the center of the beam and slightly above the beam waist, as shown in
the right-hand side of the illustration.

If an outside force acts on the bead to move it away from the center of the beam, the
forces from the focused light will try to return the bead to the center. The magnitude
of this restoring force increases as the bead is displaced from the beam center, until
the outside force becomes great enough to pull the bead out of the beam altogether.
The beam thus acts like a spring, and the displacement indicates the magnitude of the
outside force, much like a spring scale, as found in a grocery store.

The construction of an optical trap device is quite intricate and requires very precise
engineering. The schematic diagram below shows the main elements:
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The apparatus is typically built around a conventional optical microscope, and the
trapping beam is generated by a laser and focused by the microscope objective. In
addition, there are lenses that are used to move, or steer, the beam. After passing
though the sample, which contains the glass bead, the beam is focused on a position
detecter, which can very precisely record the position of the beam as it is steered. In
addition, illumination from the top of the microscope allows the position of the glass
bead to be monitored from an image created in a camera below.

One application of optical traps has been to measure the forces exerted on DNA
molecules as their ends are pulled appart. This is conceptually very similar to the
protein stretching experiment described in the previous chapter. A highly schematic
representation of the experimental apparatus is shown below:

This figure is a screen capture from a very clever educational simulation that allows the
user to manipulate the virtual optical trap and follow the effects on the trapped bead
and DNA molecule2. In this kind of experiment, one end of the DNA is somehow fixed
to the microscope slide (as represented by the thumbtack), and the other is attached
to the transparent bead. The focused laser beam is then manipulated to capture the
bead and then move it about.

As the bead is moved away from the point at which the other DNA end is attached,
the forces acting on the bead increase, as shown by the red and green arrows in the
illustration below:

2https://phet.colorado.edu/en/simulation/legacy/stretching-dna
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The green arrow represents the force exerted by the DNA, and the red arrow represents
the net force generated by the optical trap as the bead is pulled away from the center
of the beam.

If the bead is pulled too far, the force exerted by the DNA will exceed the maximum
force of the optical trap, and the bead will break away. Rather than staying in one
position, or moving randomly by brownian motion, the bead will gradually (via a
biased random walk) move towards the fixed end of the DNA, as shown below:

As discussed in the context of the protein-stretching experiment, the force generated by
the DNA is entropic in nature. As the ends of the molecule are separated, the number of
possible conformations (microstates) is reduced and the free energy increases. Although
this argument offers a thermodynamic explanation for the work, and therefore force,
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required to stretch the molecule, it is worth giving some thought to exactly what causes
the force and net motion of the bead when it is released from the optical trap.

It might seem that some of the force could come from the stretching of covalent bonds
in the DNA molecules. However, the forces generated in this experiment are far smaller
than those required to stretch a bond by even a very small amount. The actual motions
of the DNA and the bead are due to thermal motion and the collisions with surrounding
water molecules, that is Brownian motion. Over time, a very large number of the
possible conformations of the DNA are sampled due to these motions, and all of them
have roughly equal energies. However, many more of the possible conformations are
ones where the two ends are relatively close together than far apart. This is very similar
to what we discussed in the context of two- and three-dimensional random walks, and
exactly the same mathematics can be used to describe the entropic stretching force.

The protein- and DNA-stretching experiments demonstrate that thermal motion can
generate macromolecular forces and net motion along a single direction. But, can these
motions be used in a cyclic motor?

