Physical Principles in Biology Biology 3550 Spring 2025

Lecture 9:

Random Variables, the Expected Value,

Variance and Standard Deviation

Monday, 27 January 2025

©David P. Goldenberg University of Utah goldenberg@biology.utah.edu

Playing Plinko for Cash

- Suppose that I let you put a ball in the 6-row plinko, and I agree to pay you k dollars if the ball lands in bucket k.
- How much should I charge you to play?
- How much, on average, am I going to have to pay?

A Quick Solution

- Buckets 0 and 6 have equal probabilities. The average payout for these two is \$3.
- Buckets 1 and 5 have equal probabilities. The average payout for these two is \$3.
- Buckets 2 and 4 have equal probabilities. The average payout for these two is \$3.
- The payout for bucket 3 is \$3.
- The overall average payout is \$3.
- Without knowing any of the actual probabilities!

Random Variables

- Definition: A variable that is assigned a value for each possible outcome or event for a probabilistic process.
- Examples:
 - For a coin toss, we could assign a random variable, *x*, the value of 1 for heads or 0 for tails.
 - For *n* successive coin tosses, we could define *x* to be the number of heads.
 - For the Plinko, we can define the random variable, *x*, as the number of the bucket that the ball lands in.
 - For any of these, we could define other random variables.

The Expected Value or Expectation

For a random process that has a sample set of *n* possible outcomes (or a complete set of *n* non-overlapping events):

- The random variable, x, has values of x_k for $k = 1, 2, 3 \dots n$
- The n possible outcomes (or events) have probabilities of p(k), for k = 1, 2, 3...n
- The expected value is defined as:

$$E = \sum_{k=1}^{n} p(k) x_k$$

- If the process is repeated a large number of times, the average value of x will approach E.
- For a game of chance, if x_k is the number of dollars paid out for outcome (or event) k, E is the average payout.

The Expected Value is an Average

The simplest case, where all of the events have equal probabilities:

$$E = \sum_{k=1}^{n} p(k) x_k$$
$$p(k) = \frac{1}{n}$$
$$E = \sum_{k=1}^{n} \frac{1}{n} x_k = \frac{1}{n} \sum_{k=1}^{n} x_k$$

More generally, E is a weighted average, in which the values of the more probable outcomes are weighted more heavily than the less probable values.

Expected Value of *x* for the Unbiased Six-row Plinko

k	x _k	p(k)	$p(k)x_k$
1	0	1/64	0
2	1	6/64	6/64
3	2	15/64	30/64
4	3	20/64	60/64
5	4	15/64	60/64
6	5	6/64	30/64
7	6	1/64	6/64
Total		1	192/64 =3

Expected Value of x for a Biased Six-row Plinko: p(right) = 0.6

k	x _k	p(k)	$p(k)x_k$
1	0	0.004	0
2	1	0.037	0.037
3	2	0.138	0.276
4	3	0.276	0.829
5	4	0.311	1.244
6	5	0.186	0.933
7	6	0.046	0.280
Total		1	3.6

Expected Value of x for a Biased Six-row Plinko: p(right) = 0.4

k	x _k	p(k)	$p(k)x_k$
1	0	0.046	0
2	1	0.187	0.187
3	2	0.311	0.622
4	3	0.276	0.829
5	4	0.138	0.553
6	5	0.037	0.184
7	6	0.004	0.0246
Total		1	2.4

Another Random Variable for the Plinko, Δx

• Δx represents the position of the bucket, relative to the central bucket. $\Delta x = x - 3$

Expected Value of Δx for the Unbiased Six-row Plinko

k	Δx_k	p(k)	$p(k)\Delta x_k$
1	-3	1/64	-3/64
2	-2	6/64	-12/64
3	-1	15/64	-15/64
4	0	20/64	0
5	1	15/64	15/64
6	2	6/64	12/64
7	3	1/64	3/64
Total		1	0

Expected Value of Δx for a Biased Six-row Plinko: p(right) = 0.6

k	Δx_k	p(k)	$p(k)\Delta x_k$
1	-3	0.004	-0.012
2	-2	0.037	-0.074
3	-1	0.138	-0.138
4	0	0.276	0
5	1	0.311	0.311
6	2	0.186	0.373
7	3	0.046	0.139
Total		1	0.6

Notice:

$$\Delta x = x - 3$$

For the unbiased six-row plinko:

E(x) = 3 $E(\Delta x) = 0$

For the biased six-row plinko:

$$E(x) = 3.6$$
$$E(\Delta x) = 0.6$$

For both, $E(\Delta x) = E(x) - 3$

Two Important Rules

1. If x is a random variable, and a is a constant: E(x + a) = E(x) + a

2. And:

E(ax) = aE(x)

Another Random Variable for the Plinko, $|\Delta x|$

 $|\Delta x|$ represents the distance from the central bucket.

