Physical Principles in Biology Biology 3550 Spring 2025

Lecture 34

Protein Folding Thermodynamics and Mechanisms

Monday, 7 April 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

- Problem Set 5:
 - Due Friday, 11 April at 11:59 PM
 - Submit pdf file on Gradescope
- Quiz 5:
 - Friday, 11 April
 - 25 min, second half of class

Protein Unfolding/Refolding: A Simplified Summary

Free energy profile for unfolding and refolding:

What determines the overall equilibrium between native and unfolded states?

Conformational Entropy Change for Protein Unfolding

From the previous lecture:

 $\Delta S_{\rm conf} = k \ln 10^n$

n is the number of amino acid residues. Assumes 1 conformation for the native state and 10 conformations for each residue in the unfolded state.

• On a molar basis for n = 100

$$\Delta S_{
m conf} = R \ln 10^{100} = 8.314 \, {
m J} / ({
m mol} \cdot {
m K}) imes {
m ln} \, 10^{100}$$

 $= 2 \times 10^3 \, \mathrm{J/(mol \cdot K)}$

Corresponding free energy change at 298 K:

$$-T\Delta S_{
m conf} = -5.7 imes 10^5
m J/mol = -570
m kJ/mol$$

 Compare with the overall free energy change for unfolding, on the order of 30 kJ/mol

Observed Thermodynamics for Protein Unfolding

For a typical small protein at room temperature (300 K):Measured experimentally for unfolding:

 $\Delta G_{
m u} = 30 \,
m kJ/mol$ $\Delta H_{
m u} = 100 \,
m kJ/mol$ $\Delta S_{
m u} = 230 \,
m J/(mol \cdot K)$

Estimated change in conformational entropy:

$$\Delta S_{
m conf} = 2 \times 10^3 \, {
m J/(mol \cdot K)}$$

- $T \Delta S_{
m conf} = -570 \, {
m kJ/mol}$

- What we need to explain:
 - Why is $\Delta S_{\rm u} \ll \Delta S_{\rm conf}$?
 - Why is $\Delta G_{\rm u} \gg -T\Delta S_{\rm conf}$?

Thermodynamics of Transfer of a Non-polar Molecule to Water

- $\Delta G_{\rm tr} = \Delta H_{\rm tr} T \Delta S_{\rm tr}$
- ΔG_{tr} is positive because ΔS_{tr} is negative! (an "entropically driven" process).
- Water molecules become more ordered when a non-polar molecule is introduced.
- Non-polar groups buried in the interior of folded proteins become exposed to water on unfolding.

Transfer Free Energy versus Accessible Surface Area

Figure adapted from: F. M. Richards. Areas, volumes, packing and protein structure. *Annu. Rev. Biophys. Bioeng.*, 6:151–176, 1977. http://dx.doi.org/10.1146/annurev.bb.06.060177.001055

Thermodynamics of Non-polar Surface Transfer to Water

At 300 K

- $\Delta G_{\rm tr} = A_{\rm np} \times 97 \, {\rm J/mol/\AA^2}$
- $\Delta H_{\rm tr} = A_{\rm np} \times 7 \, {\rm J/mol/Å^2}$
- $\Delta S_{tr} = -A_{np} \times 0.3 \text{ J}/(\text{mol} \cdot \text{K})/\text{Å}^2$
- $-T\Delta S_{tr} = A_{np} \times 90 \text{ J/mol/Å}^2$
- A_{np}: Non-polar surface area (Å²) transferred from non-polar environment to water.

How does the surface area exposed to water change when a protein unfolds?

Estimates are from transfer measurements summarized in:

Baldwin, R. L. (1986). *Proc. Natl. Acad. Sci., USA*, 83, 8069–8072. http://dx.doi.org/10.1073/pnas.83.21.8069 and

Spolar, R. S., Livingstone, J. R. & Record, T. M. (1992). *Biochemistry*, 31, 3947–3955. http://dx.doi.org/10.1021/bi00131a009

Folded Structure of a Small Protein: Ribonuclease A

Solvent-accessible Surface of a Small Protein: Ribonuclease A

Solvent-accessible Surface of Unfolded Ribonuclease A

(one representative conformation)

Change in Accessible Surface Area for Unfolding for a Protein of About 100 Residues

	Folded (Å ²)	Unfolded (Å ²)	Difference (Å ²)
Total	7,000	14,700	7,700
Non-polar	3,800	8,800	5,000
Polar	3,200	5,900	2,700

Thermodynamic Consequence of Non-polar Surface Area Exposed Upon Unfolding (Hydrophobic Effect)