III. A Brownian ratchet and Maxwell’s demon

To help understand the requirements for capturing thermal energy to produce me-
chanical energy, it is helpful to consider a hypothetical heat engine designed to capture
the thermal energy of gas molecules. One version of this engine, sometimes called a
“Brownian ratchet”, was described by Richard Feynman in his classic book of physics
lectures 3, as shown below:

Flea

1
2

In this device, there are two isolated compartments. In compartment 1, there is a
paddle wheel surrounded by gas molecules at temperature T1. The gas molecules ran-
domly collide with the paddles and can, in principle, cause periodic rotations in either
direction. But, the paddle is connected via a shaft to a ratchet and pawl mechanism in
compartment 2, which contains a gas at temperature T2. Because of the shape of the

3Figure from Feynman, R. P., Leighton, R. B. & Sands, M. (2013). The Feynman Lectures on Physics,
volume I, chapter 46. Basic Books, new millennial edition. http://www.feynmanlectures.caltech.edu/

I_46.html
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teeth on the ratchet wheel, the wheel can rotate in the clockwise direction, as viewed
in the drawing, but counter-clockwise rotation is blocked by the pawl, which is held
in position by a spring. It would appear that this mechanism can capture the ther-
mal energy of the gas molecules in compartment 1 to cause rotation in the clockwise
direction, perhaps even doing a little bit of work, such as lifting the flea in the drawing.

One statement of the second law of thermodynamics is that work can only be obtained
from thermal energy when there is a net flow of heat from a warm object to a cooler one.
In the Brownian ratchet, however, it is not so obvious why work could only be obtained
if T1 is greater than T2. Nor is it obvious how heat could flow from compartment 1
or 2. The key to both paradoxes lies in the ratchet mechanism itself. In order for the
wheel to move in the clockwise direction, the force generated by the collision of the
gas molecules on the paddles must be great enough to lift the pawl. However, if the
temperatures of the two sides of the apparatus are equal, then this amount of thermal
energy is also available to lift the pawl directly, which will allow the wheel to turn in
either direction.

The notion that the ratchet mechanism could allow rotation in either direction with
equal probability may still seem rather counterintuitive, since it certainly looks as
though it is much harder to lift the pawl to allow counter-clockwise rotation. And,
anyone who has used a wrench with a ratchet mechanism knows that a ratchet does,
indeed, allow rotation in one direction but not the other. This, however, is a case
in which our intuition based on the macroscopic world fails us when we move to the
microscopic scale, where motions are determined by random collisions. If we examine
the mechanism closely, it is apparent that the clockwise rotation involves a gradual
lifting of the pawl along the slope of the teeth. Since the collisions of gas molecules on
the paddle wheels cause only very small movements, moving the ratchet wheel to the
next stopping point requires a series of microsteps in the same direction. Otherwise,
the force of the pawl will move the wheel back to its starting point. Probabilistically,
this is equivalent to flipping a coin 10 times, say, and seeing 10 heads. This is unlikely,
but not impossible. On the other hand, for the pawl to be lifted by thermal energy all
the way up to allow a counter-clockwise step is equivalent to many unlikely events all
at once. This would be equivalent to flipping 10 coins all at once and, again, seeing 10
heads. This is unlikely, but no more so than 10 heads from 10 sequential coin flips.

The only way in which net work can be extracted by this apparatus is if the two parts,
the paddle wheel and the ratchet, are isolated and the temperature of the paddle
wheel chamber (T1) is greater than that of the ratchet chamber (T2). Under these
conditions, more thermal energy is available to move the wheel than to spontaneously
lift the ratchet pawl, thus favoring the forward direction. During this process, the
temperature of the paddle chamber will decrease, as the gas molecules lose kinetic
energy. In the ratchet chamber, the temperature will increase because each time that
the ratchet pawl falls back on the wheel heat is generated. Thus, there is a net flow of
heat associated with the work generated, as required by the second law. Eventually the
two chambers will reach the same temperature, and no further work can be extracted.

The one way in which work could be obtained with the ratchet and paddle at the
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same temperature is if some “intelligent” being could monitor the direction of the
small fluctuations and allow the wheel to go in one direction, but not the other. This
mythical creature is usually referred to as “Maxwell’s demon”.

The original version of the demon, proposed by George Clerk Maxwell in 1871, was
poised near an opening between two chambers containing a gas. By allowing only
the faster gas molecules to move in one direction, and the slower ones in the opposite
direction, the demon is able to take a system at thermal equilibrium and raise the
temperature of one side and lower that of the other. The key, however, is that the
demon must, herself, expend energy to create this temperature difference.