Expected Value of $|\Delta x|$ for the Unbiased Six-row Plinko

k	$ \Delta x _k$	p(k)	$p(k) \left \Delta x \right _k$
1	3	1/64	3/64
2	2	6/64	12/64
3	1	15/64	15/64
4	0	20/64	0
5	1	15/64	15/64
6	2	6/64	12/64
7	3	1/64	3/64
Total		1	60/64pprox 0.94

Expected Value of $|\Delta x|$ for a Biased Six-row Plinko: p(right) = 0.6

k	$ \Delta x _k$	p(k)	$p(k) \left \Delta x \right _k$
1	3	0.004	0.012
2	2	0.037	0.074
3	1	0.138	0.138
4	0	0.276	0
5	1	0.311	0.311
6	2	0.186	0.373
7	3	0.046	0.139
Total		1	1.05

Clicker Question #1

What is the expected value of $|\Delta x|$ for a biased six-row plinko with p(right) = 0.4?

A) -1.05
B) -0.94
C) 0
D) 0.94
E) 1.05

Expected Value of $|\Delta x|$ for a Biased Six-row Plinko: p(right) = 0.4

k	$ \Delta x $	$p(\Delta x)$	$p(\Delta x) \Delta x $
1	3	0.046	0.140
2	2	0.187	0.373
3	1	0.311	0.311
4	0	0.276	0
5	1	0.138	0.138
6	2	0.037	0.074
7	3	0.004	0.012
Total		1	1.05

Two Important Parameters for any Discrete Random Variable

Expected value, also called the mean (μ)

$$\mu = \sum_{k=1}^{n} p(k) x_k = E(x)$$

Variance (σ^2)

$$\sigma^2 = \sum_{k=1}^n p(k)(x_k - \mu)^2$$

- Mean of the squares of the differences between *x*-values and the mean.
- A measure of the width of the distribution of *x* values around the mean.
- Squares are taken so that both positive and negative differences contribute.
- Square root of the variance, σ, is called the standard deviation.
 σ has the same dimensions as x and μ.

Mean, Variance and Standard Deviation for the Binomial Probability Distribution Function

The probability function:

$$p(k; n, p_{s}) = \frac{n!}{k!(n-k)!} p_{s}^{k} (1-p_{s})^{(n-k)}$$

for k = 0 to n.

The mean of k:

 $\mu = n p_{\rm s}$

The variance:

$$\sigma^2 = n p_{
m s} (1-p_{
m s})$$

The standard deviation:

$$\sigma = \sqrt{n p_{\rm s} (1-p_{\rm s})}$$

Effect of *n* on the Mean and Standard Deviation for the

Binomial Probability Distribution Function

The distribution gets wider as *n* gets larger, by the factor \sqrt{n} .

Effect of p_s on the Mean and Standard Deviation for the Binomial Probability Distribution Function

For a given value of *n*, the distribution is widest when $p_s = 0.5$.

Warning!

Direction Change

A Slight Diversion: Statistics of Experimental Data

Analyzing Experimental Data: The Working Model

Assumptions:

- The measured values are determined by a "true" value plus random error (positive or negative).
- The random errors are distributed according to a Gaussian function, *i.e.*, a "bell curve".

Why is it bell shaped?

Estimating the "True" Value

The best estimate of the "true" value is the mean, \bar{x} .

$$ar{x} = rac{1}{N}\sum_{i=1}^N x_i$$

N= number of measurements, x_i is the i^{th} measurement

"Best" means most likely to give the correct value.

Estimating the Distribution Width (σ)

Two ways to estimate σ , the standard deviation:

From a histogram (takes lots of measurements!)

The sample standard deviation, *s*:

$$s = \sqrt{rac{\sum (x - ar{x})^2}{N - 1}}$$
 an estimate of σ

Estimates Improve With More Measurements (A Simulation)

- Estimate of true value (\bar{x}) approaches a limiting value (20)
- Estimate of standard deviation (s) approaches a limiting value (2)
- s doesn't approach zero.