For 5000 $\mbox{\AA}^2$ at 300 K

$$\Delta H_{\rm hyd} = 35 \, \rm kJ/mol$$

•
$$\Delta S_{\text{hyd}} = -1$$
, 500 J/(mol \cdot K)

•
$$\Delta G_{\text{hyd}} = 480 \, \text{kJ/mol}$$

Contributions to Protein Unfolding Thermodynamics

For protein of 100 amino-acid residues at 300 K:

	ΔH	ΔS	ΔG
	kJ/mol	$J/(mol \cdot K)$	kJ/mol
Conformational entropy		2,000	-570
Hydrophobic effect	35	-1,500	480
Other	65	-270	120
Overall, experimental	100	230	30

- Increase in conformational entropy is largely compensated for by decrease in water entropy associated with hydrophobic effect.
- What might "other" contributions to ΔH be?
 - Breaking protein hydrogen bonds.
 - Exposure of polar surface area to water.

Hydrogen Bonds in Folded Ribonuclease A

Red dashes indicate hydrogen bonds.

Breaking a Hydrogen Bond in vacuo

• $\Delta H \approx 50 \, \text{kJ/mol}$

Breaking a Hydrogen Bond in Water

 $\Delta H = ?$ $\Delta S = ?$ $\Delta G = ?$

Contributions to Protein Unfolding Thermodynamics

For protein of 100 amino-acid residues at 300 K:

	ΔH	ΔS	ΔG
	kJ/mol	J/(mol ⋅ K)	kJ/mol
Conformational entropy		2,000	-570
Hydrophobic effect	35	-1,500	480
Other	65	-270	120
Overall	100	230	30

- Increase in conformational entropy is largely compensated for by decrease in water entropy associated with hydrophobic effect.
- Breaking hydrogen bonds likely represents much of the "other" contributions.

Warning!

Direction Change

HOW does the folded structure form?

Clicker Question #1

For a protein of 100 amino-acid residues, how long would it take for the chain to randomly sample all of the possible conformations to find the native structure?

- A) Less than 1 second
- **B)** pprox 1 minute
- C) $\approx 1 \, {
 m hour}$
- D) $pprox 1 \, \mathrm{day}$
- E) More than 1 year

All answers count for now.

The Levinthal Paradox:

- Consider a polypeptide of 100 amino-acid residues.
- If conformations of individual residues are independent: 10¹⁰⁰ possible conformations.
- Assume that only 1 in 10¹⁰ of these conformations is actually possible, because of steric conflicts, leaving 10⁹⁰ conformations.
- The fastest interconversions between conformations is on the order of 10⁻¹³ s.

time =
$$10^{90}$$
 conformations $\times 10^{-13}$ s/conformation = 10^{77} s
= 10^{77} s $\div 3600$ s/hr $\div 24$ h/day $\div 365$ days/year
 $\approx 10^{70}$ years

How does a polypeptide find it's folded conformation in seconds or minutes?

Levinthal, C. (1969). How to fold graciously. In *Mossbauer Spectroscopy in Biological Systems* (DeBrunner, J. & Munck, E., eds.), pp. 22–24. Univ. of Illinois Press, Urbana, IL. http://www.cc.gatech.edu/~turk/bio_sim/articles/proteins_levinthal_1969.pdf

Protein Folding as a Pathway

- Folding begins with a "nucleus" of local structure.
- Additional structure adds and increases stability.
- Rate-limiting step (transition state) might occur early or late in the pathway.

Protein Folding as a Funnel

- Folding is viewed as a convergence of many possible starting conformations.
- Top of funnel represents unfolded state.
- Bottom of funnel represents native state.
- Width of funnel represents number of conformations (S_{conf}).
- Distance from top to bottom represents number of stabilizing interactions.

Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. (1995). Funnels, pathways, and the energy landscape of protein folding: A synthesis. *Proteins*, 21, 167–195. http://dx.doi.org/10.1002/prot.340210302

A Plausible Picture of the Transition State for Protein Folding

Protein Folding in vivo

- Polypeptides are synthesized on ribosomes, starting with the N-terminus.
- Folding may begin on ribosomes.
- Molecular chaperones (Hsp70 and Hsp40) may limit folding before synthesis is complete.
- Other chaperones (GrpE and GroE) facilitate correct folding after synthesis.
- Chaperones have a largely negative role: preventing improper interactions.
- Some chaperones are ATP-driven machines that modify structures.

Hartl, F. U. & Hayer-Hartl, M. (2009). Converging concepts of protein folding *in vitro* and *in vivo*. *Nat. Struct. Mol. Biol.*, 16, 574–581. http://dx.doi.org/10.1038/nsmb.1591