Physical Principles in Biology Biology 3550 Spring 2025

Lecture 6:

Brownian Motion and the Plinko

Friday, 17 January 2025 ©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Announcements

Problem set 1:

- Due 11:59 PM, Friday, 24 January.
- Download problems from Canvas.
- Upload work to Gradescope.
- Work must be typed!
- Quiz 1:
 - Friday, 24 January
 - 25 min, second half of class.
- Discussion/problem-solving sessions:
 - Wednesday, 22 January, 3:00 P.M. CSC 13
 - Mondays (starting 27 January), 3:00 P.M. AEB 306
- Office hours:
 - Wednesdays, 11:00 AM ASB 306
 - Other times by appointment

Random Motion of Latex Beads in Water

Brownian Motion Movie

YouTube movie: https://www.youtube.com/watch?v=cDcprgWiQEY

Robert Brown

1773-1858

- Scottish botanist, explorer of Australia and exceptional microscopist.
- In 1827, observed random motions of small $(1 \mu m)$ particles within pollen grains.
- Observed same motion in non-biological samples.
- What makes them move?

Albert Einstein

1879-1955 (photo 1904)

1905: Einstein's Annus Mirabilis

- Special relativity
- $\blacksquare E = mc^2$
- Photoelectric effect
- Brownian motion

What About Mileva Marić?

Einstein and Marić

- Worked closely while both were university students (1896–1900), and after.
- Married in 1902; divorced in 1919.
- Some have argued that Marić made important contributions to the 1905 papers, especially special relativity.
- Very little historical record.

Esterson, A., Cassidy, D. C. & Sime, R. L. (2019). *Einstein's Wife: The Real Story of Mileva Einstein-Marić*. MIT Press. https://mitpress.mit.edu/books/einsteins-wife

Simulation of Brownian Motion

- Motion of particles is caused by fluctuations in the random motions of solvent molecules.
- Einstein made this model quantitative, allowing it to be rigorously tested.
- Conclusive evidence that liquids and gasses were made up of discrete molecules.
- A detailed, realistic molecular simulation is very difficult!

Displacement from the Starting Point for a One-Dimensional Random Walk

- Start at position x = 0.
 - Take *n* random steps to the right or left.
 - $n_{\rm H} =$ no. of heads
 - $n_{\rm T}$ = no. of tails
- Final position is x.

 $x = n_{\rm H} - n_{\rm T}$

- (in units of step lengths)
- Generally expect a distribution of x if the random walk is repeated a large number of times.

Analog of a Random Walk: The Galton Probability Machine

- Sir Francis Galton (1822-1911)
 - Cousin of Charles Darwin.
 - Attempted to find a mathematical description of genetic variation and evolution.
 - Early advocate of eugenics (invented the term); improvement of humans by selective breeding.

http://mathworld.wolfram.com/GaltonBoard.html https://en.wikipedia.org/wiki/Francis_Galton

Plinko Computer Demonstration

https://phet.colorado.edu/en/simulation/plinko-probability

Plinko Probabilities: A Six-row Plinko

- The question: What is the probability that a ball will fall in each of the buckets.
- For *N* plinko rows, there will be *N* + 1 buckets for balls to land in.
- For convenience, buckets are numbered from 0 to *N*.
- How shall we define the sample set?

Clicker Question #1

How shall we define the plinko sample set?

- A) By the number of the bin that the ball falls into.
- B) By the individual paths that the balls can follow.
- C) By whether the ball falls on the right side, the left side or the middle.
- **D)** By how far the ball falls from the center.

All answers count for now.

Count The Paths to Reach a Given Bucket

- Define outcomes as all of the possible paths, because they all have the same probability (if the plinko is unbiased).
- Define events as final positions of ball, *i.e.*, bucket numbers.
- How many possible paths are there?
 - For a 6-row plinko, each path involves 6 places to change direction.
 - The number of different paths is: $2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^6 = 64$
 - Each path has an equal probability, equal to 1/64
 - For an *n*-row plinko, the number of different paths is 2^n , and the probability of each is $1/2^n = 2^{-n}$.

Need to Count the Number of Paths to Each Final Position

Bucket No.	Paths
0	
1	
2	
3	
4	
5	
6	

Bucket No.	Paths
0	1
1	
2	
3	
4	
5	
6	

Bucket No.	Paths
0	1
1	
2	
3	
4	
5	
6	1

Clicker Question #2

How many paths are there to bucket 1?

All answers count for now.

Each path to bucket 1 includes 1 turn to the right and 5 to the left.

Each path to bucket 1 includes 1 turn to the right and 5 to the left.

Each path to bucket 1 includes 1 turn to the right and 5 to the left.

Each path to bucket 1 includes 1 turn to the right and 5 to the left.

Clicker Question #3

How many paths are there to bucket 2?

All answers count for now.

Bucket No.	Paths
0	1
1	6
2	
3	
4	
5	6
6	1

Bucket No.	Paths
0	1
1	6
2	
3	
4	
5	6
6	1

Bucket No.	Paths
0	1
1	6
2	
3	
4	
5	6
6	1

Bucket No.	Paths
0	1
1	6
2	
3	
4	
5	6
6	1

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	4
3	
4	
5	
6	

1 st right turn row	Paths
1	5
2	4
3	3
4	
5	
6	

1 st right turn row	Paths
1	5
2	4
3	3
4	2
5	
6	

1 st right turn row	Paths
1	5
2	4
3	3
4	2
5	1
6	

1 st right turn row	Paths
1	5
2	4
3	3
4	2
5	1
6	0

Bucket No.	Paths
0	1
1	6
2	15
3	
4	
5	6
6	1

Bucket No.	Paths
0	1
1	6
2	15
3	
4	
5	6
6	1

Bucket No.	Paths
0	1
1	6
2	15
3	
4	15
5	6
6	1

Clicker Question #4

How many paths are there to bucket 3?

Bucket No.	Paths
0	1
1	6
2	15
3	20
4	15
5	6
6	1

- The total number of paths is 64.
- Counting the paths to bucket 3 looks hard!

Another Way to Count the Paths to Bucket 2

- 2 turns to the right and 4 turns to the left.
- There are 6 rows where one turn could be placed.
- There are 5 rows where a second turn could be placed. $6 \times 5 = 30$
- BUT, this assumes that the turns can be placed in either order!
- The first turn has to come before the second, so each possible path has been counted twice.
- The correct count: $6 \times 5 \times \frac{1}{2} = 15$
- A general strategy: Count all of the possible places where each right turn could be placed, allowing all possible orders, and then correct for over counting.

Counting the Paths to Bucket 3

- 3 turns to the right and 3 to the left.
- Ignoring the order of placement:
 - 6 rows where a first right turn can be placed.
 - 5 rows where a second right turn can be placed.
 - 4 rows where a third right turn can be placed.
 - $6 \times 5 \times 4 = 120$
- But, this assumes turns can be placed in any order!
- How do we determine how many times the paths have been over counted?