Physical Principles in Biology Biology 3550 Spring 2025

Lecture 27

Enthalpy, the Gibbs Free Energy and Equilibrium Constants

Friday, 21 March 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

Quiz 4:

- Friday, 28 March
- 25 min, second half of class
- Will cover material on thermodynamics
- Problem set 4
 - Due Friday, 28 March, 11:59 PM

A New State Function: Enthalpy (H)

Enthalpy, *H*, is closely related to the internal energy, *E*.

H = E + PV

The product PV has the units of energy or work.

For a process at constant pressure:

 $\Delta H = \Delta E + P \Delta V$

 $P\Delta V$ is work done by the system due to a change in volume at constant pressure.

Two new quantities:

- $w_p = -P\Delta V$ = work done on the system in constant pressure process
- q_p = heat absorbed by system in constant pressure process

From the first law:

$$\begin{split} \Delta E &= q_{\rm p} + w_{\rm p} = q_{\rm p} - P \Delta V \\ P \Delta V &= q_{\rm p} - \Delta E \\ \Delta H &= \Delta E + P \Delta V = \Delta E + (q_{\rm p} - \Delta E) = q_{\rm p} \end{split}$$

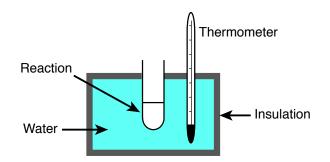
A New State Function: Enthalpy (H)

Two consistent definitions for ΔH at constant pressure:

• ΔE plus work done by the system due to volume change

 $\Delta H = \Delta E + P \Delta V$

If there is no volume change, then $P\Delta V = 0$, and $\Delta H = \Delta E$.


The heat absorbed during the constant pressure process:

$$\Delta H = q_{p}$$

Chemical and biochemical reactions are often studied under conditions of constant (or nearly constant) pressure, and ΔV is usually very small.

 ΔH can be experimentally measured.

Measuring ΔH with a Calorimeter

- The water bath represents the "surroundings".
- If $\Delta H < 0$, heat flows from the reaction vessel and warms the water.
- If ∆H > 0, heat flows into the reaction vessel, and water temperature decreases.

$$\Delta H = -\frac{\Delta T_{\text{water}}}{\text{mass of water (g)}} \qquad \text{(in calories)}$$

The Gibbs Free Energy, Another State Function

 $\blacksquare \ G = H - TS_{\rm sys}$

For a process at constant temperature:

$$\Delta G = \Delta H - T \Delta S_{\rm sys}$$

Since $\Delta S_{surr} = -q/T$, at constant pressure:

$$\begin{split} \Delta S_{\text{surr}} &= -q_{\text{p}}/T \\ T\Delta S_{\text{surr}} &= -q_{\text{p}} = -\Delta H \\ \Delta H &= -T\Delta S_{\text{surr}} \\ \Delta G &= -T\Delta S_{\text{surr}} - T\Delta S_{\text{sys}} = -T(\Delta S_{\text{surr}} + \Delta S_{\text{sys}}) \\ \Delta G &= -T\Delta S_{\text{univ}} \end{split}$$

• Or, $\Delta S_{
m univ} = -\Delta G/T$

The Gibbs Free Energy is Used to Apply the Second Law

From the previous slide:

$$\Delta S_{
m univ} = -\Delta G/T$$

- If $\Delta G < 0$
 - $\Delta S_{univ} > 0$, and the process will be spontaneous.
- If $\Delta G > 0$
 - $\Delta S_{univ} < 0$, and the <u>reverse</u> process will be spontaneous.
- If $\Delta G = 0$
 - $\Delta S_{univ} = 0$, and the process is reversible. (Can be pushed in either direction.)
 - $\Delta G = 0$ defines a system at equilibrium.
- All based on state functions of the system! (at constant pressure)

Don't have to worry (explicitly) about the surroundings.

What About Free Energy as Energy Available to do Work?

The change in Helmholtz free energy, as previously defined:

$$\Delta F = w_{\rm rev}$$

 $-w_{rev}$ is the maximum work available from a spontaneous process.