IV. A hypothetical ATPase ratchet

To consider what features might be important for an ATP-driven motor, we can design
an imaginary motor in which an ATP-hydrolyzing enzyme plays the role of Maxwell’s
demon. One possible scheme is drawn below:

A
D

P

ATP

Pi

ADP

Rotating wheel ATP-hydrolyzing enzyme

1

2

3

ATP

A
T
P

Note the following features of this device:

• The motor has two components:

◦ A rotating wheel with teeth like those on a ratchet wheel.

◦ An ATPase enzyme that undergoes conformational changes as it binds and
hydrolyzes ATP.

• The teeth on the rotating wheel have an asymmetric structure, so that they inter-
act with the ATPase differently depending on which direction the wheel moves.

• The ATPase has three different conformations, depending on whether ATP or
ADP, or neither is bound.

In one forward cycle of the motor, the following steps take place:
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1. The enzyme binds ATP and changes conformation; The wheel rotates clockwise.

2. The ATP is hydrolyzed, phosphate is released and the enzyme changes conforma-
tion; The wheel rotates clockwise.

3. ADP is released and the enzyme returns to its starting conformation; The wheel
rotates clockwise.

At the end of these steps, the motor is in its original state, except that the wheel has
rotated by one full step from its starting position. The cycle can then begin again with
the binding of another ATP molecule.

Each of the steps outline above actually includes three kinds of events:

• Nucleotide binding or release, or catalysis.

• A conformational change.

• Rotation of the wheel.

The three events could, in principle, occur in a specific order or in a concerted process.
For instance, the first step might begin with the Brownian motion that brings a tooth
of the wheel into contact with the ATPase, which then causes a change in the enzyme’s
conformation, which then favors ATP binding. Or, the process could begin with ATP
binding, followed by the conformational change and rotation. Dissecting the details of
such processes is an important aspect of the study of real molecular motors.

What is most important about this scheme is that there is an order to the confor-
mational changes, and this order is determined by the order of steps in the chemical
reaction. If the concentrations of ADP and Pi are much higher than that of ATP,
then the reverse chemical reaction will be favored thermodynamically. Under these
conditions, the open enzyme is more likely to bind ADP than ATP, leading to rotation
in the counter-clockwise direction, as illustrated below:

A
D

P

ATP

Pi

ADP

A
T
P

1

2

3

ADP
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Each step in the counter-clockwise cycle is the exact reverse of the corresponding step
in the clockwise cycle, including nucleotide binding or release, catalysis, conformational
change and rotation.

Another critical aspect of the motor is that the catalytic cycle and the rotation are
tightly coupled, so that the wheel cannot rotate without the enzyme catalyzing the
reaction in one direction of the other. Conversely, the conformational change of the
enzyme and rotation of the wheel cannot occur in the absence of the catalytic cycle.
It should then be possible for mechanical energy to be used to make ATP from ADP
and Pi. This is what, indeed, happens in the ATP synthase that we will discuss later.
In this case, rotation of one portion of the enzyme is driven by the movement of H+

ions down a concentration gradient, and this mechanical motion is coupled to ATP
synthesis, by a mechanism similar in principle to that suggested above.

7.2 Adenylate kinase: Coupling a chemical reaction to

conformational change

Before discussing some real molecular motors, we will consider an enzyme that illustrates how
a cyclical structural change can be coupled to a chemical reaction. The reaction catalyzed by
adenylate kinase is the transfer of a terminal phosphate group from one adenosyl nucleotide
to another:

ATP + AMP −−⇀↽−− ADP + ADP

This reaction has an equilibrium constant close to 1. The major physiological role of adeny-
late kinase is in muscle tissue, where the reverse of the reaction drawn above regenerates
a reserve of ATP, from ADP, when ATP levels are depleted. The structure of the enzyme
has a cleft in which the substrates bind, and the protein undergoes large structural changes
upon substrate binding, as illustrated in the drawings shown below:

Open 

(no substrate)

AMP AMP + AMPPNP

2 ADP
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These drawings are based on crystal structures of adenylate kinase with no substrate bound
(PDB entry 4AKE), AMP bound (PDB entry 2AK3) and AMP and a non-hydrolyzable ATP
analog (AMPPNP) bound (PDB entry 1ANK). The non-hydrolyzable substrate was used to
trap the enzyme in the conformation presumed to exist when it is about to carry out the
catalytic reaction.

