Physical Principles in Biology Biology 3550 Spring 2025

Lecture 18:

Thermal Motion of Molecules

Wednesday, 19 February 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

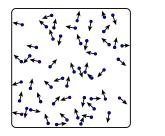
Announcements

Quiz 3:

- Friday, 21 February
- 25 min, second half of class.
- A ruler might come in handy!
- Problem set 3:
 - Due 11:59 PM, Wednesday, 26 February.
 - Download problems from Canvas.
 - Upload work to Gradescope and, optionally, Canvas (spreadsheet)!
 - Work must be typed!
- Discussion/Problem-solving Session:
 - Wednesday, 3:00 P.M. CSC 13
- Instructor Office hours:
 - Wednesdays, 11:00 AM ASB 306
 - Other times by appointment

Kinetic Energy

A object of mass, m, moving with velocity, v, in the x-direction has kinetic energy in that direction of:


$$E_{k,x} = m v_x^2/2$$

- What does this mean?
 - The energy required to accelerate the mass, m, from rest to velocity, v_x.
 - Also the energy released during the deceleration of the mass from velocity, v_x, to rest.
 - Kinetic energy does not depend on the rate of acceleration or deceleration, only the final velocity.

Kinetic Energy of Molecules

- Temperature is the measure of kinetic energy of molecules.
- How do we measure temperature?
- Pressure of a gas is due to the collision of molecules against container walls.

PV = nRT

P = pressure, V = volume, n = number of moles, T = temperature, R = gas constant.

$$PV = nRT$$

What are the units of the gas constant?

- A) pascal $\cdot L \cdot K^{-1} mol^{-1}$
- $\textbf{B)} \ kg \cdot m^2 s^{-2} K^{-1} mol^{-1}$
- C) $m^3 bar \cdot K^{-1} mol^{-1}$
- D) $JK^{-1}mol^{-1}$
- **E)** L \cdot atm \cdot K⁻¹mol⁻¹

All of the above!

Units of the Gas Constant

From the ideal gas law: $R = \frac{PV}{nT}$

In SI basic units:

Pressure, force per unit area: kg \cdot m \cdot s^{-2} \div m^2 = kg \cdot m^{-1} s^{-2} = Pa Volume: m³

Gas constant:
$$\frac{\mathsf{kg} \cdot \mathsf{m}^{-1} \cdot \mathsf{s}^{-2} \times \mathsf{m}^{3}}{\mathsf{K} \cdot \mathsf{mol}} = \mathsf{kg} \cdot \mathsf{m}^{2}\mathsf{s}^{-2}\mathsf{K}^{-1}\mathsf{mol}^{-1}$$

■ Joule (unit of energy) = Nm = kg \cdot m²s⁻²

The gas constant expressed in energy units:

 $R \approx 8.314 \,\mathrm{JK^{-1}mol^{-1}} \approx 1.987 \,\mathrm{cal} \cdot \mathrm{K^{-1}mol^{-1}}$

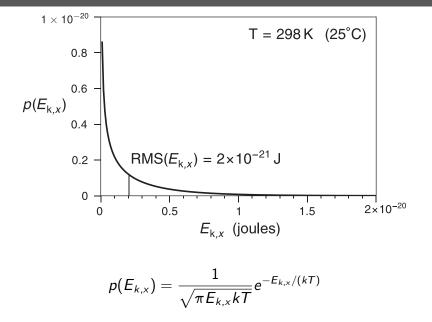
The kinetic energy of a molecule at temperature T is proportional to RT.

Kinetic Energy of Molecules

■ The Boltzmann constant, *k*, the "gas constant per molecule":

$$k = R/N_{A} = 8.314 \text{ JK}^{-1} \text{mol}^{-1} \div 6.02 \times 10^{23} \text{ molecule/mol}$$

= $1.38 \times 10^{-23} \text{ JK}^{-1}$


- Molecules at a given temperature do not have unique velocities or kinetic energies.
- Molecules have a broad distribution of energies, with RMS average translational kinetic energy in each direction (x, y or z):

 $\operatorname{RMS}(E_{k,x}) = kT/2$

Translational kinetic energy does *not* depend on mass or structure.

In context of molecular motion, " $E_{k,x}$ " will imply RMS value.

Distribution of Molecular Kinetic Energies

How fast does a small molecule move at room temperature (between collisions)? A) 10⁻⁴ m/s **B)** 10⁻² m/s **C)** 1 m/s **D)** 10² m/s **E)** 10⁴ m/s

All answers count for now.

Velocities of Molecules

- Kinetic energy of a molecule, in *x*-direction: $RMS(E_{k,x}) = kT/2$
- Kinetic energy of any object: $E_{k,x} = mv_x^2/2$

Solving for *v*:

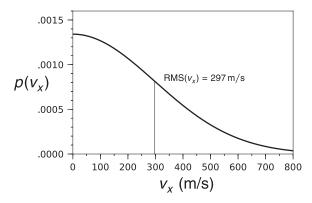
$$mv_x^2/2 = kT/2$$
$$v_x^2 = kT/m$$
$$v_x = \sqrt{kT/m}$$

(also an RMS value)

- Velocity increases with \sqrt{T} and decreases with \sqrt{m} .
- Energy does not depend on molecular mass, but velocity does.

