Lecture 8:
Plinko Probabilities, Part II
Binomial Coefficients and the Binomial Distribution Function

Friday, 7 September 2018

©David P. Goldenberg
University of Utah
goldenberg@biology.utah.edu
Probabilities for the Six-row Plinko

<table>
<thead>
<tr>
<th>Bucket No.</th>
<th>Paths</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>$1/64 \approx 0.016$</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>$6/64 \approx 0.094$</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>$15/64 \approx 0.234$</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>$20/64 \approx 0.312$</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>$15/64 \approx 0.234$</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>$6/64 \approx 0.094$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>$1/64 \approx 0.016$</td>
</tr>
</tbody>
</table>
An n-row Plinko

- $k =$ bucket number.

- To reach bucket k, ball must make k turns to the right and $n - k$ turns to the left.
For an \(n \)-row plinko, the number of paths to bucket \(k \) is the number of ways to place \(k \) labeled beans in \(n \) cups in a single order.

To calculate this number:

1. Calculate the number of ways to place \(k \) labeled beans in \(n \) cups, in any order.
2. Calculate the number of ways to place \(k \) labeled beans in \(k \) cups, in any order.
3. Divide result of 1 by result of 2.
The Number of Ways to Place \(k \) Labeled Beans in \(n \) Cups, in a Single Order

- The number of ways to place \(k \) labeled beans in \(n \) cups in any order:

\[
n(n-1)(n-2)\cdots(n-k+1) = \\
\frac{n(n-1)\cdots(n-k+1)(n-k)(n-k-1)\cdots2\cdot1}{(n-k)(n-k-1)\cdots2\cdot1} = \frac{n!}{(n-k)!}
\]

- The number of ways to place \(k \) labeled beans in \(k \) cups in any order (\(k = n \)):

\[
\frac{k!}{(k-k)!} = k!
\]

- The number of ways to place \(k \) labeled beans in \(n \) cups in a single order is:

\[
\frac{n!}{(n-k)!} \cdot \frac{1}{k!} = \frac{n!}{k!(n-k)!}
\]
For a 5-row plinko, with 6 buckets labeled 0 to 5, how many paths are there to bucket 3?

A) 2
B) 4
C) 6
D) 8
E) 10

$$\frac{5!}{3!(5 - 3)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(2 \cdot 1)} = \frac{120}{12} = 10$$
The expression we have derived applies to much more than plinkos!

The expression is often written as:

\[\binom{n}{k} = \frac{n!}{(n-k)!k!} \]

and spoken as “n choose k”

From n objects, choose k of them (each only once) and either

- Only a single order is allowed (e.g., turns in the plinko)
 Or
- The order doesn’t matter (e.g., unlabeled beans).
 But, not if
- The objects are labeled and all orders are allowed.
Binomial Coefficients

The series of numbers generated by

\[\binom{n}{k} = \frac{n!}{(n-k)!k!} \]

for a specific value of \(n \) and increasing values of \(k \leq n \) are called “binomial coefficients.”

The binomial coefficients arise in algebra in the expansion of a sum of two terms:

\[
\begin{align*}
(a + b)^2 &= a^2 + 2ab + b^2 \\
(a + b)^3 &= a^3 + 3a^2b + 3ab^2 + b^3 \\
(a + b)^4 &= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \\
(a + b)^5 &= a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 \\
(a + b)^6 &= a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6
\end{align*}
\]
Pascal’s Triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
Row
0
1
2
3
4
5
6
.
.
.
.
.
. . . .
. .

Blaise Pascal, French mathematician, 1623–1662

Triangle was known long before Pascal’s time, but Pascal wrote a book about it.
Pascal’s Triangle

- Start with 1s on left and right sides.
- Calculate other elements by adding two values above.

Animation from https://en.wikipedia.org/wiki/Pascal%27s_triangle
The total number of paths is 2^n.

If each turn to the right or left is equally probable, the probabilities of all paths are equal, and the probability of each path is:

$$p = \frac{1}{2^n} = 2^{-n}$$

The probability of a ball landing in bucket k is the number of paths to the bucket multiplied by the probability of each path:

$$p(k) = \frac{n!}{k!(n-k)!} \cdot 2^{-n}$$
For a 7-row plinko, with 8 buckets labeled 0 to 7, what is the probability of a ball landing in bucket 1?

(There’s a hard way and an easy way!)

A) \(\sim 0.01 \)

B) \(\boxed{\sim 0.05} \)

C) \(\sim 0.1 \)

D) \(\sim 0.15 \)

E) \(\sim 0.2 \)

\[
p(1) = \frac{n!}{k!(n-k)!} \cdot 2^{-n} = \frac{7!}{1!(7-1)!} \cdot 2^{-7} = \frac{7!}{6!} \cdot 2^{-7} = 7 \cdot 2^{-7}
\]
What if the Plinko is Biased?

- Suppose that each peg in the plinko has been “fixed”, so that the probability of a left turn is 0.4 and the probability of a right turn is 0.6.

- For each of the paths to bucket k, there are k right turns and $(n - k)$ left turns.

- For each individual path to bucket k, the probability is:

$$0.6^k \times 0.4^{(n-k)}$$

- The total probability of a ball falling in bucket k is:

$$p(k) = \frac{n!}{k!(n-k)!} \times 0.6^k \times 0.4^{(n-k)}$$
Biased pegs “push” balls to the right.

Probability (number of paths) “draws” balls to the center.

Can you think of physical processes like this?
The Binomial Probability Distribution Function

- The general formulation:
 \(p(k; n, p) \) is the probability of \(k \) successes in \(n \) successive binary (yes/no) trials when the probability of success in each trial is \(p \).

- The probability function:

 \[
 p(k; n, p) = \frac{n!}{k!(n-k)!} p^k (1 - p)^{(n-k)}
 \]

- Some applications beyond plinkos:
 - Number of heads in \(n \) successive coin tosses.
 - Number of successes in prescribing a medication to a series of patients with the same condition.
 - Probability of surviving \(n \) potentially deadly events.
 \(p(n; n, p) \), were \(p \) is the probability of surviving each event.
Suppose that I let you put a ball in the 6-row plinko, and I agree to pay you k dollars if the ball lands in bucket k.

This is probably going to cost me money!

How much should I charge you to play?

How much, on average, am I going to have to pay?
Clicker Question #3

How much should I charge you to play my plinko game (to break even)?
All answers count for now.

A) $1
B) $2
C) **$3**
D) $4
E) $6
F) $7
An Quick Solution

- Buckets 0 and 6 have equal probabilities. The average payout for these two is $3.
- Buckets 1 and 5 have equal probabilities. The average payout for these two is $3.
- Buckets 2 and 4 have equal probabilities. The average payout for these two is $3.
- The payout for bucket 3 is $3.
- The overall average payout is $3.

Without knowing any of the actual probabilities!
Random Variables

Definition: A variable that is assigned a value for each possible outcome or event for a probabilistic process.

Examples:

- For a coin toss, we could assign a random variable, x, the value of 1 for heads or 0 for tails.
- For n successive coin tosses, we could define x to be the number of heads.
- For the Plinko, we can define the random variable, x, as the number of the bucket that the ball lands in.
 But, we could define other random variables, too.