From the first law:

$$\Delta E = q_{rev} + w_{rev}$$

 $w_{rev} = \Delta E - q_{rev}$
 $\Delta F = \Delta E - q_{rev}$

For a constant-temperature process:

$$\Delta S_{\text{sys}} = \frac{q_{\text{rev}}}{T}$$
$$q_{\text{rev}} = T\Delta S_{\text{sys}}$$
$$\Delta F = \Delta E - T\Delta S_{\text{sys}}$$

The Helmholtz and Gibbs Free Energy Functions

For a constant temperature process:

 $\Delta F = \Delta E - T \Delta S_{sys}$

The standard definition of the Helmholz free energy:

$$F = E - TS_{sys}$$

Compare to:

$$\Delta G = \Delta H - T \Delta S_{\rm sys}$$

Since $\Delta H = \Delta E - w_p$:

$$\Delta G = \Delta F - w_{\rm p}$$

 $-\Delta G$ is the maximum work available from a process $(-\Delta F)$ minus the work due to volume change at constant pressure.

The Helmholtz Free Energy

From previous slide:

 $\Delta G = \Delta F - w_{\rm p}$

- If volume change is small, and w_p can be ignored:
 - $\Delta G \approx \Delta F$
 - If ΔG < 0: Process is favorable, and the maximum work available from the process is: −ΔF = −ΔG − w_p ≈ −ΔG
 - If ΔG > 0: Process is unfavorable, and the minimum work required to drive the process is: ΔF = ΔG + w_p ≈ ΔG
- Commonly made assumptions for chemical reactions in dilute solutions:
 - $P\Delta V = -w_{\rm p} \approx 0$
 - $\Delta H \approx \Delta E$: ΔH Represents change in internal energy.
 - $\Delta G \approx \Delta F$: $-\Delta G$ Represents maximum work from a spontaneous process.

Warning!

Direction Change

Equilibrium Constants

The Equilibrium Constant for a Chemical Reaction

$$\mathsf{A} \rightleftharpoons \mathsf{B}$$

- The reaction can occur in either direction. (at least in principle)
- The probability that any molecule of A will be converted to a molecule of B is the same as for any other molecule of A.
 - The total rate of conversion of A to B is proportional to the concentration of A.
 - Similarly, the total rate of conversion of B to A is proportional to the concentration of B.
- A differential equation:

$$\frac{d[\mathsf{A}]}{dt} = -k_{\mathsf{f}}[\mathsf{A}] + k_{\mathsf{r}}[\mathsf{B}]$$

The constants $k_{\rm f}$ and $k_{\rm r}$ are called rate constants.

The Equilibrium Constant for a Chemical Reaction

$$A \xleftarrow[k_r]{k_r} B$$

From the previous slide:

$$\frac{d[\mathsf{A}]}{dt} = -k_{\mathsf{f}}[\mathsf{A}] + k_{\mathsf{r}}[\mathsf{B}]$$

- Whatever the starting concentrations, [A] and [B] will eventually adjust so that they no longer change.
- At equilibrium:

$$\frac{d[\mathsf{A}]}{dt} = -\frac{d[\mathsf{B}]}{dt} = 0$$

The Equilibrium Constant for a Chemical Reaction

$$A \stackrel{k_{f}}{\underset{k_{r}}{\longleftarrow}} B$$

At equilibrium:

$$\frac{d[\mathsf{A}]}{dt} = -\frac{d[\mathsf{B}]}{dt} = -k_{\mathsf{f}}[\mathsf{A}]_{\mathsf{eq}} + k_{\mathsf{r}}[\mathsf{B}]_{\mathsf{eq}} = 0$$

 $[A]_{eq}$ and $[B]_{eq}$ are the concentrations of A and B at equilibrium.

Rearranging:

$$k_{\rm r}[{\rm B}]_{\rm eq} = k_{\rm f}[{\rm A}]_{\rm eq}$$
$$\frac{[{\rm B}]_{\rm eq}}{[{\rm A}]_{\rm eq}} = \frac{k_{\rm f}}{k_{\rm r}} = K_{\rm eq}$$

 K_{eq} is defined as the equilibrium constant.

The Equilibrium Constant and Free Energy Change for a Chemical Reaction

$$A \rightleftharpoons B \qquad \qquad \mathcal{K}_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

At equilibrium, a little bit of work can push the reaction in either direction. This defines the condition where Δ*G* = 0 No work can be done!

• Definition of ΔG for a chemical reaction:

The free energy change for converting one mole of reactants to one mole of products, at specified concentrations, without significantly changing concentrations(!).

Implies a very, very large volume!

Or, a mechanism that restores concentrations continuously.

The Relationship Between Free Energy and the Equilibrium Constant

$$A \Longrightarrow B \qquad \qquad \mathcal{K}_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

• ΔG depends on concentrations of A and B.