Velocity of an N₂ Molecule at Room Temperature

Mass


$$m = 28 \text{ g/mol} \div 6.02 \times 10^{23} \text{ molecules/mol}$$

= $4.65 \times 10^{-23} \text{ g} = 4.65 \times 10^{-26} \text{ kg}$

Temperature =
$$25^{\circ}C$$
 = 298 K

Velocity:

$$RMS(v_x) = \sqrt{kT/m}$$

= $\sqrt{1.38 \times 10^{-23} \text{ kg} \cdot \text{m}^2 \text{s}^{-2} \text{K}^{-1} \times 298 \text{ K}/4.65 \times 10^{-26} \text{ kg}}$
 $\approx 300 \text{ m/s} \quad (1,000 \text{ km/hr})$

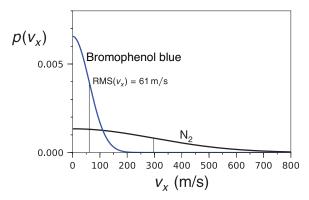
Distribution of N₂ Velocities in a Gas at 298 K

The Maxwell-Boltzmann distribution

$$p(v_{\rm x}) = \sqrt{\frac{m}{2\pi kT}} e^{-mv_{\rm x}^2/(2kT)}$$

(assumes ideal gas behavior)

Diffusion of Bromophenol Blue Revisited


From diffusion experiment: $D = 2 \times 10^{-10} \text{ m}^2/\text{s}$

• Definition of the diffusion coefficient: $D = \frac{\delta_x^2}{2\tau}$.

- δ_x/ au = velocity, which we can calculate now!
 - $v_x = \sqrt{kT/m}$
 - Molar mass = 670 g/mol
 Molecular mass = 1.11×10⁻²⁴ kg

$$v_x = \sqrt{1.38 \times 10^{-23} \,\mathrm{kg} \cdot \mathrm{m}^2 \mathrm{s}^{-2} \mathrm{K}^{-1} \times 298 \,\mathrm{K}/1.1 \times 10^{-24} \,\mathrm{kg}}$$

= 61 m/s

Distribution of Velocities at 298 K

- Average (RMS) kinetic energies of molecules are the same.
- Based on ideal gas behavior.
- Distribution is similar in liquids.

Diffusion of Bromophenol Blue Revisited

$$D = \delta_x^2/(2\tau) = 2 \times 10^{-10} \, \text{m}^2/\text{s}$$

Express *D* in terms of velocity:

 $D = v_x \delta_x/2$

•
$$v_x = \delta_x/ au = 61\,\mathrm{m/s}$$

Solve for δ_x

$$\delta_x = 2D/v_x = 2 \times 2 \times 10^{-10} \text{ m}^2/\text{s} \div 61 \text{ m/s}$$

= $6.5 \times 10^{-12} \text{ m}$

Diffusion of Bromophenol Blue Revisited

From the previous slide

$$\delta_{\mathrm{x}} = v_{\mathrm{x}} \cdot au = 6.5 imes 10^{-12} \,\mathrm{m}$$

Solve for τ

$$egin{aligned} &v_{
m x} = \delta_{
m x}/ au \ & au = \delta_{
m x}/v_{
m x} = 6.5 imes 10^{-12}\,{
m m} \div 61\,{
m m/s} \ &= 10^{-13}\,{
m s} = 0.1\,{
m ps} \end{aligned}$$

VERY short distances and times!

A "typical" protein molecule in water: $D=1 imes 10^{-11}\,\mathrm{m^2/s}$ and $v_x=6\,\mathrm{m/s}$

What is the RMS step length, δ_{x} , as the molecule diffuses via a random walk?

A)
$$1 \times 10^{-13} \text{ m}$$

B) $3 \times 10^{-13} \text{ m}$
C) $1 \times 10^{-12} \text{ m}$
D) $3 \times 10^{-12} \text{ m}$
E) $1 \times 10^{-11} \text{ m}$

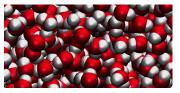
$$\delta_x = rac{2D}{v_x} = rac{2 imes 1 imes 10^{-11} \, \mathrm{m}^2/\mathrm{s}}{6 \, \mathrm{m/s}} = 3.3 imes 10^{-12} \, \mathrm{m}$$

A "typical" protein molecule in water: $D = 1 \times 10^{-11} \text{ m}^2/\text{s}$ and $v_x = 6 \text{ m/s}$.

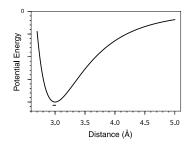
What is the RMS average time between direction changes, τ , as the molecule diffuses via a random walk?

A)
$$5 \times 10^{-14}$$
 s
B) 5×10^{-13} s
C) 5×10^{-12} s
D) 5×10^{-11} s
E) 5×10^{-10} m

$$au = rac{\delta_x}{v_x} = rac{3.3 imes 10^{-12} \, \mathrm{m}}{6 \, \mathrm{m/s}} = 5.5 imes 10^{-13} \, \mathrm{s}$$


A Small Molecule Versus a Big One

	Bromophenol blue	Protein
Molar mass	670 g/mol	60,000 g/mol
Velocity	60 m/s	6 m/s
D	$2 imes 10^{-10}\mathrm{m^2/s}$	$1 imes 10^{-11}\mathrm{m^2/s}$
δ_{\times}	$6 \times 10^{-12} \mathrm{m}$	$3 \times 10^{-12} \mathrm{m}$
τ	$1 \times 10^{-13} s$	$5 \times 10^{-13} { m s}$


- How do we think about the numbers on a molecular scale?
- Have to think about liquids.

The Nature of Liquids

- Molecules are very densely packed
- Motions of molecules are limited by the "energy barriers" surrounding them.
- Other molecules in a solution are similarly constrained.
- Molecules move only very short distances before they change direction.
- The larger the molecule is, the less freedom it has and the more slowly it moves.

From a simulation of liquid water.