As illustrated above, the cleft closes tightly around the substrates, and it is believed that
the major role of this structural change is to exclude water, which otherwise could act to
hydrolyze the ATP. Once the chemical reaction has taken place, in either direction, the cleft
must open up again to allow release of the products. One could imagine how this motion
might, if connected to other structures, be used to carry out mechanical work, and it turns
out that the structural motif found in adenylate kinase is present in several ATP-driven
molecular motors, including myosin, kinesin and ATP synthase.

Consideration of adenylate kinase also raises a bit of a paradox. Suppose that ATP,
ADP and AMP were all present, along with the enzyme, and the reaction had reached
equilibrium. Under these conditions, the free energy change for the reaction is zero, and
no work should be available. However, the enzyme will continue to catalyze the reaction in
both directions, undergoing a continuous opening and closing process. It seems as though
it is generating work without consuming energy. This would be equivalent to the Brownian
ratchet performing work when the two compartments are at the same temperature, which
we have argued violates the second law of thermodynamics. However, as soon as we try to
couple the enzyme to some other structure, in the hopes of producing mechanical work, the
direction of the reaction will be biased in one direction or the other. Only if the reactant
and product concentrations favor the opposite reaction will we be able to produce motion
against the force acting on the enzyme.

7.3 Myosin and Muscle Contraction

The molecular motors with which we have the most readily visible experience are found in
our muscle cells. The primary components of these motors are two proteins, myosin and
actin, which interact with one another and link ATP hydrolysis to a relative motion of one
with respect to the other. Before considering the molecular details of these motors, it is
useful to describe the larger structures in which they are found.

I. The structure of muscle fibers

The force-generating cells of muscles are called myocytes and extend the full length of
the muscle. During development, these cells are generated by the fusion of multiple
precursor cells, myoblasts, and the nuclei of the individual precursors are retained in
the myocytes, as illustrated in the figures below4:

4Figure from Alberts B, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science;
2002. https://www.ncbi.nlm.nih.gov/books/NBK26888/#A3065
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As shown in the diagram in Panel A, the nuclei are located at the periphery of the
cell, and the central part of the cell is filled with roughly cylindrical structures, which
extend along the full length of the cell (and the muscle), called myofibrils. Panel B
shows a fluorescent micrograph of muscle tissue stained with a blue-fluorescent dye
that binds to DNA and highlights the nuclei.

The figure below shows several parallel myofibrils as visualized by electron microscopy
at relatively low resolution5:

The sample used for this micrograph was stained with a heavy-metal compound that
reacts with protein molecules, so that the darker regions represent the most protein-
dense regions. The proteins are organized into repeating bands of high and low density.
These repeating structures are called sarcomeres and have a length of about 2µm in
this sample.

The protein composition of myofibrils was extensively studied in the 1930s and 40s,
particularly by Albert Szent-Györgyi and his colleagues at the the University of Szeged,
Hungary. These studies identified the two major protein components of muscle cells:

• Actin, with a molecular mass of 42000Da.

• Myosin, a much larger protein, with a molecular mass of about 500000Da.

5Figure from Alberts B, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science;
2002. https://www.ncbi.nlm.nih.gov/books/NBK26888/#A3065
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Actin can be isolated as a monomer, but readily assembles into long, thin fibers.
Myosin can also be isolated in a soluble form, but assembles in to filaments that are
much thicker than those formed by actin. Myosin was also discovered to have an ATP
hydrolyzing activity that is stimulated by the presence of actin filaments.