• If
$$\frac{[B]}{[A]} < K_{eq}$$
, the reaction will try to shift towards B, $\Delta G < 0$

• If
$$\frac{[B]}{[A]} > K_{eq}$$
, the reaction will try to shift back to A, $\Delta G > 0$

• Define standard concentrations to specify ΔG :

- Concentrations of all species are 1 M for solutions or 1 atm for gasses.
- Free energy change at these concentrations is called ΔG° .

The Relationship Between Free Energy and the Equilibrium Constant

If reactants and products are at equilibrium concentrations:

 $\Delta G = 0$

If reactants and products are at standard state concentrations (1 M):

$$\Delta G \equiv \Delta G^{\circ}$$
$$\Delta G^{\circ} = -RT \ln \frac{[B]_{eq}}{[A]_{eq}} = -RT \ln K_{eq}$$

 ΔG° and K_{eq} convey essentially the same information.

For other concentrations:

$$\Delta G = \Delta G^\circ + RT \ln \frac{[\mathsf{B}]}{[\mathsf{A}]}$$

The Relationship Between the Standard Free Energy Change and the Equilibrium Constant

$$\Delta G^{\circ} = -RT \ln K_{eq} \qquad A \rightleftharpoons B \qquad K_{eq} = \frac{[B]_{eq}}{[A]_{eq}}$$

If $K_{eq} > 1$:

• Reaction favors B over A.

• $\Delta G^{\circ} < 0$

- If $K_{eq} < 1$:
 - Reaction favors A over B.
 - $\Delta G^{\circ} > 0$
- If $K_{eq} = 1$:
 - A and B have equal free energies.
 - $\Delta G^\circ = 0$

Clicker Question #1

For a hypothetical reaction, A \implies B, $K_{eq} = 1500$ at 25° C. What is the standard free energy change at this temperature? $R = 8.314 \, \mathrm{JK^{-1} mol^{-1}}$ A) -8 kJ/mol B) -18 kJ/mol C) 0 kJ/mol D) 8 kJ/mol E) 18 kJ/mol

$$\Delta G^{\circ} = -RT \ln K_{eq} = -8.314 \, \text{JK}^{-1} \text{mol}^{-1} \times 298 \, \text{K} \times \ln 1500$$

= -18, 000 $\text{J/mol} = -18 \, \text{kJ/mol}$

Clicker Question #2

For a different hypothetical reaction, C \implies D, $\Delta G^{\circ} = 5 \text{ kJ/mol}$ at 25°C.

What is the equilibrium constant at this temperature?

A) -1
B) -0.13
C) 0.13
D) 1
E) 7.5

$$K_{
m eq} = e^{-\Delta G^{\circ}/(RT)} = e^{-5,000 \,
m J/mol/(8.314 \,
m JK^{-1}mol^{-1} imes 298 \,
m K)} = 0.13$$

Clicker Question #3

For the reaction, A \implies B, the standard free energy change, ΔG° , is -18 kJ/mol at 25°C.

What is the free energy change when the concentrations of A and B are 10 mM and 200 mM, respectively?

A) -18 kJ/mol B) -11 kJ/mol C) -7 kJ/mol D) 7 kJ/mol E) 18 kJ/mol $\Delta G = \Delta G^{\circ} + RT \ln \frac{[\mathsf{B}]}{[\mathsf{A}]} = -18,000 \text{ J/mol} + 8.314 \text{ JK}^{-1} \text{mol}^{-1} \times 298 \text{ K} \times \ln \frac{200 \text{ mM}}{10 \text{ mM}}$ = 11,000 J/mol = -11 kJ/mol

Reactions with More than One Reactant or Product

- A reaction with two reactants and two products: aA + bB = cC + dD
 - a, b, c and d represent stoichiometry
- The equilibrium constant:

$$\mathcal{K}_{\mathrm{eq}} = rac{\left[\mathsf{C}
ight]_{\mathrm{eq}}^{c}\left[\mathsf{D}
ight]_{\mathrm{eq}}^{d}}{\left[\mathsf{A}
ight]_{\mathrm{eq}}^{a}\left[\mathsf{B}
ight]_{\mathrm{eq}}^{b}}$$

Products over reactants! (Mrs. Freeman)

The reaction quotient:

$$Q = \frac{\left[\mathsf{C}\right]^{c}\left[\mathsf{D}\right]^{d}}{\left[\mathsf{A}\right]^{a}\left[\mathsf{B}\right]^{b}}$$

When concentrations are not necessarily at equilibrium.

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$