Further studies, in the 1950s, established that the darkly staining regions of the sar-
comeres contained predominantly the thick filaments formed by myosin, and that the
lightly staining regions contained actin thin filaments. The figure below shows, in an
electron micrograph and a diagram, the organization of the sarcomere and the locations
of the thick and thin filaments6:

A better sense of how the filaments are arranged in three dimensions can be gained
from a cross-sectional view of a myofibril, as shown below for an insect flight muscle:

The myofibrils of insect flight muscles are more highly organized than most, with the
thick and thin fibers in overlapping hexagonal arrays, but the same interdigitation of
the two types of fibers is found in all muscle cells.

The year 1954 brought a major advance in the understanding of muscle contraction,
based on studies by two groups, who published their findings in side-by-side articles7

6Both figures on this page are from Alberts B, et al. Molecular Biology of the Cell. 4th edition. New
York: Garland Science; 2002. https://www.ncbi.nlm.nih.gov/books/NBK26888/#A3065

7Huxley, A. & Niedergerke, R. (1954). Structural changes in muscle during contraction: Interference
microscopy of living muscle fibres. Nature, 173, 971–973. http://dx.doi.org/10.1038/173971a0
and
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Both groups used special forms of light microscopy to enhance the contrast of images
of myofibrils, allowing the alternating patterns of high and low protein density to be
visualized as the fibrils underwent contraction. A set of images from the paper by
Huxley and Hanson is shown below:

As in the electron micrographs shown earlier, the dark bands in these images represent
the protein rich regions containing the myosin thick filaments, and the light bands con-
tain primarily actin. The sequence of images, labeled 1 through 4, represent the same
four sarcomeres during contraction induced by the addition of ATP. The important
observation, reported by both groups, was that the light bands became progressively
shorter during contraction, while the dark bands remained largely unchanged. Impor-
tantly, there was no thickening of the fibrils during contraction, as might have been
expected from the familiar bulging of muscles when they contract.

From these observations, both pairs of authors proposed what came to be known as
the sliding-filament model of contraction, which is diagrammed below8:

Huxley, H. & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch
and their structural interpretation. Nature, 173, 973–976. http://dx.doi.org/10.1038/173973a0
(The two Huxleys are unrelated, but both made major contributions to physiology in the 20th century.)

8Figure from Alberts B, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science;
2002. https://www.ncbi.nlm.nih.gov/books/NBK26888/#A3065
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The major feature of the model is that contraction is based on the sliding of the thin
filaments past the thick filaments, thus accounting for the shortening of the light regions
in the micrographs. In addition, the actin filaments are attached the densely staining
structures, called Z disks, that separate the sarcomeres, thus linking the sarcomeres
together.

Following the 1954 studies, the major question to be resolved was what generates the
force that moves the filaments past each other. Again, a major source of insight was
electron microscopy. In the figure below9 , the left-hand panel shows myofibrils stained
in a way so that the proteins appear light against a dark background (negative stain).

A schematic interpretation of the electron micrograph is shown on the right. A promi-
nent feature visible in the micrograph is the array of globular protrusions located
between the thick and thin filaments. If you look closely, you will see that these pro-
trusions are angled and that they point in opposite directions on the two sides of the
region identified as the M line.

Based on micrographs like the one above, Hugh Huxley proposed that these cross-
bridges were the location of ATP hydrolysis and force generation. This interpretation
was supported by electron micrographs of isolated thick filaments, as shown below10,
as well as biochemical experiments.

9This figure and the one at the top of the following page are from Aberts, B., Bray, D., Lewis, J., Raff,
M., Roberts, K. & Watson, J. D. (1994). Molecular Biology of the Cell . Garland Publishing, 3rd edition.

10Figure from Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman;
2002. https://www.ncbi.nlm.nih.gov/books/NBK22418/
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The micrograph of the isolated filament shows that the cross-bridges are restricted to
the outer thirds of the filament and that the middle third is relatively thin. The car-
toon representation below the micrograph reflects the structures of individual myosin
molecules, which are shown in more detail in the next figure.

Each myosin molecule contains two very large and identical polypeptide chains (called
the heavy chains and composed of about 2,000 amino acid residues each) and four
smaller polypeptides, called light chains. The C-terminal portions of the heavy chains
form α-helices, and the helices of the two chains wrap around one another to form a
structure known as a coiled coil. The coiled-coil regions of individual myosin molecules
assemble further to form the thick filaments. The N-terminal regions of the heavy
chains fold into a globular structure. The coiled-coil tails of the molecules are linked
to the globular heads by a hinge region that includes two light chains bound to each
heavy chain. The ATPase activity is located in the globular heads.

The thin filaments, composed of actin, have a structure very different from that of the
thick filaments. Actin folds into single globular domain and assembles into filaments
as illustrated below11

11Figure from Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman;
2002. https://www.ncbi.nlm.nih.gov/books/NBK22418/
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Interestingly, the actin monomers contain a nucleotide binding site, but do not posess
catalytic activity. Nucleotide binding helps to control the polymerization of actin, but
does not appear to play any role in force generation.

II. The ATPase cross-bridge cycle

In addition to structural studies, our understanding of the mechanism of muscle con-
traction (and other molecular motors) comes from extensive biochemical studies, in-
cluding kinetic experiments in which the rates of the catalytic reaction have been
studied using a range of substrate concentrations and in the presence or absence of
actin. Work by Edward Taylor and his colleagues12, in particular, along with subse-
quent work, has led the model diagrammed below:

ATP

ADP+PADP

ATP

ADP

Pi

1

2

3

4

12Lymn, R. W. & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry , 10, 4617–4624.
http://dx.doi.org/10.1021/bi00801a004
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In this figure, one of the actin monomers is left uncolored to highlight the movement of
the filament with respect to the myosin during the cycle, which consists of the following
steps:

1. Binding of ATP to the enzyme, which is initially bound to the actin filament.
Binding of ATP is coupled to the release of the actin by myosin.

2. Hydrolysis of ATP, which is coupled to a conformational change in the myosin
and a change in the position of the myosin head with respect to the thin filament
and the rest of the thick filament.

3. Release of the inorganic phosphate, which is coupled to rebinding of the myosin
head to the actin filament.

4. Release of ADP, which is coupled to a conformational change in the myosin, which
leads to a shift in the relative positions of the two filaments.

The last step described above is called the powerstroke and is the point in the cycle in
which motion and force are generated. Note also the critical role of the conformational
change associated with the ATP hydrolysis step. Although no force is generated in
this step, the conformational change positions the myosin head so that when it rebinds
it is most likely to do so at a position further along the thin filament. As in the
hypothetical ATPase ratchet discussed on pages 202–204, the catalytic cycle is coupled
to both conformational changes of the ATPase and binding and release of the second
component of the motor, in this case the actin filament. The actual motions produced
by myosin and actin arise from thermal Brownian motions of the molecules. But, the
motion is biased by the conformational change which increases the probability that a
head will rebind further along the filament.

Contraction of a myofibril requires the action of millions of myosin heads, and one
could imagine that there is some mechanism to coordinate them all. However, the
myosin heads all act independently. This independence requires a limited degree of
elasticity in the filaments, which comes primarily from the connections between the
myosin heads and the core of the thick filament. The elasticity allows the fibril to
continue contracting as individual myosin heads move through their catalytic cycles
independently. Each myosin head only spends about 5% of the time bound to actin.

The action of individual myosin molecules can be studied using the optical trapping
method described on pages 196–198. One such experiment is illustrated below13:

13This figure is from Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H
Freeman; 2002. https://www.ncbi.nlm.nih.gov/books/NBK22418/ and is adapted from:
Finer, J. T., Simmons, R. M. & Spudich, J. A. (1994). Single myosin molecule mechanics: piconewton forces
and nanometre steps. Nature, 368, 113–119. http://dx.doi.org/10.1038/368113a0
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In this experiment glass beads were attached to both ends of a thin filament and each
was held in an optical trap. A fragment of myosin, containing the head domains and
enough of the stalks to hold the two heads together, was attached to the surface of
another glass bead, so as to hold it in place above the surface of the glass slide. The
optical traps were then steered to move the actin filament into the proximity of the
bead with myosin heads and the actin and myosin bound to each other in the absence
of ADP or ATP. When ATP was added, the myosin underwent its catalytic cycle and
exerted force on the actin filaments. During this process, the displacement of the glass
beads attached to the actin was monitored, to generate plots such as shown in the
right-hand side of the figure, which represents a single cycle.

From analysis of the distance versus time plots, the investigators estimated that the
average step size was about 10 nm and the average force was 3–4 pN. (1 piconewton =
10−12N). From these values, the work done by the motor is:

w =

∫
Fdx ≈ Fave × distance

= 3 pN× 10 nm = 30 pN · nm
= 3× 10−12N× 10−8m = 3× 10−20N ·m
= 3× 10−20 J

It is instructive to compare this amount of work with the standard free energy change
for hydrolysis of a single molecule of ATP:

∆G◦ = −30× 103 J/mol÷ 6.02× 1023molecules/mol

= 5× 10−20 J/molecule

This would appear to be remarkably consistent with the work generated by the myosin,
which is expected to be at least somewhat less than the theoretical energy available from
ATP hydrolysis. It is important to note, however, that ∆G◦ represents the free energy
change when the reactant and products are all present at 1M concentrations. In the
single-molecule experiment, only ATP was added to the reactions, at concentrations of
1µM to 2mM. From this information, it is difficult to estimate the reaction quotient,
Q, or the actual free energy change, ∆G, under the experimental conditions. But,
forces on the order of a few piconewtons and distances of a few nanometers appear to
be common feature of molecular motors, leading to the use of the pN · nm as a common
unit of work and energy in the field of molecular motors.
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III. Atomic resolution structures of myosin and actin

In the early 1990s, a high-resolution structure of a myosin head and stalk region was
determined by x-ray crystallography, providing a much more detailed view of the mech-
anism of muscle contraction14. A ribbon diagram of this structure is shown below:

As can be seen, the structure confirms the overall structure deduced earlier from elec-
tron microscopy. At about the same time that this structure was determined, the
structure of actin monomers was also determined by x-ray crystallography and was
used, in conjunction with EM images, to construct models of the thin filament, as
shown in the figure on page 211. These structures were used to construct models of
the actin-myosin complexes in different states of the catalytic cycle. The figures below
represent models of the complex before and after the powerstroke15.

Pre-powerstroke

(ADP bound)

Post-powerstroke

(empty binding site)

As can be seen in the figure, the position of the myosin head remains essentially fixed
relative to the actin filament during the powerstroke, but the orientation of the head
with respect to the myosin stalk changes dramatically. If the other end of the stalk

14Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M.,
Winkelmann, D. A., Wesenberg, G. & Holden, H. M. (1993). Three-dimensional structure of myosin
subfragment-1: a molecular motor. Science, 261, 50–58. http://dx.doi.org/10.1126/science.8316857

15Figure from Geeves, M. A. & Holmes, K. C. (1999). Structural mechanism of muscle contraction. Ann.
Rev. Biochem., 68, 687–728. http://dx.doi.org/10.1146/annurev.biochem.68.1.687
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were fixed, as in an intact thick filament, the conformational change would lead to a
motion of the thin filament with respect to the thick one.

Earlier, we considered the conformational changes of adenylate kinase as an example of
how a catalytic cycle can be coupled to molecular movement. In fact, the relationship
between adenylate kinase and myosin is more than just a formal one. The two proteins
appear to be evolutionarily related and show significant conservation, particularly in
the nucleotide binding site. The ribbon diagrams below highlight this relationship:

Pre-powerstroke

Post-powerstroke

Myosin Adenylate Kinase

In all four drawings, the nucleotide binding region is colored magenta, and the molecules
are oriented to emphasize the similarity of the structures. In both proteins, the confor-
mational changes are centered at and near the binding sites and are propagated over
long distances, though the nature of the propagated motions are different.

The similarity between the binding sites is further illustrated in the close-up drawings
below:

Myosin Adenylate Kinase
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The drawing on the left represents myosin in the pre-powerstroke state, with ADP
bound, and the one on the right is of adenylate kinase with AMP and an ATP analog
bound. The similarity of these structures, and the ubiquitous occurrence of adenylate
kinase (in eukaryotes, bacteria and archaea), indicates that the structural motif at the
core of myosin is ancient and has evolved to carry out very different functions.

IV. Non-muscle myosins

Although the form of myosin found in skeletal muscle cells (called type II) is probably
the best known and best studied, it is only one of a large family of myosins, which
display a wide range of structural organization and carry out a variety functions. The
figure below diagrams the sequence relationships among the heavy chains of the major
myosin types16:

In all of these myosin types, the motor domain (in the N-terminal portion of the heavy
chain) is highly conserved, but there is great variety in the C-terminal regions. Only
type II myosin possesses the extended coiled-coil structure that leads to assembly into
muscle thick filaments. In most, but not all, of the others, the C-terminal region leads
to dimerization via a coiled-coil, but the coiled-coil regions are shorter than in type II
myosin, and other domains are present in the other types.

One of the better studied of the non-muscle myosins is the type V form. This myosin
functions to move intracellular cargoes, such as vesicles along actin filaments, as illus-
trated in the diagram below17

16Figure from Alberts B, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science;
2002. https://www.ncbi.nlm.nih.gov/books/NBK26888/#A3065

17Figure adapted from Soldati, T. & Schliwa, M. (2006). Powering membrane traffic in endocytosis and
recycling. Nature Rev. Mol. Cell. Biol., 7, 897–908. http://dx.doi.org/10.1038/nrm2060
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Mysoin V

Actin filament

Vesicle

As shown in the diagram, myosin V interacts with the actin filament via its two head
domains, just as myosin II does in muscle cells, and the two myosin heavy chains are
dimerized via a coiled-coil. However, the C-terminal region of the heavy chain has a
specialized function to interact with proteins linked to the transport vesicle.

As discussed earlier, the heads of myosin II are bound to the thin filaments only about
5% of the time during muscle contraction. This is described as a low duty cycle and is
a requirement to minimize the potential interference among the thousands of myosin
molecules in a sarcomere. For a myosin molecule engaged in vesicle transport, however,
a light duty cycle would cause the vesicle to fall off of the actin filament. In this context,
it is essential that one or both of the myosin heads be bound to the actin almost all of
the time, resulting in a high duty cycle.

A model for the myosin V mechanism for moving along actin filaments is diagrammes=d
below18:

Each of the myosin heads undergoes the ATPase catalytic cycle, which is coupled to
conformational changes and binding to and release from the actin filament. In this
representation, the stalk of the myosin head in the pre-powerstroke state (with ADP
bound) is bent, whereas the stalk is straight after the powerstroke. The powerstroke
leads to the movement of the other myosin head along the filament in a hand-over-hand
fashion. As in the muscle cross-bridge cycle, ATP binding is required for release of the
myosin heads after the powerstroke.

In contrast to myosin II, the catalytic cycles of the two myosin V heads must be tightly
coordinated in order to ensure that the complex does not fall of the filament and that

18Trybus, K. M. (2008). Myosin V from head to tail. Cell. Mol. Life Sci., 65, 1378–1389. https:

//dx.doi.org/10.1007%2Fs00018-008-7507-6
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the motion proceeds directionally. In particular, the powerstroke of the leading head is
coordinated with the ATP binding, filament release and forward motion of the trailing
head. The detailed molecular mechanism of this coordination remains to be elucidated.
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